Sediment and Runoff Changes in the Yangtze River Basin During Past 50 Years
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mighty River Runs Dry
A Mighty River Runs Dry Hydro dam reservoirs will soon trap the Yangtze’s entire flow By Fan Xiao Chief Engineer Sichuan Geology and Mineral Bureau China August 2011 PROBE INTERNATIONAL, ENGLISH EDITOR: PATRICIA ADAMS Introduction The annual filling of the Three Gorges dam reservoir reduces water levels downstream in the Yangtze basin, causing a plethora of problems for the millions of people who live and work along the banks of the Yangtze River. But the Three Gorges dam is not the only perpetrator. So prodigious have dam builders been, the upper reaches of the Yangtze are now intercepted by numerous hydropower projects which also impound the river’s vital water flow The fate of the before it reaches Three Gorges. With even more projects Yangtze is underway, the fate of the Yangtze is sealed. When all of the sealed. When all planned hydropower projects are completed, the combined reservoir volume will exceed the river's flow and the Yangtze of the planned River will run dry. hydropower projects are completed, the 1 The cost of low water levels downstream of the Three combined Gorges dam reservoir volume will exceed the The Three Gorges dam was built to have a normal pool level1 river's flow and of 175 metres above sea level. In 2003, upon completion of the Yangtze the barrage, authorities filled the reservoir to the 135 metre River will run mark. In 2006, they began raising the reservoir again, reaching 156 meters by October 28. For downstream areas, dry. that is when the trouble – extremely low water levels, severe drought and other negative environmental effects – began. -
Dissolved Inorganic Carbon (DIC) Contents in Middle and Lower Reaches of Lancang River: Related to Water Environments and Dams
Journal of Water Resource and Protection, 2017, 9, 1132-1144 http://www.scirp.org/journal/jwarp ISSN Online: 1945-3108 ISSN Print: 1945-3094 Dissolved Inorganic Carbon (DIC) Contents in Middle and Lower Reaches of Lancang River: Related to Water Environments and Dams Jinxia Lu, Kaidao Fu*, Mingyue Li, Daxing Li, Di Li, Chao Wang, Wenhui Yang Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Asian International Rivers Center, Yunnan University, Kunming, China How to cite this paper: Lu, J.X., Fu, K.D., Abstract Li, M.Y., Li, D.X., Li, D., Wang, C. and Yang, W.H. (2017) Dissolved Inorganic Carbon Carbon cycle is one of the focuses of climate change, river carbon is an im- (DIC) Contents in Middle and Lower portant part, while dissolved inorganic carbon (DIC) has a high proportion of Reaches of Lancang River: Related to Water river carbon flux. In this study, we did the research on the Lancang River, an Environments and Dams. Journal of Water Resource and Protection, 9, 1132-1144. important international river in the southwest of China. Water samples were https://doi.org/10.4236/jwarp.2017.910074 obtained from 16 sections of the middle and lower reaches of the Lancang River in 2016 (11 months), then we monitored some water quality indicators Received: August 8, 2017 and DIC content, finally analyzed the temporal-spatial distribution characte- Accepted: September 15, 2017 Published: September 18, 2017 ristics of DIC and the relationship between DIC content and water environ- ment factors. The results showed that: (1) DIC contents in the middle and Copyright © 2017 by authors and lower reaches of the Lancang River varied from 1.1840 mmol/L to 3.1440 Scientific Research Publishing Inc. -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy e n v i r o n m e n t a l s c i e n c e & p o l i c y 1 4 ( 2 0 1 1 ) 1 1 3 2 – 1 1 3 8 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/envsci The environmental changes and mitigation actions in the Three Gorges Reservoir region, China a, b,1 Quanfa Zhang *, Zhiping Lou a Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China b Bureau of Life Sciences and Biotechnology, Chinese Academy of Sciences, Beijing 100864, PR China a r t i c l e i n f o a b s t r a c t The Three Gorges Dam (TGD) is by far the world’s largest hydroelectric scheme. Due to its Published on line 17 August 2011 unprecedented magnitude, the TGD has been controversial ever since it was proposed in the early 20th century and building commenced in 1993. -
Appendix 1: Rank of China's 338 Prefecture-Level Cities
Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan -
Environmental Chemistry of Toxic Heavy Metals Hg-As in the Jialing River
883 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Zhuo Yang, Junjie Ba, Jing Pan Copyright © 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608- 49-5; ISSN 2283-9216 DOI: 10.3303/CET1759148 Environmental Chemistry of Toxic Heavy Metals Hg-As in the Jialing River Xianmin Wanga*, Feng Yangb, Xiaoli Chena, Shaoxia Yanga aGuangdong Ocean University, Zhanjiang 524088, China; bZhanjiang oceanic and fishery environmental monitoring station, Zhanjiang 524039, China [email protected] Targeted at the natural water body in the Jialing River, this paper takes the environmental chemistry perspective to compare the heavy metal (Hg, As) distribution characteristics in the surface water, suspended particulate matter and fish, the typical living being, of the water body in the Jialing River. After measuring the rough contents of the two heavy metals in the natural water body of the Jialing River, it is concluded that the degree of Hg pollution is lightly polluted and that of As pollution is clean. The author also analyzes the main factors influencing the difference of metal content in each phase, pointing out that the content of dissolved Hg in the aqueous phase is significantly higher in the downstream than the upstream. Furthermore, the research reveals that the fish in the river bears insignificant latent health risks, and As poses more risk than Hg in fish eating. 1. Introduction Among the many water pollutants, heavy metals stand out as an important category of potentially harmful pollutants (Burrows and Whitton, 1983; Kozhenkova et al., 2000; Ismail et al., 2016). -
Summary of Dr. Wang Qiming's Presentation on Three Gorges Dam
Three Gorges Dam: Development and Conflicts Summary of Dr. Wang Qiming’s presentation on Three Gorges Dam On Wednesday June 12 2012 Dr. Wang Qiming, Science Counsellor from the Embassy of the People’s Republic of China spoke to the CCFS-O on the topic of the Three Gorges Dam: Development and Conflicts. His Power Point slides are posted on the CCFS-O web site for those who wish more details. The Three Gorges dam, completed in 2009, is well known both as an engineering marvel and for the controversies that surrounded its construction. It holds a number of world records including: largest dam, largest hydroelectric generation facility, and largest displacement of population for the construction of a dam. Dr. Wang began by setting the historic and geographic context for water management in China. China is and has been an agricultural nation for thousands of years. As far back as 256 BC China built the Dujiangyan dams and irrigation systems to irrigate over 5,300 square kilometers of farmland near Chengdu. That system is still on operation today. In 609 AD China completed the Grand Canal, between Hangzhou in the south and Beijing in the north. This ambitious north south venture linked six river systems in order to move shipping between the south and the north of China. Both the need and the potential for these water management systems arise from China’s geography and climate. In geographic terms China is composed of 3 tiers: a low eastern plateau, a middle plateau and the high plateau of Tibet and Qinghai. -
Download Article
Advances in Economics, Business and Management Research, volume 70 International Conference on Economy, Management and Entrepreneurship(ICOEME 2018) Discussion on the Reform of the "North Hankou" International Commodity Exhibition and Trading Center in Wuhan, Hubei Province and Circulation Mode Xiaojun Zhang Modern Service Trade Research Center Wuhan Technology and Business University Wuhan, China Abstract—As a new mode of trade circulation industry in highway, water transportation and aviation are all round, so Wuhan, "North Hankou" is not only a rising growth pole of it is one of the hub cities in the country. The establishment of regional economic development, but also a special area for the "North Hankou" International Commodity Exhibition and development of Wuhan's open economy. Therefore, it is helpful Trading Center coincides with the time. However, since the for Wuhan to build an international trade city and promote establishment of the "North Hankou", it has a deep influence Hubei province to take the lead in the rise of the central region. on the traditional business model, and its development pace In this paper, the significance, effect and corresponding is not fast, and its due advantages are far from being brought countermeasures are analyzed based on the development goals into play. The main reasons are as follows: of the construction of Wuhan "North Hankou" international commodity exhibition center, trading center, distribution "North Hankou" lacks new business format. By the end center and the largest inland trade and investment expo center. of 2013, "North Hankou" had started to build 9 professional markets, including 6 markets for business operation, 2 Keywords—Wuhan; "North Hankou"; import commodities; building material industrial parks, 2 logistics parks and 5 circulation mode; internationalization large municipal facilities. -
China's Rising Hydropower Demand Challenges Water Sector
www.nature.com/scientificreports OPEN China’s rising hydropower demand challenges water sector Junguo Liu1, Dandan Zhao1, P.W. Gerbens-Leenes2 & Dabo Guan3 Received: 18 September 2014 Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, Accepted: 20 May 2015 and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs Published: 09 July 2015 (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. Energy and water resources are an important nexus recognized in academic and policy debates1–3. The Organization for Economic Co-operation and Development (OECD) and the International Energy Agency (IEA) state that the availability of an adequate water supply is an increasingly important crite- rion for assessing the physical, economic and environmental viability of energy projects4. -
China's 1911 Revolution
www.hoddereducation.co.uk/historyreview Volume 23, Number 1, September 2020 Revision China’s 1911 Revolution Nicholas Fellows Test your knowledge of the 1911 Revolution in China and the events preceding it with these multiple-choice questions. Answers on the final page Questions 1 When did the First Opium War start? 1837 1838 1839 1840 2 What term was used to describe the agreements China was forced to sign with the West following its defeat? Unfair Treaties Unequal Treaties Concession Treaties Compromise Treaties 3 Which dynasty ruled china at the time of the Opium Wars? Ming Qing Yuan Song 4 When did the Second Opium War start? 1856 1857 1858 1859 5 What event started the war? Macartney incident Beijing affair Dagu Fort clash Arrow Incident 6 Which country destroyed a Chinese fleet in Fuzhou in 1884? Britain Germany France Spain 7 Which country took Korea from China in 1894? France Japan Britain Russia 8 Which country occupied much of Manchuria? Russia Japan Britain France 9 Which country took the port of Weihaiwei? Russia Japan Britain France 10 When did the Boxer rising start? 1899 1900 1901 1902 11 What provoked the start of the Boxer Rising? Loss of land Increase in the opium trade Western missionaries Development of railways Hodder & Stoughton © 2019 www.hoddereducation.co.uk/historyreview www.hoddereducation.co.uk/historyreview 12 Whose ambassador was shot at the start of the rising? German French British Russian 13 Who wrote 'The Revolutionary Army' in 1903 Sun Yat-sen Zou Rong Li Hongzhang Lu Xun 14 Who organised the Revolutionary -
The Effect of Meteorological Variables on the Transmission of Hand, Foot
RESEARCH ARTICLE The Effect of Meteorological Variables on the Transmission of Hand, Foot and Mouth Disease in Four Major Cities of Shanxi Province, China: A Time Series Data Analysis (2009-2013) Junni Wei1*, Alana Hansen2, Qiyong Liu3,4, Yehuan Sun5, Phil Weinstein6, Peng Bi2* 1 Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China, 2 Discipline of Public Health, School of Population Health, The University of Adelaide, Adelaide, Australia, 3 State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 4 Shandong University Climate Change and Health Center, Jinan, Shandong, China, 5 Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China, 6 Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia OPEN ACCESS * [email protected] (JW); [email protected] (PB) Citation: Wei J, Hansen A, Liu Q, Sun Y, Weinstein P, Bi P (2015) The Effect of Meteorological Variables on the Transmission of Hand, Foot and Mouth Abstract Disease in Four Major Cities of Shanxi Province, China: A Time Series Data Analysis (2009-2013). Increased incidence of hand, foot and mouth disease (HFMD) has been recognized as a PLoS Negl Trop Dis 9(3): e0003572. doi:10.1371/ journal.pntd.0003572 critical challenge to communicable disease control and public health response. This study aimed to quantify the association between climate variation and notified cases of HFMD in Editor: Rebekah Crockett Kading, Genesis Laboratories, UNITED STATES selected cities of Shanxi Province, and to provide evidence for disease control and preven- tion. -
Silk Road Fashion, China. the City and a Gate, the Pass and a Road – Four Components That Make Luoyang the Capital of the Silk Roads Between 1St and 7Th Century AD
https://publications.dainst.org iDAI.publications ELEKTRONISCHE PUBLIKATIONEN DES DEUTSCHEN ARCHÄOLOGISCHEN INSTITUTS Dies ist ein digitaler Sonderdruck des Beitrags / This is a digital offprint of the article Patrick Wertmann Silk Road Fashion, China. The City and a Gate, the Pass and a Road – Four components that make Luoyang the capital of the Silk Roads between 1st and 7th century AD. The year 2018 aus / from e-Forschungsberichte Ausgabe / Issue Seite / Page 19–37 https://publications.dainst.org/journals/efb/2178/6591 • urn:nbn:de:0048-dai-edai-f.2019-0-2178 Verantwortliche Redaktion / Publishing editor Redaktion e-Jahresberichte und e-Forschungsberichte | Deutsches Archäologisches Institut Weitere Informationen unter / For further information see https://publications.dainst.org/journals/efb ISSN der Online-Ausgabe / ISSN of the online edition ISSN der gedruckten Ausgabe / ISSN of the printed edition Redaktion und Satz / Annika Busching ([email protected]) Gestalterisches Konzept: Hawemann & Mosch Länderkarten: © 2017 www.mapbox.com ©2019 Deutsches Archäologisches Institut Deutsches Archäologisches Institut, Zentrale, Podbielskiallee 69–71, 14195 Berlin, Tel: +49 30 187711-0 Email: [email protected] / Web: dainst.org Nutzungsbedingungen: Die e-Forschungsberichte 2019-0 des Deutschen Archäologischen Instituts stehen unter der Creative-Commons-Lizenz Namensnennung – Nicht kommerziell – Keine Bearbeitungen 4.0 International. Um eine Kopie dieser Lizenz zu sehen, besuchen Sie bitte http://creativecommons.org/licenses/by-nc-nd/4.0/ -
CHINA BRIEFING the Practical Application of China Business
CHINA BRIEFING The Practical Application of China Business Business Guide to Central China HEILONGJIANG Harbin Urumqi JILIN Changchun XINJIANG UYGHUR A. R. Shenyang LIAONING INNER MONGOLIABEIJING A. R. GANSU Hohhot HEBEI TIANJIN Shijiazhuang Yinchuan NINGXIA Taiyuan HUI A. R. Jinan Xining SHANXI SHAN- QINGHAI Lanzhou DONG Xi'an Zhengzhou JIANG- SHAANXI HENAN SU TIBET A.R. Hefei Nan- jing SHANGHAI Lhasa ANHUI SICHUAN HUBEI Chengdu Wuhan Hangzhou CHONGQING ZHE- Nanchang JIANG Changsha HUNAN JIANGXIJIANGXI GUIZHOU Fuzhou Guiyang FUJIAN Kunming Taiwan YUNNAN GUANGXI GUANGDONG ZHUANG A. R. Guangzhou Nanning HONG KONG MACAU HAINAN Haikou Featuring the Central Chinese Provinces and Autonomous Regions of Henan, Hubei, Hunan, Inner Mongolia, Jiangxi and Shanxi Including the Mainland Cities of Baotou, Changde, Changsha, Datong, Hohhot, Kaifeng, Luoyang, Manzhouli, Nanchang, Taiyuan, Wuhan, Yichang and Zhengzhou Produced in association with Dezan Shira & Associates Business Guide to Central China Published by: Asia Briefing Ltd. All rights reserved. No part of this book may be reproduced, stored in retrieval systems or transmitted in any forms or means, electronic, mechanical, photocopying or otherwise without prior written permission of the publisher. Although our editors, analysts, researchers and other contributors try to make the information as accurate as possible, we accept no responsibility for any financial loss or inconvenience sustained by anyone using this guidebook. The information contained herein, including any expression of opinion, analysis, charting or tables, and statistics has been obtained from or is based upon sources believed to be reliable but is not guaranteed as to accuracy or completeness. © 2008 Asia Briefing Ltd. Suite 904, 9/F, Wharf T&T Centre, Harbour City 7 Canton Road, Tsimshatsui Kowloon HONG KONG ISBN 978-988-17560-4-6 China Briefing online: www.china-briefing.com "China Briefing" and logo are registered trademarks of Asia Briefing Ltd.