Predicting the New Carbon Nanocages, Fullerynes: a DFT Study Mohammad Qasemnazhand1, Farhad Khoeini1* & Farah Marsusi2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meso/Micro/Nano Scale Technologies
Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom. -
The Era of Carbon Allotropes Andreas Hirsch
commentary The era of carbon allotropes Andreas Hirsch Twenty-five years on from the discovery of 60C , the outstanding properties and potential applications of the synthetic carbon allotropes — fullerenes, nanotubes and graphene — overwhelmingly illustrate their unique scientific and technological importance. arbon is the element in the periodic consist of extended networks of sp3- and 1985, with the advent of fullerenes (Fig. 1), table that provides the basis for life sp2 -hybridized carbon atoms, respectively. which were observed for the first time by Con Earth. It is also important for Both forms show unique physical properties Kroto et al.3. This serendipitous discovery many technological applications, ranging such as hardness, thermal conductivity, marked the beginning of an era of synthetic from drugs to synthetic materials. This lubrication behaviour or electrical carbon allotropes. Now, as we celebrate role is a consequence of carbon’s ability conductivity. Conceptually, many other buckminsterfullerene’s 25th birthday, it is to bind to itself and to nearly all elements ways to construct carbon allotropes are also the time to reflect on a growing family in almost limitless variety. The resulting possible by altering the periodic binding of synthetic carbon allotropes, which structural diversity of organic compounds motif in networks consisting of sp3-, sp2- includes the synthesis of carbon nanotubes and molecules is accompanied by a broad and sp-hybridized carbon atoms1,2. As a in 19914 and the rediscovery of graphene range of -
Nanoscience and Nanotechnologies: Opportunities and Uncertainties
ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology -
Closed Network Growth of Fullerenes
ARTICLE Received 9 Jan 2012 | Accepted 18 Apr 2012 | Published 22 May 2012 DOI: 10.1038/ncomms1853 Closed network growth of fullerenes Paul W. Dunk1, Nathan K. Kaiser2, Christopher L. Hendrickson1,2, John P. Quinn2, Christopher P. Ewels3, Yusuke Nakanishi4, Yuki Sasaki4, Hisanori Shinohara4, Alan G. Marshall1,2 & Harold W. Kroto1 Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C2. The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C60 formation throughout the Universe. 1 Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA. 2 Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA. 3 Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, BP32229 Nantes, France. 4 Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan. -
Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited. -
Carbon Allotropes
LABORATORIES Lab- Carbon Allotropes Background: Carbon occurs in several different forms known as allotropes. These allotropes are characterized by differences in bonding patterns which result in substances with distinctly different properties. The three allotropes that will be studied in this lab are: graphite, diamond and fullerene. Diamonds are a colorless, crystalline solid where each carbon atom is bonded to four others in a network pattern. This bonding structure makes diamond the hardest material known. Graphite is a soft , black crystalline solid of carbon where the carbon atoms are bonded together in layers. Within each layer, each carbon atom is bonded to 3 other carbon atoms. Because the adjacent layers are held together by weak London dispersion forces graphite is very soft. The most recently discovered allotrope of carbon is the fullerene. Fullerenes are a cage like spherical structure of bonded carbon atoms. The fullerene bonding pattern resembles a soccer ball. Fullerene particles are also referred to as nanoparticles and are being explored for a variety of applications. Objective: Students will be able to: 1. Describe how elements can exist as 2 or more different structures. 2. Distinguish between different allotropes based on structural analysis and properties. 3. Analyze how the bonding structure could influence the properties. 4. Distinguish between crystalline and amorphous structures. 5. Compare and contrast the 3 different carbon allotropes. Materials: Molecular model kits digital camera Procedure: 1. Students at each lab table will work as a group using 3 model sets. 2. Build two sheets of graphite using 15 carbon atoms for each sheet 3. Take a digital picture of the model created and include it in your report 4. -
On Photodynamic Therapy of Alzheimer's Disease Using
Journal of Scientific Research & Reports 2(1): 206-227, 2013; Article no. JSRR.2013.015 SCIENCEDOMAIN international www.sciencedomain.org On Photodynamic Therapy of Alzheimer’s Disease Using Intrathecal Nanorobot Drug Delivery of Curcuma Longa for Enhanced Bioavailability Kal Renganathan Sharma 1* 1Lone Star College University Park20515 State Hwy 249 Houston, TX77070, USA. Author’s Contribution The only author performed the whole research work. Author KRS wrote the first draft of the paper. Author KRS read and approved the final manuscript. Received 28 th December 2012 th Research Article Accepted 19 February 2013 Published 22nd March 2013 ABSTRACT Robotics was first instructed as a collegiate course about 20 years ago at Stanford University, Stanford, CA. From the first IRB6 the electrically powered robot in 1974 over a 30 year period the industry has grown. A leading supplier of robots has put out over 100,000 robots by year 2001. Robot capable of handling 500 kg load was introduced in 2001, IRB 7000. A number of advances have been made in nanostructuring. About 40 different nanostructuring methods were reviewed recently [2]. Nanorobots can be developed that effect cures of disorders that are difficult to treat. Principles from photodynamic therapy, fullerene chemistry, nanostructuring, x-rays, computers, pharmacokinetics and robotics are applied in developing a strategy for nanorobot, treatment of Alzheimer’s disease. The curcuma longa that has shown curative effects in rats’ brain with Alzheimers is complexed with fullerenes. The drug is inactive when caged. It is infused intrathecallyinto the cerebrospinal system. Irradiation of the hypothalamous and other areas of the brain where Alzheimer’s disease is prevalent lead to breakage of fullerenes and availability of the drug with the diseased cells. -
Graphene Molecule Compared with Fullerene C60 As Circumstellar
arXiv.org 1904.xxxxx (arXiv: 1904.xxxxx by Norio Ota) page 1 of 9 Graphene Molecule Compared With Fullerene C60 As Circumstellar Carbon Dust Of Planetary Nebula Norio Ota Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tenoudai Tsukuba-city 305-8571, Japan, E-mail: [email protected] It had been understood that astronomically observed infrared spectrum of carbon rich planetary nebula as like Tc 1 and Lin 49 comes from fullerene (C60). Also, it is well known that graphene is a raw material for synthesizing fullerene. This study seeks some capability of graphene based on the quantum-chemical DFT calculation. It was demonstrated that graphene plays major role rather than fullerene. We applied two astrophysical conditions, which are void creation by high speed proton and photo-ionization by the central star. Model molecule was ionized void-graphene (C23) having one carbon pentagon combined with hexagons. By molecular vibrational analysis, we could reproduce six major bands from 6 to 9 micrometer, large peak at 12.8, and largest peak at 19.0. Also, many minor bands could be reproduced from 6 to 38 micrometer. Also, deeply void induced molecules (C22) and (C21) could support observed bands. Key words: graphene, fullerene, C60, infrared spectrum, planetary nebula, DFT 1. Introduction Soccer ball like carbon molecule fullerene-C60 was discovered in 1985 and synthesized in 1988 by H. Kroto and their colleagues1-2). In these famous papers, they also pointed out another important message “Fullerene may be widely distributed in the Universe”. After such prediction, many efforts were done for seeking C60 in interstellar space3-4). -
Quantum Dot and Electron Acceptor Nano-Heterojunction For
www.nature.com/scientificreports OPEN Quantum dot and electron acceptor nano‑heterojunction for photo‑induced capacitive charge‑transfer Onuralp Karatum1, Guncem Ozgun Eren2, Rustamzhon Melikov1, Asim Onal3, Cleva W. Ow‑Yang4,5, Mehmet Sahin6 & Sedat Nizamoglu1,2,3* Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy‑metal content in such architectures hinders their safe use. In this study, we demonstrate heavy‑metal‑free quantum dot‑based nano‑heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano‑heterojunctions using type‑II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type‑II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efcient nanoengineered quantum dot‑based next‑generation photostimulation devices. Neural interfaces that can supply electrical current to the cells and tissues play a central role in the understanding of the nervous system. Proper design and engineering of such biointerfaces enables the extracellular modulation of the neural activity, which leads to possible treatments of neurological diseases like retinal degeneration, hearing loss, diabetes, Parkinson and Alzheimer1–3. Light-activated interfaces provide a wireless and non-genetic way to modulate neurons with high spatiotemporal resolution, which make them a promising alternative to wired and surgically more invasive electrical stimulation electrodes4,5. -
Introducing Nanoengineering and Nanotechnology to the First Year Students Through an Interactive Seminar Course
Introducing nanoengineering and nanotechnology to the first year students through an interactive seminar course Hassan Raza1, Tehseen Z. Raza2 1 Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA [email protected] 2 Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA [email protected] Abstract: We report a first year seminar course on nanoengineering, which provides a unique opportunity to get exposed to the bottom-up approach and novel nanotechnology applications in an informal small class setting early in the undergraduate engineering education. Our objective is not only to introduce the fundamentals and applications of nanoengineering but also the issues related to ethics, environmental and societal impact of nanotechnology used in engineering. To make the course more interactive, laboratory tours for microfabrication facility, microscopy facility, and nanoscale laboratory at the University of Iowa are included, which inculcate the practical feel of the technology. The course also involves active student participation through weekly student presentations, highlighting topics of interest to this field, with the incentive of “nano is everywhere!” Final term papers submitted by the students involve a rigorous technology analysis through various perspectives. Furthermore, a student based peer review process is developed which helps them to improve technical writing skills, as well as address the ethical issues of academic honesty while reviewing and getting introduced to a new aspect of the area presented by their colleagues. Based on the chosen paper topics and student ratings, the student seemed motivated to learn about the novel area introduced to them through theoretical, computational and experimental aspects of the bottom-up approach. -
Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms
Biosensors 2015, 5, 712-735; doi:10.3390/bios5040712 OPEN ACCESS biosensors ISSN 2079-6374 www.mdpi.com/journal/biosensors/ Review Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms Sanaz Pilehvar * and Karolien De Wael AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-3265-3338. Academic Editors: Prabir Patra and Ashish Aphale Received: 9 September 2015 / Accepted: 14 October 2015 / Published: 23 November 2015 Abstract: Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. Keywords: nanotechnology; nanostructures; nano-bio hybrids; fullerene-biomolecule; biosensors 1. Introduction Bio-nanotechnology is a new emerging field of nanotechnology and combines knowledge from engineering, physics, and molecular engineering with biology, chemistry, and biotechnology aimed at the development of novel devices, such as biosensors, nanomedicines, and bio-photonics [1]. -
Electronic and Thermoelectric Properties of Graphene/Boron Nitride In-Plane Heterostructures Van Truong Tran
Electronic and thermoelectric properties of graphene/boron nitride in-plane heterostructures van Truong Tran To cite this version: van Truong Tran. Electronic and thermoelectric properties of graphene/boron nitride in-plane het- erostructures. Materials Science [cond-mat.mtrl-sci]. Université Paris Saclay (COmUE), 2015. En- glish. NNT : 2015SACLS133. tel-01374739 HAL Id: tel-01374739 https://tel.archives-ouvertes.fr/tel-01374739 Submitted on 1 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2015SACLS133 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 575 Electrical, Optical, Bio – physics and Engineering (EOBE) IEF - Institut d'Electronique Fondamentale Spécialité de doctorat : Electronique et Optoélectronique, Nano et Microtechnologies Par Van-Truong Tran Propriétés électroniques et thermoélectriques des hétérostructures planaires de graphène et de nitrure de bore Thèse présentée et soutenue à Orsay, le 26 Novembre 2015 : Composition du Jury : M. VOLZ Sebastian EM2C, CNRS Président M. GOUPIL Christophe LIED, Université Paris Diderot Rapporteur M. PALA Marco IMEP-LAHC, CNRS Rapporteur M. SAINT-MARTIN Jérôme IEF, Université Paris-Sud Examinateur M. DOLLFUS Philippe IEF, CNRS Directeur de thèse Contents Contents ...................................................................................................................................................