Nanoscience and Nanotechnologies: Opportunities and Uncertainties

Total Page:16

File Type:pdf, Size:1020Kb

Nanoscience and Nanotechnologies: Opportunities and Uncertainties ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology 13 3.3.1 Introduction to nanometrology 13 3.3.2 Length measurement 13 3.3.3 Force measurement 14 3.3.4 Measurement of single molecules 14 3.3.5 Applications 14 3.4 Electronics, optoelectronics, and information and communication technology (ICT) 17 3.4.1 Introduction to electronics, optoelectronics, and ICT 17 3.4.2 Nanoscience in this area 17 3.4.3 Current applications 17 3.4.4 Applications anticipated in the future 18 3.5 Bio-nanotechnology and nanomedicine 19 3.5.1 Introduction to bio-nanotechnology and nanomedicine 19 3.5.2 Nanoscience in this area 20 3.5.3 Current and future applications 20 4 Nanomanufacturing and the industrial application of nanotechnologies 25 4.1 Introduction 25 4.2 Characterisation 25 4.3 Fabrication techniques 25 4.3.1 Bottom-up manufacturing 26 4.3.2 Top-down manufacturing 28 4.3.3 Convergence of top-down and bottom-up techniques 29 4.4 Visions for the future 30 4.4.1 Precision Engineering 30 4.4.2 The chemicals industry 31 4.4.3 The information and communication technology industry 31 4.5 Resource management and environmental issues 32 4.6 Barriers to progress 32 4.7 Summary 33 The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies | July 2004 | iii 5 Possible adverse health, environmental and safety impacts 35 5.1 Introduction 35 5.2 Assessing and controlling risk 35 5.3 Human health 36 5.3.1 Understanding the toxicity of nanoparticles and fibres 36 5.3.2 Manufactured nanoparticles and nanotubes 41 5.4 Effects on the environment and other species 45 5.5 Risk of explosion 47 5.6 Addressing the knowledge gaps 47 5.7 Conclusions 49 6 Social and ethical issues 51 6.1 Introduction: framing social and ethical issues 51 6.2 Economic impacts 52 6.3 A ‘nanodivide’? 52 6.4 Information collection and the implications for civil liberties 53 6.5 Human enhancement 54 6.6 Covergence 54 6.7 Military uses 55 6.8 Conclusions 56 7 Stakeholder and public dialogue 59 7.1 Introduction 59 7.2 Current public awareness of nanotechnologies in Britain 59 7.2.1 Quantitative survey findings 59 7.2.2 Qualitative workshop findings 60 7.2.3 Interpreting the research into public attitudes 61 7.3 Importance of promoting a wider dialogue 62 7.4 Nanotechnologies as an ‘upstream’ issue 64 7.5 Designing dialogue on nanotechnologies 64 7.5.1 Incorporating public values in decisions 66 7.5.2 Improving decision quality 66 7.5.3 Resolving conflict 66 7.5.4 Improving trust in institutions 66 7.5.5 Informing or educating people 66 7.6 Conclusions 67 8 Regulatory issues 69 8.1 Introduction 69 8.2 Approaches to regulation 69 8.3 Case studies 70 8.3.1 Workplace (including research laboratories) 70 8.3.2 Marketing and use of chemicals 71 8.3.3 Consumer products incorporating free nanoparticles, particularly skin preparations 72 8.3.4 Medicines and medical devices 74 8.3.5 Consumer products incorporating fixed nanoparticles: end-of-life issues 74 8.4 Knowledge gaps 74 8.4.1 Hazard 74 8.4.2 Exposure 75 8.4.3 Measurement 75 8.5 Conclusions 76 iv | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering 9 Conclusions 79 9.1 Nanoscience and nanotechnologies and their industrial application 79 9.2 Health, safety and environmental risks and hazards 79 9.3 Social and ethical impacts 81 9.4 Stakeholder and public dialogue 81 9.5 Regulation 82 9.6 Responsible development of nanotechnologies 83 9.7 A mechanism for addressing future issues 84 10 Recommendations 85 11 References 89 Annexes AWorking Group, Review Group and Secretariat 95 B Conduct of the study 97 C List of those who submitted evidence 99 D Mechanical self-replicating nano-robots and ‘Grey Goo’ 109 Acronyms and abbreviations 111 The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies | July 2004 |v vi | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Summary Overview Significance of the nanoscale 1 Nanoscience and nanotechnologies are widely seen 5A nanometre (nm) is one thousand millionth of a as having huge potential to bring benefits to many areas metre. For comparison, a single human hair is about of research and application, and are attracting rapidly 80,000 nm wide, a red blood cell is approximately 7,000 increasing investments from Governments and from nm wide and a water molecule is almost 0.3nm across. businesses in many parts of the world. At the same time, People are interested in the nanoscale (which we define it is recognised that their application may raise new to be from 100nm down to the size of atoms challenges in the safety, regulatory or ethical domains (approximately 0.2nm)) because it is at this scale that that will require societal debate. In June 2003 the UK the properties of materials can be very different from Government therefore commissioned the Royal Society those at a larger scale. We define nanoscience as the and the Royal Academy of Engineering to carry out this study of phenomena and manipulation of materials at independent study into current and future developments atomic, molecular and macromolecular scales, where in nanoscience and nanotechnologies and their impacts. properties differ significantly from those at a larger scale; and nanotechnologies as the design, 2 The remit of the study was to: characterisation, production and application of structures, devices and systems by controlling shape and · define what is meant by nanoscience and size at the nanometre scale. In some senses, nanotechnologies; nanoscience and nanotechnologies are not new. · summarise the current state of scientific knowledge Chemists have been making polymers, which are large about nanotechnologies; molecules made up of nanoscale subunits, for many · identify the specific applications of the new decades and nanotechnologies have been used to technologies, in particular where nanotechnologies are create the tiny features on computer chips for the past already in use; 20 years. However, advances in the tools that now allow · carry out a forward look to see how the technologies atoms and molecules to be examined and probed with might be used in future, where possible estimating the great precision have enabled the expansion and likely timescales in which the most far-reaching development of nanoscience and nanotechnologies. applications of the technologies might become reality; · identify what health and safety, environmental, ethical 6 The properties of materials can be different at the and societal implications or uncertainties may arise nanoscale for two main reasons. First, nanomaterials have from the use of the technologies, both current and a relatively larger surface area when compared to the future; and same mass of material produced in a larger form. This can · identify areas where additional regulation needs to be make materials more chemically reactive (in some cases considered. materials that are inert in their larger form are reactive when produced in their nanoscale form), and affect their 3 In order to carry out the study, the two Academies strength or electrical properties. Second, quantum effects set up a Working Group of experts from the relevant can begin to dominate the behaviour of matter at the disciplines in science, engineering, social science and nanoscale - particularly at the lower end - affecting the ethics and from two major public interest groups. The optical, electrical and magnetic behaviour of materials. group consulted widely, through a call for written Materials can be produced that are nanoscale in one evidence and a series of oral evidence sessions and dimension (for example, very thin surface coatings), in workshops with a range of stakeholders from both the two dimensions (for example, nanowires and nanotubes) UK and overseas. It also reviewed published literature or in all three dimensions (for example, nanoparticles). and commissioned new research into public attitudes. Throughout the study, the Working Group has 7 Our wide-ranging definitions cut across many conducted its work as openly as possible and has traditional scientific disciplines.
Recommended publications
  • Accomplishments in Nanotechnology
    U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well,
    [Show full text]
  • Randal Koene Page 3
    CRYONICS 4th Quarter 2019 | Vol 40, Issue 4 www.alcor.org Scholar Profile: Randal Koene page 3 Cryonics in China and Australia Cryonics and Public Skepticism: page 19 Meeting The Challenges to Our Credibility page 24 CRYONICS Editorial Board Contents Saul Kent Ralph C. Merkle, Ph.D. R. Michael Perry, Ph.D. 3 Scholar Profile: Randal Koene Accomplished neuroscientist and founder of the only dedicated Editor whole brain emulation nonprofit in existence, Dr. Randal Koene Aschwin de Wolf is no stranger to standing out. Responsible for coining the term Contributing Writers that put this niche but growing field on the map, Koene is working Ben Best hard to make humans more adaptable than ever before. In his Randal Koene R. Michael Perry, Ph.D. vision of the future, minds will be substrate-independent, with Nicole Weinstock full or even enhanced functioning on a limitless and changing Aschwin de Wolf menu of platforms. Copyright 2019 by Alcor Life Extension Foundation 19 Cryonics in China and Australia All rights reserved. Ben Reports on the emerging cryonics industry in China and the plans to create a Reproduction, in whole or part, new cryonics organization in Australia. without permission is prohibited. 24 FOR THE RECORD Cryonics magazine is published Cryonics and Public Skepticism: Meeting the Challenges to Our quarterly. Credibility Cryonics has been viewed with skepticism or hostility by some, including some Please note: If you change your scientists, ever since it started in the 1960s, even though (we like to remind the address less than a month before the naysayers) its intended basis is strictly scientific.
    [Show full text]
  • Meso/Micro/Nano Scale Technologies
    Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom.
    [Show full text]
  • Dr. Sumio Iijima's Research Accomplishments & Biography
    Dr. Sumio Iijima’s Research Accomplishments & Biography last update October 1, 2021 Biography Name: Sumio Iijima Date of Birth: May 2, 1939 Contact: Meijo University, 1-501, Shiogamaguchi, Tenpaku, Nagoya, Aichi, 468-8502 +81-52-834-4001 [email protected] Professional Title and Affiliation: ・University Professor, Meijo University, ・Senior Research Fellow, NEC Corporation ・Honorary AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST) ・Distinguished Invited University Professor, Nagoya University Research Fields: Nano Science, Materials Science, Electron microscopy, Crystallography Education: 1959-1963: University of Electro-communications, Tokyo, Bachelor of Engineering 1963-1965: Tohoku University, Sendai, Majoring in Physics; M.S. 1965-1968: Tohoku University, Sendai, Majoring in Physics; Ph.D. Professional Record: 1968-1974 Research Associate, Research Institute for Scientific Measurements, Tohoku University, Sendai 1970-1977: Research Associate, Department of Physics, Arizona State University, Tempe, Arizona 1977-1982: Senior Research Associate, Center for Solid State Science, Arizona State University, Tempe, Arizona 1979: Visiting Senior Scientist, Department of Metallurgy and Materials Science, University of Cambridge, Cambridge 1982-1987: Group Leader, ERATO Program, Research Development Corporation of Japan, Nagoya 1987-Present: Senior Research Fellow, NEC Corporation, Tsukuba (Joined NEC in 1987 as Senior Principal Researcher) 1999-Present: University Professor, Meijo University, Nagoya (Visiting
    [Show full text]
  • Nanomaterial Safety
    Nanomaterial Safety What are Nanomaterials? Nanomaterials or nanoparticles are human engineered particles with at least one dimension in the range of one to one hundred nanometers. They can be composed of many different base materials (carbon, silicon, and various metals). Research involving nanomaterials ranges from nano-particle synthesis to antineoplastic drug implants to cell culture work. Material Scientists, Chemists, Biologists, Biochemists, Physicists, Microbiologists, Medical-related disciplines and many engineering disciplines (Mechanical, Chemical, Biological and Environmental, etc.) perform research using nanomaterials. Naturally created particles of this size range are normally called ultra-fine particles. Examples are welding fumes, volcanic ash, motor vehicle exhaust, and combustion products. Nanomaterials come in many different shapes and dimensions, such as: • 0-dimensional: quantum dots • 1-dimensional: nanowires, nanotubes, • 2-dimensional: nanoplates, nanoclays • 3-dimensional: Buckyballs, Fullerenes, nanoropes, crystalline structures Nanoparticles exhibit very different properties than their respective bulk materials, including greater strength, conductivity, fluorescence and surface reactivity. Health Effects Results from studies on rodents and in cell cultures exposed to ultrafine and nanoparticles have shown that these particles are more toxic than larger ones on a mass-for-mass basis. Animal studies indicate that nanoparticles cause more pulmonary inflammation, tissue damage, and lung tumors than larger particles Solubility, shape, surface area and surface chemistry are all determinants of nanoparticle toxicity There is uncertainty as to the levels above which these particles become toxic and whether the concentrations found in the workplace are hazardous Respiratory Hazards: • Nanoparticles are deposited in the lungs to a greater extent than larger particles • Based on animal studies, nanoparticles may enter the bloodstream from the lungs and translocate to other organs and they are able to cross the blood brain barrier.
    [Show full text]
  • Best Practices for Handling Nanoparticles in Laboratories
    Best Practices for Handling Nanoparticles in Laboratories Introduction The purpose of this document is to provide a readily-accessible summary of information currently available on safe work practices for research laboratories working with engineered nanomaterials at Missouri State University. This interim guidance has been compiled from guidance from governmental agencies and universities currently engaged in nanomaterial research sources such as: The Center for Disease Control (CDC), The National Institute for Occupational Safety and Health (NIOSH), The Occupational Safety and Health Administration (OSHA), Department of Energy (DOE), Massachusetts Institute of Technology (MIT), Virginia Tech, and University of Florida. A list of sources can be found in the References section at the end of this document. It should be recognized that rapid changes in the understanding of these risks and management techniques may occur in this field, and researchers are strongly encouraged to stay abreast of these developments. It is anticipated that the internal MSU documents will be used in conjunction with the researcher’s Departmental (or University general) Chemical Hygiene Plan (CHP), and that this guidance is subject to revision as new information or regulatory guidance becomes available. Nanomaterial Definitions Nanoparticles are particles having a diameter of 1 to 100 nanometers (nm) that may or may not have size-related intensive properties. The precise definition of particle diameter depends on particle shape as well as how the diameter is measured. These materials often exhibit unique physical and chemical properties as compared to their parent compounds. They may be suspended in a gas as a nanoaerosol, suspended in a liquid as a colloid or nanohydrosol, or embedded in a matrix as a nanocomposite.
    [Show full text]
  • Overgrazed Shrublands Support High Taxonomic, Functional and Temporal
    Ecological Indicators 103 (2019) 599–609 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Overgrazed shrublands support high taxonomic, functional and temporal diversity of Mediterranean ground spider assemblages T ⁎ Dimitris Kaltsasa, , Eleni Panayiotoub, Konstantinos Kougioumoutzisc, Maria Chatzakid a Don Daleziou 45, 382 21 Volos, Greece b Palagia Alexandroupolis, PO Box 510, 681 00 Alexandroupolis, Greece c Laboratory of Systematic Botany, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece d Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 681 00 Alexandroupolis, Greece ARTICLE INFO ABSTRACT Keywords: The phryganic and maquis shrublands form the most typical vegetal formations in the Eastern Mediterranean Indicator species that since thousands of years have been subject to various types of anthropogenic disturbance, including grazing. Gnaphosidae We studied the impact of sheep and goat grazing on 50 assemblages of ground spiders (Araneae: Gnaphosidae) in Crete phryganic, maquis and forest habitats from zero to 2000 m elevation on Crete, Greece using pitfall traps for one Maquis year at each sampling site. In total, 58 gnaphosid species and 16,592 individuals were collected. Cretan endemic Livestock grazing Gnaphosidae were negatively affected by intensive grazing and, contrary to findings on other taxa studied on the Habitat degradation island, they were sparse and rare throughout the study area. The species composition of gnaphosid assemblages was primarily determined by elevation. Trachyzelotes lyonneti, Urozelotes rusticus, Zelotes scrutatus, Anagraphis pallens and Berinda amabilis proved to be significant indicators of overgrazing. The vast majority of spiders belonging to synanthropic and nationally red-listed species were found in overgrazed sites.
    [Show full text]
  • Nanometrology: Diffraction Rules
    news & views and therefore matches poorly with the solar spectrum, Heeger explained that this can be solved by synthesizing new macromolecules with electronic structures that yield absorption spectra better matched to the solar spectrum. Additionally, through further improvements such as adding an optical spacer layer, optimizing the electrochemistry of the semiconducting polymers or using a tandem-cell configuration, the power conversion efficiency of plastic solar cells could reach an efficiency approaching that of existing inorganic solar cells. “Plastic solar cells could become a very important contribution towards a renewable energy JAMES BAXTER JAMES economy,” Heeger concluded. A report that summarizes the event, Experts sharing their thoughts on the future prospects of organic photovoltaics during the panel including opinions from the conference, a discussion session. round-up from the exhibition and several interviews with leading experts in the field of photovoltaics, will be published online potentially lightweight, flexible, rugged, nanomaterials, the power conversion and in print as a supplement in early 2011. ❐ insensitive to solar incidence angle and can efficiency of polymer solar cells has now be produced by roll-to-roll manufacturing reached ~8%, and this can be pushed Rachel Won is at Nature Photonics, Chiyoda techniques in large quantities. further according to Heeger. Although Building, 2-37 Ichigayatamachi, Shinjuku-ku, Tokyo Based on ultrafast photo-induced currently the absorption band doesn’t 162-0843, Japan. electron transfer in bulk-heterojunction cover wavelengths longer than 650 nm e-mail: [email protected] NANOmEtROLOGY Diffraction rules Fast, precise and stable nanopositioning displacements with high precision over a and metrology are critical for the large working range and with long-term development of nanoscale structures, stability.
    [Show full text]
  • Rise of the Molecular Machines Euan R
    Angewandte. Essays International Edition: DOI: 10.1002/anie.201503375 Supramolecular Systems German Edition: DOI: 10.1002/ange.201503375 Rise of the Molecular Machines Euan R. Kay* and David A. Leigh* molecular devices · molecular machines · molecular motors · molecular nanotechnology Introduction inspirational in general terms, it is doubtful whether either of these manifestos had much practical influence on the devel- “When we get to the very, very small world … we have a lot of opment of artificial molecular machines.[5] Feynmans talk new things that would happen that represent completely new came at a time before chemists had the synthetic methods and opportunities for design … At the atomic level we have new kinds analytical tools available to be able to consider how to make of forces and new kinds of possibilities, new kinds of effects. The molecular machines; Drexlers somewhat nonchemical view problem of manufacture and reproduction of materials will be of atomic construction is not shared by the majority of quite different … inspired by biological phenomena in which experimentalists working in this area. In fact, “mechanical” chemical forces are used in a repetitious fashion to produce all movement within molecules has been part of chemistry since kinds of weird effects (one of which is the author) …” conformational analysis became established in the 1950s.[6] As Richard P. Feynman (1959)[2] well as being central to advancing the structural analysis of complex molecules, this was instrumental in chemists begin- It has long been appreciated that molecular motors and ning to consider dynamics as an intrinsic aspect of molecular machines are central to almost every biological process.
    [Show full text]
  • Chapter 3 Green Grass, Red Blood, Blueprint
    Chapter 3 Green grass, red blood, blueprint: reflections on life, self-replication, and evolution M. Ciofalo Dipartimento di Ingegneria Nucleare, Università degli Studi di Palermo, Italy. Abstract Following pioneering work by von Neumann in the late 1940s, the goal of achieving self- replication in artefacts has been pursued by a variety of approaches, involving either virtual entities like cellular automata and computer programs or, to a lesser extent, real physical devices. An ample review of the major achievements in these diverse fields is given, and their practical and theoretical relevance is discussed. Possible future developments, notably regarding nanotech- nology and space exploration, are also outlined. The most relevant theoretical problems posed by self-replication are discussed in the light of current knowledge regarding life and its origins. Living entities are semiotic systems, in which physical structures have come to perform symbolic functions. The great complexity of biomolecules and of even the most primitive organisms is not a gratuitous complication, but a necessary condition for homeostasis, self-replication and open- ended evolution in a changing environment. Such requisites will have to be matched by artificial devices if their non-trivial self-replication and autonomous development are to be attained. 1 Of crystals and colloids Wordsworth’s God had his dwelling in the light of setting suns. But the God who dwells there seems to me most probably the God of the atom, the star, and the crystal. Mine, if I have one, reveals Himself in another class of phenomena. He makes the grass green and the blood red. (J.W. Krutch, 1950, [1]) The lines in the epigraph are excerpted from the famous essay ‘The colloid and the crystal’, written in 1950 by the American literary naturalist Joseph Wood Krutch.
    [Show full text]
  • Green Parties and Elections to the European Parliament, 1979–2019 Green Par Elections
    Chapter 1 Green Parties and Elections, 1979–2019 Green parties and elections to the European Parliament, 1979–2019 Wolfgang Rüdig Introduction The history of green parties in Europe is closely intertwined with the history of elections to the European Parliament. When the first direct elections to the European Parliament took place in June 1979, the development of green parties in Europe was still in its infancy. Only in Belgium and the UK had green parties been formed that took part in these elections; but ecological lists, which were the pre- decessors of green parties, competed in other countries. Despite not winning representation, the German Greens were particularly influ- enced by the 1979 European elections. Five years later, most partic- ipating countries had seen the formation of national green parties, and the first Green MEPs from Belgium and Germany were elected. Green parties have been represented continuously in the European Parliament since 1984. Subsequent years saw Greens from many other countries joining their Belgian and German colleagues in the Euro- pean Parliament. European elections continued to be important for party formation in new EU member countries. In the 1980s it was the South European countries (Greece, Portugal and Spain), following 4 GREENS FOR A BETTER EUROPE their successful transition to democracies, that became members. Green parties did not have a strong role in their national party systems, and European elections became an important focus for party develop- ment. In the 1990s it was the turn of Austria, Finland and Sweden to join; green parties were already well established in all three nations and provided ongoing support for Greens in the European Parliament.
    [Show full text]
  • Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
    Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited.
    [Show full text]