Dissolved Inorganic Carbon (DIC) Contents in Middle and Lower Reaches of Lancang River: Related to Water Environments and Dams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mighty River Runs Dry
A Mighty River Runs Dry Hydro dam reservoirs will soon trap the Yangtze’s entire flow By Fan Xiao Chief Engineer Sichuan Geology and Mineral Bureau China August 2011 PROBE INTERNATIONAL, ENGLISH EDITOR: PATRICIA ADAMS Introduction The annual filling of the Three Gorges dam reservoir reduces water levels downstream in the Yangtze basin, causing a plethora of problems for the millions of people who live and work along the banks of the Yangtze River. But the Three Gorges dam is not the only perpetrator. So prodigious have dam builders been, the upper reaches of the Yangtze are now intercepted by numerous hydropower projects which also impound the river’s vital water flow The fate of the before it reaches Three Gorges. With even more projects Yangtze is underway, the fate of the Yangtze is sealed. When all of the sealed. When all planned hydropower projects are completed, the combined reservoir volume will exceed the river's flow and the Yangtze of the planned River will run dry. hydropower projects are completed, the 1 The cost of low water levels downstream of the Three combined Gorges dam reservoir volume will exceed the The Three Gorges dam was built to have a normal pool level1 river's flow and of 175 metres above sea level. In 2003, upon completion of the Yangtze the barrage, authorities filled the reservoir to the 135 metre River will run mark. In 2006, they began raising the reservoir again, reaching 156 meters by October 28. For downstream areas, dry. that is when the trouble – extremely low water levels, severe drought and other negative environmental effects – began. -
The Multiplication of Dams Reduces the Mekong's Flow
Sentinel Vision EVT-767 The multiplication of dams reduces the Mekong's flow 19 November 2020 Sentinel-1 CSAR IW acquired on 06 October 2014 from 22:45:02 to 22:45:31 UTC ... Se ntinel-1 CSAR IW acquired on 29 August 2020 from 11:21:38 to 11:24:33 UTC Sentinel-1 CSAR IW acquired on 04 October 2020 from 22:44:48 to 22:45:13 UTC Author(s): Sentinel Vision team, VisioTerra, France - [email protected] 3D Layerstack Keyword(s): River, hydrology, dam, biodiversity, hydropower, green energies, sediments, fishing, agriculture, salinity, China, Laos, Cambodia, Thailand, Vietnam Fig. 1 - S1 (29.08.2020 - 03.09.2020) - Chinese dams built on the Mekong river. 2D view Fig. 2 - S1 (20.08.2015) - Before the construction of Dahuaqiao dam in the Yunnan province of China. 3D view / The Mekong River Commission For Sustainable Development describes the Mekong river as "one of the world’s great rivers. Covering a distance of nearly 5,000 km from its source on the Tibetan Plateau in China to the Mekong Delta, the river flows through six countries: China, Myanmar, Thailand, Laos, Cambodia and Vietnam." Fig. 3 - S1 (29.08.2020) - Five years later, view after the building of Dahuaqiao dam. 3D view "The basin is home to one of the richest areas of biodiversity in the world, with more than 20,000 plant species and 850 fish species discovered to date. An estimated 80% of the nearly 65 million people living in the Lower Mekong River Basin depend on the river and its rich natural resources for their livelihoods, making sustainable development crucial for the environment and communities living in the basin." Fig. -
Environmental Chemistry of Toxic Heavy Metals Hg-As in the Jialing River
883 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Zhuo Yang, Junjie Ba, Jing Pan Copyright © 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608- 49-5; ISSN 2283-9216 DOI: 10.3303/CET1759148 Environmental Chemistry of Toxic Heavy Metals Hg-As in the Jialing River Xianmin Wanga*, Feng Yangb, Xiaoli Chena, Shaoxia Yanga aGuangdong Ocean University, Zhanjiang 524088, China; bZhanjiang oceanic and fishery environmental monitoring station, Zhanjiang 524039, China [email protected] Targeted at the natural water body in the Jialing River, this paper takes the environmental chemistry perspective to compare the heavy metal (Hg, As) distribution characteristics in the surface water, suspended particulate matter and fish, the typical living being, of the water body in the Jialing River. After measuring the rough contents of the two heavy metals in the natural water body of the Jialing River, it is concluded that the degree of Hg pollution is lightly polluted and that of As pollution is clean. The author also analyzes the main factors influencing the difference of metal content in each phase, pointing out that the content of dissolved Hg in the aqueous phase is significantly higher in the downstream than the upstream. Furthermore, the research reveals that the fish in the river bears insignificant latent health risks, and As poses more risk than Hg in fish eating. 1. Introduction Among the many water pollutants, heavy metals stand out as an important category of potentially harmful pollutants (Burrows and Whitton, 1983; Kozhenkova et al., 2000; Ismail et al., 2016). -
Death of the Mekong, River of Buddhism Khanh T. Tran, AMI
Death of the Mekong, River of Buddhism Khanh T. Tran, AMI Environmental, USA Introduction From its origin in the high plateau of Tibet, the Mekong River is 4500 km long and the 12th longest river in the world, flowing through six countries that include China, Myanmar, Thailand, Laos, Cambodia and Vietnam. Through its long course, the river is known as Lancang in China, Mekong in Myanmar, Laos and Thailand, and finally as River of Nine Dragons because it flows out to sea through nine estuaries in southern Vietnam. True to its name (Mekong means Mother River in Laotian), the Mekong River is the lifeline to more than 65 million inhabitants, mainly in downstream countries of Laos, Thailand, Cambodia and Vietnam. The majority of these inhabitants are Buddhists and all three major Buddhist traditions are practiced: Theravāda in Myanmar, Thailand, Laos and Cambodia; Mahayana in China and Vietnam; and Vajrayana in Tibet. Hence, the Mekong is called the “River of Buddhism”. Most residents along the river are poor fishermen living off the river fish catch or poor farmers using the river water and rich silt to grow rice. They also use the river as their principal means of transportation. In the next two decades, the number of the basin inhabitants is expected to increase to over 100 million. Their daily life is constantly threatened by floods, deforestation, pollution as well as ill-planned development projects. The biggest threat to their livelihood is the gigantic hydroelectric dams built or planned in Yunnan Province and the smaller dams in Laos and on the Lower Mekong. -
Downstream Impacts of Lancang Dams in Hydrology, Fisheries And
Downstream Impacts of Lancang/ Upper Mekong Dams: An Overview Pianporn Deetes International Rivers August 2014 • In the wet season, the Lancang dams run at normal operation levels for power generation and release extra water if the water level exceeds normal water level. • In the dry season, Xiaowan and Nuozhadu will generally release the water to downstream dams so that to ensure other dams can run at full capacity. • The total storage of six complete dams is 41 km3. And the total regulation storage is 22 km3 Dam Name Installed Dam Height Total Regulation Regulation Status Capacity (m) Storage storage Type (MW) (km3) (km3) Gongguoqiao 900 130 0.32 0.05 Seasonal Completed (2012) Xiaowan 4200 292 15 10 Yearly Completed (2010) Manwan 1550 126 0.92 0.26 Seasonal Completed (phase 1 in1995 and phase 2 in 2007) Dachaoshan 1350 118 0.94 0.36 Seasonal Completed (2003) Nuozhadu 5850 261.5 22.7 11.3 Yearly Completed (2012) Jinghong 1750 118 1.14 0.23 Seasonal Completed (2009) Ganlanba 155 60.5 Run-of- Planned river Hydrology Flow Lancang dams has increased dry season flows and reduces wet season flows: • At China border, the flow can increase as much as 100% in March due to the operation of Manwan, Daochaoshan Jinghong and Xiaowan dams (Chen and He, 2000) • On average, the Lower Lancang cascade increased the December–May discharge by 34 to155 % and decreased the discharge from July to September by 29–36 % at Chiang Saen station (Rasanen, 2012) • After the Manwan Dam was built, the average minimum flow yearly decreased around 25% at Chiang Saen (Zhong, 2007) Rasanen (2012) Hydrology Water Level Monthly average water level data from Chiang Khong clearly showed the impacts of the first filling of Nuozhadu Dam. -
China Eyes Its Next Prize – the Mekong
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327871725 China eyes its next prize -- The Mekong Research · June 2018 DOI: 10.13140/RG.2.2.34318.82241 CITATION READS 1 93 1 author: Elliot Brennan Institute for Security and Development Policy 25 PUBLICATIONS 21 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Conflict Management in the Indo-Pacific (Independent) View project Vietnam Rural Reform View project All content following this page was uploaded by Elliot Brennan on 25 September 2018. The user has requested enhancement of the downloaded file. CHINA | SOUTHEAST ASIA China eyes its next prize – the Mekong Sesan 2 dam in Stung Treng, Cambodia (Photo: Jason South via Getty) BY Elliot Brennan @elliotbrennan 5 June 2018 15:00 AEDT Beijing’s islands-building in the South China Sea and their militarisation, replete with surface-to- air missiles, is near complete. With guile, threat, and coercion, China can now seize control of one of the main transport arteries of Southeast Asia, making a mockery of international laws and norms. But there is another prize in Beijing’s sights, an artery that runs straight through mainland Southeast Asia. The mighty Mekong River, which starts in China (known there as Lancang), and connects Myanmar, Thailand, Laos, Vietnam, and Cambodia, is a crucial lifeline that nourishes some 60 million people along its banks. Control of both the South China Sea and Mekong River will strategically sandwich mainland Southeast Asia. Indeed, Beijing’s control of Southeast Asian rivers looks set to be the other half of its “salami slicing” strategy in the region. -
Environmental and Social Impacts of Lancang Dams
Xiaowan Dam Environmental and Social Impacts of Lancang Dams the water to downstream dams so as to ensure other dams can run at full capacity. Xiaowan and Nuozhadu are the two yearly regulated dams with big regulation storages, while all the others have very limited seasonal regulation capacity. A wide range of studies have confirmed that the wet season Summary flow will decrease, while the dry season flow will increase because of the operation of the Lancang dams. Because the This research brief focuses on the downstream impacts on Lancang river contributes 45% of water to the Mekong basin hydrology, fisheries and sedimentations caused by the Lower in the dry season, the flow change impacts on downstream Lancang cascade in China. Manwan and Dachaoshan were reaches will be more obvious increasing flows by over 100% the first two dams completed on the Lancang River (in 1995 at Chiang Saen. An increase in water levels in the dry sea- (first phase) and 2003 respectively) and many changes have son will reduce the exposed riverbank areas for river bank been observed. Many scientific studies have been done to gardens and other seasonal agriculture. Millions of villagers evaluate the impacts from Manwan and Dachaoshan dams who live along the Mekong River grow vegetables in river- by analyzing monitoring and survey data. With the two big- bank gardens and their livelihoods will be largely impacted gest dams of the cascade, Xiaowan and Nuozhadu, put into if losing the gardens. In the wet season, the decrease of operation in 2010 and 2012, bigger downstream impacts are flow at Chiang Saen caused by the Lancang dams holding expected to be observed. -
Taking Stock of Integrated River Basin Management in China Wang Yi, Li
Taking Stock of Integrated River Basin Management in China Wang Yi, Li Lifeng Wang Xuejun, Yu Xiubo, Wang Yahua SCIENCE PRESS Beijing, China 2007 ISBN 978-7-03-020439-4 Acknowledgements Implementing integrated river basin management (IRBM) requires complex and systematic efforts over the long term. Although experts, scientists and officials, with backgrounds in different disciplines and working at various national or local levels, are in broad agreement concerning IRBM, many constraints on its implementation remain, particularly in China - a country with thousands of years of water management history, now developing at great pace and faced with a severe water crisis. Successful implementation demands good coordination among various stakeholders and their active and innovative participation. The problems confronted in the general advance of IRBM also pose great challenges to this particular project. Certainly, the successes during implementation of the project subsequent to its launch on 11 April 2007, and the finalization of a series of research reports on The Taking Stockof IRBM in China would not have been possible without the combined efforts and fruitful collaboration of all involved. We wish to express our heartfelt gratitude to each and every one of them. We should first thank Professor and President Chen Yiyu of the National Natural Science Foundation of China, who gave his valuable time and shared valuable knowledge when chairing the work meeting which set out guidelines for research objectives, and also during discussions of the main conclusions of the report. It is with his leadership and kind support that this project came to a successful conclusion. We are grateful to Professor Fu Bojie, Dr. -
Coal, Water, and Grasslands in the Three Norths
Coal, Water, and Grasslands in the Three Norths August 2019 The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH a non-profit, federally owned enterprise, implementing international cooperation projects and measures in the field of sustainable development on behalf of the German Government, as well as other national and international clients. The German Energy Transition Expertise for China Project, which is funded and commissioned by the German Federal Ministry for Economic Affairs and Energy (BMWi), supports the sustainable development of the Chinese energy sector by transferring knowledge and experiences of German energy transition (Energiewende) experts to its partner organisation in China: the China National Renewable Energy Centre (CNREC), a Chinese think tank for advising the National Energy Administration (NEA) on renewable energy policies and the general process of energy transition. CNREC is a part of Energy Research Institute (ERI) of National Development and Reform Commission (NDRC). Contact: Anders Hove Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH China Tayuan Diplomatic Office Building 1-15-1 No. 14, Liangmahe Nanlu, Chaoyang District Beijing 100600 PRC [email protected] www.giz.de/china Table of Contents Executive summary 1 1. The Three Norths region features high water-stress, high coal use, and abundant grasslands 3 1.1 The Three Norths is China’s main base for coal production, coal power and coal chemicals 3 1.2 The Three Norths faces high water stress 6 1.3 Water consumption of the coal industry and irrigation of grassland relatively low 7 1.4 Grassland area and productivity showed several trends during 1980-2015 9 2. -
Council Study
8/21/2015 Council Study Work Plan: Formulation of Development Scenarios for the Hydropower Thematic Area 5th RTWG Meeting Siem Reap, Cambodia 13-14 August 2015 Content • Overview and References • HP Sub Scenarios • Potential Hydropower Dams • Data and assumption • Schedule Content • Guidance 1 8/21/2015 Sub Scenario for hydropower thematic area • The concept proposed for Sub Scenario of hydropower thematic area was conceived and proposed for the 1st time for consideration • The concept take stock of the content of the “Assessment of basin-wide Development Scenarios – Apr 2011” and the application of the Preliminary Design Guidance • Figures and numbers are indicative. They can be refined after the concept for HP Sub- Scenarios has been accepted Overview and Referencesand Overview Scenarios Name Level of Development* # ALU DIW FPF IRR NAV HPP 1 Early Development Scenario 2007 2007 2007 2007 2007 2007 2007 2 Definite Future Scenario 2020 2020 2020 2020 2020 2020 2020 3 Planned Development Scenario 2040 2040 2040 2040 2040 2040 2040 Note: *Levels of developments for the various thematic areas: ALU = Agric/Landuse Change; DIW = Domestic and Industrial Water Use; FPF = flood protection/floodplain infrastructure; HPP = hydropower; IRR = irrigation; and NAV = Navigation OverviewandReferences 2 8/21/2015 • o Joint Operation (limited coordination) where each hydropower dam will be operated to maximize their individual energy production. The “subset” will be determined with MC on the basis of realistic constraints to full development. • Joint Operation and good coordination among all MS Dams and by taking account operation for navigation lock, fish passages, sediment flushing as well as measure to maintain acceptable water quality during and after sediment flushing. -
Study on the Growth Pattern of Four Freshwater Fish Species from the Jialing River Basin, China
Zhang F, et al., J Aquac Fisheries 2019, 3: 019 DOI: 10.24966/AAF-5523/100019 HSOA Journal of Aquaculture & Fisheries Research Article for fishes [1,2]. Growth pattern is a useful tool in fish ecology [3,4], Study on the Growth Pattern of e.g. for handling and management tool of water ecosystems [5-7]. Actually, on the one hand, the growth pattern have been widely used Four Freshwater Fish Species to assess stock biomass, population dynamics, and biogeographical relationships [7,8]; on the other hand, the growth pattern is frequently from the Jialing River Basin, applied to the life - history traits analysis of different fish species or the same species from different localities [9,10]. More specifically, in China the laboratory, the parameter a and b are applied to assess whether the fish growth is allometric or isometric, generating discussions about Fubin Zhang1,2,3, Jin Xiao2,3, Yu Zeng2,3*, Naicheng Wu4 and Nicola Fohrer4 the biology of these species [7]; in the field survey, growth pattern can be used to convert length to weight and vice versa, especially when 1College of Environmental Science and Engineering, China West Normal only length or weight measurements are available [1,11]. University, Nanchong, China 2Key Laboratory of Southwest China Wildlife Resources Conservation (Minis- Based on a recent ichthyological survey, the growth pattern of four try of Education), China West Normal University, Nanchong, China fish species ofLiobagrus nigricauda, Saurogobio punctatus, Acheilo- gnathus gracilis and A. omeiensis from the Jialing River basin were 3 Southwest Branch of the National Freshwater Fishery Engineering Technol- reported in the present study. -
MRCS Decision Support Framework (DSF) and BDP Applications
The MRC Basin Development Plan MRCS Decision Support Framework (DSF) and BDP applications BDP Library Volume 7 March 2005 Revised September 2005 Mekong River Commission j BDP The MRC Basin Development Plan MRCS Decision Support Framework (DSF) and BDP Applications BDP Library Volume 7 March 2005, revised September 2005 Mekong River Commission Foreword The BDP Library was compiled towards the end of Phase 1 of the BDP Programme. It provides an overview of the BDP formulation, together with information about the planning process and its knowledge base, tools and routines. The library incorporates the essence of more than a hundred technical reports, working papers and other documents. It consists of 15 volumes: 1 The BDP planning process 2 Sub-area analysis and transboundary planning 3 Sub-area studies (including 13 sub – volumes) 4 Scenarios for strategic planning 5 Stakeholder participation 6 Data system and knowledge base 7 MRCS Decision Support Framework (DSF) and BDP applications 8 Economic valuation of water resources (RAM applications) 9 Social and environmental issues and assessments (SIA, SEA) 10 IWRM strategy for the Lower Mekong Basin 11 Monographs. March 2005 12 Project implementation and quality plan 13 National sector reviews 14 Regional sector overviews 15 Training The work was carried out jointly by MRC and the NMCs with comprehensive support and active participation by all MRC programmes and more than 200 national line agencies. Financial and technical support was kindly granted by Australia, Denmark, Japan, Sweden and Switzerland. The library has been produced for the purpose of the BDP and is intended for use within the BDP Programme.