Carbon Nanomaterials: Building Blocks in Energy Conversion Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accomplishments in Nanotechnology
U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well, -
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers – Innovative Genera- Tions of Solid Lipid Carriers
324 Current Drug Delivery, 2008, 5, 324-331 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers – Innovative Genera- tions of Solid Lipid Carriers S.S. Shidhaye*, Reshma Vaidya, Sagar Sutar, Arati Patwardhan and V.J. Kadam Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, India Abstract: The first generation of solid lipid carrier systems in nanometer range, Solid Lipid Nanoparticles (SLN), was introduced as an alternative to liposomes. SLN are aqueous colloidal dispersions, the matrix of which comprises of solid biodegradable lipids. SLN are manufactured by techniques like high pressure homogenization, solvent diffusion method etc. They exhibit major advantages such as modulated release, improved bioavailability, protection of chemically labile molecules like retinol, peptides from degradation, cost effec- tive excipients, improved drug incorporation and wide application spectrum. However there are certain limitations associated with SLN, like limited drug loading capacity and drug expulsion during storage, which can be minimized by the next generation of solid lipids, Nanostructured lipid carriers (NLC). NLC are lipid particles with a controlled nanostructure that improves drug loading and firmly incor- porates the drug during storage. Owing to their properties and advantages, SLN and NLC may find extensive application in topical drug delivery, oral and parenteral administration of cosmetic and pharmaceutical actives. Cosmeceuticals is emerging as the biggest applica- tion target of these carriers. Carrier systems like SLN and NLC were developed with a perspective to meet industrial needs like scale up, qualification and validation, simple technology, low cost etc. This paper reviews present status of SLN and NLC as carrier systems with special emphasis on their ap- plication in Cosmeceuticals; it also gives an overview about various manufacturing techniques of SLN and NLC. -
Nanocellulose Fragmentation Mechanisms and Inversion of Chirality From
Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase Gustav Nyström1, Jozef Adamcik1, Ivan Usov2, Mario Arcari1 and Raffaele Mezzenga1,3* 1. ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland 2. Paul Scherrer Institute, 5232 Villigen PSI, Switzerland 3. ETH Zurich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland *Correspondence to: [email protected] Keywords: nanocellulose, fibril, kink, hydrolysis, chirality, liquid crystal, handedness Understanding how nanostructure and nanomechanics influence physical material properties on the micro- and macroscale is an essential goal in soft condensed matter research. Mechanisms governing fragmentation and chirality inversion of filamentous colloids are of specific interest because of their critical role in load-bearing and self- organizing functionalities of soft nanomaterials. Here we provide a fundamental insight into the self-organization across several length scales of nanocellulose, an important bio- colloid system with wide-ranging applications as structural, insulating and functional material. Through a combined microscopic and statistical analysis of nanocellulose fibrils at the single particle level, we show how mechanically and chemically induced fragmentation proceed in this system. Moreover, by studying the bottom-up self-assembly of fragmented carboxylated cellulose nanofibrils into cholesteric liquid crystals, we show via direct microscopic observations, that the chirality is inverted from right-handed at the 1 nanofibril level to left-handed at the level of the liquid crystal phase. These results improve our fundamental understanding of nanocellulose and provide an important rationale for their application in colloidal systems, liquid crystals and nanomaterials. The increasing global population and improved living standards demand a more efficient use of available resources and energy1. -
Carbon Additives for Polymer Compounds
Polymers Carbon Additives for Polymer Compounds Conductive Carbon Black Graphite & Coke www.timcal.com 1 Who are we? TIMCAL Graphite & Carbon has a strong tra- agement and continuous process improve- dition and history in carbon manufacturing. Its ment, all TIMCAL manufacturing plants comply first manufacturing operation was founded in with ISO 9001-2008. 1908. TIMCAL Graphite & Carbon is committed to Today, TIMCAL facilities produce and market a produce highly specialized graphite and car- large variety of synthetic and natural graphite bon materials for today’s and tomorrow’s cus- powders, conductive carbon blacks and water- tomers needs. based dispersions of consistent high quality. TIMCAL Graphite & Carbon is a member of IMERYS, Adhering to a philosophy of Total Quality Man- a world leader in adding value to minerals. Where are we located? With headquarters located in Switzerland, TIMCAL The Group’s industrial and commercial activities Graphite & Carbon has an international pres- are managed by an experienced multinational ence with production facilities and commercial team of more than 430 employees from many offices located in key markets around the globe. countries on three continents. HQ Bodio, Switzerland Willebroek, Belgium Lac-des-Îles, Canada Terrebonne, Canada Graphitization & pro- Manufacturing & pro- Mining, purification and Exfoliation of natural cessing of synthetic cessing of conductive sieving of natural graphite, processing of graphite, manufacturing carbon black graphite flakes natural and synthetic of water-based -
Nanomaterial Safety
Nanomaterial Safety What are Nanomaterials? Nanomaterials or nanoparticles are human engineered particles with at least one dimension in the range of one to one hundred nanometers. They can be composed of many different base materials (carbon, silicon, and various metals). Research involving nanomaterials ranges from nano-particle synthesis to antineoplastic drug implants to cell culture work. Material Scientists, Chemists, Biologists, Biochemists, Physicists, Microbiologists, Medical-related disciplines and many engineering disciplines (Mechanical, Chemical, Biological and Environmental, etc.) perform research using nanomaterials. Naturally created particles of this size range are normally called ultra-fine particles. Examples are welding fumes, volcanic ash, motor vehicle exhaust, and combustion products. Nanomaterials come in many different shapes and dimensions, such as: • 0-dimensional: quantum dots • 1-dimensional: nanowires, nanotubes, • 2-dimensional: nanoplates, nanoclays • 3-dimensional: Buckyballs, Fullerenes, nanoropes, crystalline structures Nanoparticles exhibit very different properties than their respective bulk materials, including greater strength, conductivity, fluorescence and surface reactivity. Health Effects Results from studies on rodents and in cell cultures exposed to ultrafine and nanoparticles have shown that these particles are more toxic than larger ones on a mass-for-mass basis. Animal studies indicate that nanoparticles cause more pulmonary inflammation, tissue damage, and lung tumors than larger particles Solubility, shape, surface area and surface chemistry are all determinants of nanoparticle toxicity There is uncertainty as to the levels above which these particles become toxic and whether the concentrations found in the workplace are hazardous Respiratory Hazards: • Nanoparticles are deposited in the lungs to a greater extent than larger particles • Based on animal studies, nanoparticles may enter the bloodstream from the lungs and translocate to other organs and they are able to cross the blood brain barrier. -
Best Practices for Handling Nanoparticles in Laboratories
Best Practices for Handling Nanoparticles in Laboratories Introduction The purpose of this document is to provide a readily-accessible summary of information currently available on safe work practices for research laboratories working with engineered nanomaterials at Missouri State University. This interim guidance has been compiled from guidance from governmental agencies and universities currently engaged in nanomaterial research sources such as: The Center for Disease Control (CDC), The National Institute for Occupational Safety and Health (NIOSH), The Occupational Safety and Health Administration (OSHA), Department of Energy (DOE), Massachusetts Institute of Technology (MIT), Virginia Tech, and University of Florida. A list of sources can be found in the References section at the end of this document. It should be recognized that rapid changes in the understanding of these risks and management techniques may occur in this field, and researchers are strongly encouraged to stay abreast of these developments. It is anticipated that the internal MSU documents will be used in conjunction with the researcher’s Departmental (or University general) Chemical Hygiene Plan (CHP), and that this guidance is subject to revision as new information or regulatory guidance becomes available. Nanomaterial Definitions Nanoparticles are particles having a diameter of 1 to 100 nanometers (nm) that may or may not have size-related intensive properties. The precise definition of particle diameter depends on particle shape as well as how the diameter is measured. These materials often exhibit unique physical and chemical properties as compared to their parent compounds. They may be suspended in a gas as a nanoaerosol, suspended in a liquid as a colloid or nanohydrosol, or embedded in a matrix as a nanocomposite. -
Enhancing the Thermal Stability of Carbon Nanomaterials with DNA
University of Rhode Island DigitalCommons@URI Chemical Engineering Faculty Publications Chemical Engineering 2019 Enhancing the Thermal Stability of Carbon Nanomaterials with DNA Mohammad Moein Safee University of Rhode Island Mitchell Gravely University of Rhode Island Adeline Lamothe University of Rhode Island Megan McSweeney University of Rhode Island Daniel E. Roxbury University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/che_facpubs Part of the Chemical Engineering Commons Citation/Publisher Attribution Safaee, M.M., Gravely, M., Lamothe, A. et al. Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Sci Rep 9, 11926 (2019). https://doi.org/10.1038/s41598-019-48449-x Available at: https://doi.org/10.1038/s41598-019-48449-x This Article is brought to you for free and open access by the Chemical Engineering at DigitalCommons@URI. It has been accepted for inclusion in Chemical Engineering Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. www.nature.com/scientificreports OPEN Enhancing the Thermal Stability of Carbon Nanomaterials with DNA Mohammad Moein Safaee , Mitchell Gravely, Adeline Lamothe, Megan McSweeney & Daniel Roxbury Received: 31 January 2019 Single-walled carbon nanotubes (SWCNTs) have recently been utilized as fllers that reduce the Accepted: 6 August 2019 fammability and enhance the strength and thermal conductivity of material composites. Enhancing Published: xx xx xxxx the thermal stability of SWCNTs is crucial when these materials are applied to high temperature applications. In many instances, SWCNTs are applied to composites with surface coatings that are toxic to living organisms. -
Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. -
Nanoscience and Nanotechnologies: Opportunities and Uncertainties
ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology -
Hazardous Substance Fact Sheet
Right to Know Hazardous Substance Fact Sheet Common Name: CARBON BLACK Synonyms: C.I. Pigment Black 7; Channel Black; Lamp Black CAS Number: 1333-86-4 Chemical Name: Carbon Black RTK Substance Number: 0342 Date: December 2007 Revision: November 2016 DOT Number: UN 1361 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Carbon Black is black, odorless, finely divided powder Hazard Summary generated from the incomplete combustion of Hydrocarbons. It Hazard Rating NJDOH NFPA may contain Polycyclic Aromatic Hydrocarbons (PAHs) which HEALTH 3 - are formed during its manufacture and become adsorbed on FLAMMABILITY 1 - the Carbon Black. It is used in making tire treads, in abrasion REACTIVITY 0 - resistant rubber products, and as a pigment for paints and inks. CARCINOGEN SPONTANEOUSLY COMBUSTIBLE PARTICULATE POISONOUS GASES ARE PRODUCED IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Carbon Black is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, NIOSH and IARC. Carbon Black can affect you when inhaled. This chemical is on the Special Health Hazard Substance Carbon Black should be handled as a CARCINOGEN-- List as it is considered a carcinogen. WITH EXTREME CAUTION. Contact can irritate the skin and eyes. Inhaling Carbon Black can irritate the nose, throat and lungs. Finely dispersed Carbon Black particles may form explosive mixtures in air. SEE GLOSSARY ON PAGE 5. FIRST AID Workplace Exposure Limits Eye Contact OSHA: The legal airborne permissible exposure limit (PEL) is Immediately flush with large amounts of water for at least 15 3.5 mg/m3 averaged over an 8-hour workshift. -
Acid-Base Properties of Carbon Black Surfaces Roy Eugene Test Iowa State University
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ames Laboratory Technical Reports Ames Laboratory 5-1961 Acid-base properties of carbon black surfaces Roy Eugene Test Iowa State University Robert S. Hansen Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Chemistry Commons Recommended Citation Test, Roy Eugene and Hansen, Robert S., "Acid-base properties of carbon black surfaces" (1961). Ames Laboratory Technical Reports. 43. http://lib.dr.iastate.edu/ameslab_isreports/43 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Acid-base properties of carbon black surfaces Abstract The urs face properties of carbon blacks reflect not only Van der Waals forces due to carbon, but also chemical properties of groups formed on carbon black surfaces by reactions with environmental substances (e.g. water, oxygen, etc.). The present work constitutes a study of such groups. Disciplines Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_isreports/43 I IS-341 ACID-BASE PROPERTIES OF CARBON BLACK SURFACES By Roy Eugene Test Robert S. Hansen May 196 1 Ames Laboratory Iowa State University I Ames, Iowa :· : :· .. : :· :. ': •. :· ·:· ·:: .: •. :' . :, ·: :· ': F. H. Spedding, Director, Ames Laboratory. Work performed under Contract No. W-7405-eng-82. -
Defence Applications of New Forms of Carbon
FOI-R--1103--SE December 2003 ISSN 1650-1942 Base data report S.J. Savage Defence applications of new forms of carbon Schematic model of the C60 fullerene molecule (Fagerström, 2003) Sensor Technology SE-581 11 Linköping SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1103--SE Sensor Technology December 2003 P.O. Box 1165 ISSN 1650-1942 SE-581 11 Linköping Base data report S.J. Savage Defence applications of new forms of carbon Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1103--SE Base data report Sensor Technology Research area code P.O. Box 1165 7. Vehicles SE-581 11 Linköping Month year Project no. December 2003 E3037 Customers code 5. Commissioned Research Sub area code 74 Materials technology Author/s (editor/s) Project manager S.J. Savage S.J. Savage Approved by Sponsoring agency Scientifically and technically responsible Report title Defence applications of new forms of carbon Abstract (not more than 200 words) This report briefly reviews some applications of new forms of carbon (fullerenes, carbon nanotubes and nanofibres) in military technology. Selected reports are summarised and discussed, and a number of military applications suggested. The report contains recommendations for future studies. Keywords nanotechnology, carbon, defence applications, nanotubes, fullerenes Further bibliographic information Language English ISSN 1650-1942 Pages 15 p. Price acc. to pricelist 2 Utgivare Rapportnummer, ISRN Klassificering Totalförsvarets Forskningsinstitut - FOI FOI-R--1103--SE Underlagsrapport Sensorteknik Forskningsområde Box 1165 7. Farkoster 581 11 Linköping Månad, år Projektnummer December 2003 E3037 Verksamhetsgren 5. Uppdragsfinansierad verksamhet Delområde 74 Materialteknik Författare/redaktör Projektledare S.J.