Nanostructure Quantification of Carbon Blacks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbon Additives for Polymer Compounds
Polymers Carbon Additives for Polymer Compounds Conductive Carbon Black Graphite & Coke www.timcal.com 1 Who are we? TIMCAL Graphite & Carbon has a strong tra- agement and continuous process improve- dition and history in carbon manufacturing. Its ment, all TIMCAL manufacturing plants comply first manufacturing operation was founded in with ISO 9001-2008. 1908. TIMCAL Graphite & Carbon is committed to Today, TIMCAL facilities produce and market a produce highly specialized graphite and car- large variety of synthetic and natural graphite bon materials for today’s and tomorrow’s cus- powders, conductive carbon blacks and water- tomers needs. based dispersions of consistent high quality. TIMCAL Graphite & Carbon is a member of IMERYS, Adhering to a philosophy of Total Quality Man- a world leader in adding value to minerals. Where are we located? With headquarters located in Switzerland, TIMCAL The Group’s industrial and commercial activities Graphite & Carbon has an international pres- are managed by an experienced multinational ence with production facilities and commercial team of more than 430 employees from many offices located in key markets around the globe. countries on three continents. HQ Bodio, Switzerland Willebroek, Belgium Lac-des-Îles, Canada Terrebonne, Canada Graphitization & pro- Manufacturing & pro- Mining, purification and Exfoliation of natural cessing of synthetic cessing of conductive sieving of natural graphite, processing of graphite, manufacturing carbon black graphite flakes natural and synthetic of water-based -
Carbon Nanomaterials: Building Blocks in Energy Conversion Devices
Mimicking Photosynthesis Carbon nanostructure-based donor- acceptor molecular assemblies can be engineered to mimic natural photo- synthesis. Fullerene C60 is an excellent electron acceptor for the design of donor-bridge-acceptor molecular systems. Photoinduced charge transfer processes in fullerene-based dyads and triads have been extensively investigated by several research groups during the last decade. In these cases the excited C60 accepts an electron from the linked donor group Carbon Nanomaterials: to give the charge-separated state under visible light excitation. Photoinduced charge separation in these dyads has Building Blocks in Energy been achieved using porphyrins, phtha- locyanine, ruthenium complexes, ferro- cene, and anilines as electron donors. Conversion Devices The rate of electron transfer and by Prashant Kamat charge separation efficiency is dependent on the molecular configuration, redox Carbon nanotubes, fullerenes, and mesoporous carbon potential of the donor, and the medium. Clustering the fullerene-donor systems structures constitute a new class of carbon nanomaterials with provides a unique way to stabilize properties that differ signifi cantly from other forms of carbon electron transfer products. The stability of C anions in cluster forms opens such as graphite and diamond. The ability to custom synthesize 60 up new ways to store and transport nanotubes with attached functional groups or to assemble photochemically harnessed charge. fullerene (C60 and analogues) clusters into three-dimensional Novel organic solar cells have (3D) arrays has opened up new avenues to design high surface been constructed by quaternary area catalyst supports and materials with high photochemical self-organization of porphyrin and fullerenes with gold nanoparticles. and electrochemical activity. -
Closed Network Growth of Fullerenes
ARTICLE Received 9 Jan 2012 | Accepted 18 Apr 2012 | Published 22 May 2012 DOI: 10.1038/ncomms1853 Closed network growth of fullerenes Paul W. Dunk1, Nathan K. Kaiser2, Christopher L. Hendrickson1,2, John P. Quinn2, Christopher P. Ewels3, Yusuke Nakanishi4, Yuki Sasaki4, Hisanori Shinohara4, Alan G. Marshall1,2 & Harold W. Kroto1 Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C2. The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C60 formation throughout the Universe. 1 Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA. 2 Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA. 3 Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, BP32229 Nantes, France. 4 Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan. -
Hazardous Substance Fact Sheet
Right to Know Hazardous Substance Fact Sheet Common Name: CARBON BLACK Synonyms: C.I. Pigment Black 7; Channel Black; Lamp Black CAS Number: 1333-86-4 Chemical Name: Carbon Black RTK Substance Number: 0342 Date: December 2007 Revision: November 2016 DOT Number: UN 1361 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Carbon Black is black, odorless, finely divided powder Hazard Summary generated from the incomplete combustion of Hydrocarbons. It Hazard Rating NJDOH NFPA may contain Polycyclic Aromatic Hydrocarbons (PAHs) which HEALTH 3 - are formed during its manufacture and become adsorbed on FLAMMABILITY 1 - the Carbon Black. It is used in making tire treads, in abrasion REACTIVITY 0 - resistant rubber products, and as a pigment for paints and inks. CARCINOGEN SPONTANEOUSLY COMBUSTIBLE PARTICULATE POISONOUS GASES ARE PRODUCED IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Carbon Black is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, NIOSH and IARC. Carbon Black can affect you when inhaled. This chemical is on the Special Health Hazard Substance Carbon Black should be handled as a CARCINOGEN-- List as it is considered a carcinogen. WITH EXTREME CAUTION. Contact can irritate the skin and eyes. Inhaling Carbon Black can irritate the nose, throat and lungs. Finely dispersed Carbon Black particles may form explosive mixtures in air. SEE GLOSSARY ON PAGE 5. FIRST AID Workplace Exposure Limits Eye Contact OSHA: The legal airborne permissible exposure limit (PEL) is Immediately flush with large amounts of water for at least 15 3.5 mg/m3 averaged over an 8-hour workshift. -
Acid-Base Properties of Carbon Black Surfaces Roy Eugene Test Iowa State University
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ames Laboratory Technical Reports Ames Laboratory 5-1961 Acid-base properties of carbon black surfaces Roy Eugene Test Iowa State University Robert S. Hansen Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Chemistry Commons Recommended Citation Test, Roy Eugene and Hansen, Robert S., "Acid-base properties of carbon black surfaces" (1961). Ames Laboratory Technical Reports. 43. http://lib.dr.iastate.edu/ameslab_isreports/43 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Acid-base properties of carbon black surfaces Abstract The urs face properties of carbon blacks reflect not only Van der Waals forces due to carbon, but also chemical properties of groups formed on carbon black surfaces by reactions with environmental substances (e.g. water, oxygen, etc.). The present work constitutes a study of such groups. Disciplines Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_isreports/43 I IS-341 ACID-BASE PROPERTIES OF CARBON BLACK SURFACES By Roy Eugene Test Robert S. Hansen May 196 1 Ames Laboratory Iowa State University I Ames, Iowa :· : :· .. : :· :. ': •. :· ·:· ·:: .: •. :' . :, ·: :· ': F. H. Spedding, Director, Ames Laboratory. Work performed under Contract No. W-7405-eng-82. -
Defence Applications of New Forms of Carbon
FOI-R--1103--SE December 2003 ISSN 1650-1942 Base data report S.J. Savage Defence applications of new forms of carbon Schematic model of the C60 fullerene molecule (Fagerström, 2003) Sensor Technology SE-581 11 Linköping SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1103--SE Sensor Technology December 2003 P.O. Box 1165 ISSN 1650-1942 SE-581 11 Linköping Base data report S.J. Savage Defence applications of new forms of carbon Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1103--SE Base data report Sensor Technology Research area code P.O. Box 1165 7. Vehicles SE-581 11 Linköping Month year Project no. December 2003 E3037 Customers code 5. Commissioned Research Sub area code 74 Materials technology Author/s (editor/s) Project manager S.J. Savage S.J. Savage Approved by Sponsoring agency Scientifically and technically responsible Report title Defence applications of new forms of carbon Abstract (not more than 200 words) This report briefly reviews some applications of new forms of carbon (fullerenes, carbon nanotubes and nanofibres) in military technology. Selected reports are summarised and discussed, and a number of military applications suggested. The report contains recommendations for future studies. Keywords nanotechnology, carbon, defence applications, nanotubes, fullerenes Further bibliographic information Language English ISSN 1650-1942 Pages 15 p. Price acc. to pricelist 2 Utgivare Rapportnummer, ISRN Klassificering Totalförsvarets Forskningsinstitut - FOI FOI-R--1103--SE Underlagsrapport Sensorteknik Forskningsområde Box 1165 7. Farkoster 581 11 Linköping Månad, år Projektnummer December 2003 E3037 Verksamhetsgren 5. Uppdragsfinansierad verksamhet Delområde 74 Materialteknik Författare/redaktör Projektledare S.J. -
A Post-Buckminsterfullerene View of Carbon Chemistry
A POST-BUCKMINSTERFULLERENE VIEW OF CARBON CHEMISTRY Harold Kroto School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BNI 9QJ UK Keywords: Cs0, Fullerenes, carbon particles INTRODUCTION The discovery of c60 Buckminsterfullerene, Fig 1, has its origins in a research programme involving synthetic chemistry, microwave spectroscopy and radioastronomyl. In 1915, at Sussex (with David Walton), the long chain polyyne H-CeC-CsC-CsN was synthesised and studied by microwave spectroscopy. Subsequently, with Takeshi Oka and NRC(0ttawa) astronomers, the molecule was discovered in space, Fig 2, by radioastronomy using the laboratory microwave frequencies. This discovery led on to the detection of the even longer carbon chain molecules HCTN, HCgN and HCl.lN in the space between the stars2. Further work aimed at understanding the formation of the chains in space focussed attention on the possibility that they are produced at the same time as carbon dust in red giant stars1,*. During experiments at Rice University in 1985 (with James Heath, Sean O'Brien, Robert Curl and Richard Smalley), designed to simulate the conditions in these stars and explore their capacity for carbon chain formation, the exciting discovery that C60 was remarkably stable was made3. It was found that under conditions where almost all the atoms in a carbon plasma had nucleated to form microparticles the molecule c60 remained behind - together with some CTO. This result was, as is now well 'known, rationalised on the basis of the closed cage structure shown in Fig 1. It was proposed that the geodesic and aromatic factors inherent in such a structure could account for the stability of the molecule. -
Diatomic Carbon Measurements with Laser-Induced Breakdown Spectroscopy
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2015 Diatomic Carbon Measurements with Laser-Induced Breakdown Spectroscopy Michael Jonathan Witte University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Atomic, Molecular and Optical Physics Commons, and the Plasma and Beam Physics Commons Recommended Citation Witte, Michael Jonathan, "Diatomic Carbon Measurements with Laser-Induced Breakdown Spectroscopy. " Master's Thesis, University of Tennessee, 2015. https://trace.tennessee.edu/utk_gradthes/3423 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Michael Jonathan Witte entitled "Diatomic Carbon Measurements with Laser-Induced Breakdown Spectroscopy." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Physics. Christian G. Parigger, Major Professor We have read this thesis and recommend its acceptance: Horace Crater, Joseph Majdalani Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Diatomic Carbon Measurements with Laser-Induced Breakdown Spectroscopy A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Michael Jonathan Witte May 2015 c by Michael Jonathan Witte, 2015 All Rights Reserved. -
Shungite As Loosely Packed Fractal Nets of Graphene-Based Quantum Dots
Shungite as loosely packed fractal nets of graphene-based quantum dots Natalia N. Rozhkova1 and Elena F. Sheka2* 1Institute of Geology, Karelian Research Centre RAS, Petrozavodsk 2Peoples’ Friendship University of Russia, Moscow E-mail: [email protected] [email protected] Abstract The current paper presents the first attempt to recreate the origin of shungite carbon at microscopic level basing on knowledge accumulated by graphene science. The main idea of our approach is that different efficacy of chemical transformation of primarily generated graphene flakes (aromatic lamellae in geological literature), subjected to oxidation/reduction reactions in aqueous environment, lays the foundation of the difference in graphite and shungite derivation under natural conditions. Low-efficient reactions in the case of graphite do not prevent from the formation of large graphite layers while high- efficient oxidation/reduction transforms the initial graphene flakes into those of reduced graphene oxide of ~1nm in size. Multistage aggregation of these basic structural units, attributed to graphene quantum dots of shungite, leads to the fractal structure of shungite carbon thus exhibiting it as a new allotrope of natural carbon. The suggested microscopic view has finds a reliable confirmation when analyzing the available empirical data. 1 Introduction single-walled and multi-walled carbon nanotubes, glassy carbon, linear acetylenic carbon, and carbon Carbon is an undisputed favorite of Nature that has foam. The list should be completed by been working on it for billions years thus creating nanodiamonds and nanographites, to which belong a number of natural carbon allotropes. one-layer and multi-layer graphene. Evidently, Representatively, we know nowadays diamond, one-to-few carbon layers adsorbed on different graphite, amorphous carbon (coal and soot), and surfaces should be attributed to this cohort as well. -
Carbon-Based Nanomaterials/Allotropes: a Glimpse of Their Synthesis, Properties and Some Applications
materials Review Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications Salisu Nasir 1,2,* ID , Mohd Zobir Hussein 1,* ID , Zulkarnain Zainal 3 and Nor Azah Yusof 3 1 Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (Z.Z.); [email protected] (N.A.Y.) * Correspondence: [email protected] (S.N.); [email protected] (M.Z.H.); Tel.: +60-1-2343-3858 (M.Z.H.) Received: 19 November 2017; Accepted: 3 January 2018; Published: 13 February 2018 Abstract: Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. -
United States Patent Office Patented Sept
3,274,258 United States Patent Office Patented Sept. 20, 1966 2 o, ox'-thiobis(2-n-heptyl-6-tert-butyl-p-cresol); 3,274,258 ox.c4'-thiobis 2-(3'-nonyl)-6-isopropyl-4-ethylphenol); HYDROXYBENZYL THOETHERS AND METHOD OF PREPARATION o,c'-thiobis(2-n-dodecyl-6-sec-butyl-p-cresol); Joseph D. Odenweiler, Birmingham, Mich., assignor to ox,c''-thiobis(2,6-di-tert-butyl-4-hydroxybenzyl); Ethyl Corporation, New York, N.Y., a corporation of 5 (3-isopropyl-5-tert-butyl-4-hydroxy-benzyl)-(3-ethyl-5- Virginia tert-butyl-4-hydroxybenzyl)-thio ether; No Drawing. Filed Sept. 1, 1960, Ser. No. 53,353 o,o'-thiobis(2-methyl-6-tert-butyl-4-(4'-hexylbenzyl)- 6 Ciains. (C. 260-609) phenol). The compounds of this invention are water insoluble, This invention deals with a novel class of compounds, O their preparation and their use as antioxidants. More white to yellow, crystalline solids. They are ashless, hy particularly, it relates to a novel and unusual class of sul drolytically stable and non-volatile, facilitating their in fur-containing substituted phenolic compounds, their prep corporation into a wide range of organic material. aration from the corresponding benzyl chlorides and the Although the compounds of this invention described in employment of these novel compounds as stabilizers and 5 the above formula, are those in which R5 and Rs are alkyl antioxidants for organic materials. radicals having from 1 to 12 carbon atoms, haloalkyl radi It is an object of this invention to provide a novel class cals having from 1 to 12 carbon atoms are also useful. -
Fullerenes and Pahs: a Novel Model Explains Their Formation Via
Fullerenes and PAHs: A Novel Model Explains their Formation via Sequential Cycloaddition Reactions Involving C2 Dimers Sylvain L. Smadja [email protected] 10364 Almayo Ave., Suite 304 Los Angeles, CA 90064 “Cove” region closure C20 bowl + 10C2 creates pentagonal ring C50 + 5C2 [2 + 2 + 2] [4 + 2] Cycloadditions Cycloadditions Cage 5C 5C 2 2 closure “Cove” region C40 C50 C60 Buckministerfullerene ABSTRACT: Based on a new understanding of the nature of the bonding in the C2 dimer, a novel bottom-up model is offered that can explain the growth processes of fullerenes and polycyclic aromatic hydrocarbons (PAHs). It is shown how growth sequences involving C2 dimers, that take place in carbon vapor, combustion systems, and the ISM, could give rise to a variety of bare carbon clusters. Among the bare carbon clusters thus formed, some could lead to fullerenes, while others, after hydrogenation, could lead to PAHs. We propose that the formation of hexagonal rings present in these bare carbon clusters are the result of [2+2+2] and [4+2] cycloaddition reactions that involve C2 dimers. In the C60 and C70 fullerenes, each of the twelve pentagons is surrounded by five hexagons and thereby “isolated” from each other. To explain why, we suggest that in bowl-shaped clusters the pentagons can form as the consequence of closures of “cove regions” that exist between hexagonal rings, and that they can also form during cage-closure, which results in the creation of six “isolated” pentagonal rings, and five hexagonal rings. The proposed growth mechanisms can account for the formation of fullerene isomers without the need to invoke the widely used Stone-Wales rearrangement.