DRAFT 8/8/2013 Updates at Chapter 40 -- Karstology

Total Page:16

File Type:pdf, Size:1020Kb

DRAFT 8/8/2013 Updates at Chapter 40 -- Karstology Chapter 40 -- Karstology Characterizing the mechanism of cavern accretion as "force" tends to suggest catastrophic attack, not a process of subtle persistence. Publicity for Ohio's Olentangy Indian Caverns illustrates the misconception. Formed millions of years ago by the tremendous force of an underground river cutting through solid limestone rock, the Olentangy Indian Caverns. There was no tremendous event millions of years ago; it's been dissolution at a rate barely discernable, century to century. Another rendition of karst stages, this time in elevation, as opposed to cross-section. Juvenile Youthful Mature Complex Extreme 594 DRAFT 8/8/2013 Updates at http://www.unm.edu/~rheggen/UndergroundRivers.html Chapter 40 -- Karstology It may not be the water, per se, but its withdrawal that initiates catastrophic change in conduit cross-section. The figure illustrates stress lines around natural cavities in limestone. Left: Distribution around water-filled void below water table Right: Distribution around air-filled void after lowering water table. Natural Bridges and Tunnels Natural bridges begin as subterranean conduits, but subsequent collapse has left only a remnant of the original roof. "Men have risked their lives trying to locate the meanderings of this stream, but have been unsuccessful." Virginia's Natural Bridge, 65 meters above today's creek bed. George Washington is said to have surveyed Natural Bridge, though he made no mention it in his journals. More certain is that Thomas Jefferson purchased "the most sublime of nature's works," in his words, from King George III. Herman Melville alluded to the formation in describing Moby Dick, But soon the fore part of him slowly rose from the water; for an instant his whole marbleized body formed a high arch, like Virginia's Natural Bridge. As we noted in chapters dealing with literary fiction, whaling ships have inexplicable propensity to encounter underground seas. And while we're visiting Natural Bridge, here's a children's version, "The River that was Found and Lost," St. Nicholas (1911) by Mary Mapes Dodge. It all depends on how you look at it. Some name it "The River that was Found"; others, "The River that was Lost"; but I observe that all visitors refer to it by one or the other of the two 595 DRAFT 8/8/2013 Updates at http://www.unm.edu/~rheggen/UndergroundRivers.html Chapter 40 -- Karstology names, mostly as "lost," probably because that is the name on the sign that directs the visitor to follow the path through the ravine, for about a quarter of a mile, north of the Natural Bridge of Virginia. Out of a cavern the little "river" gurgles and bubbles, sometimes even with a tinkling sound. It flows clear and cool for a few feet, and then vanishes under the ledge. There is no other trace of the stream in all the surrounding territory. It has no sphinx-like silence as one propounds questions as to its origin and its purpose, but seems almost to laugh, "I'll never tell," when it is asked, "Whence are you coming and whither are you going?" Natural Tunnel in western Virginia, 260 meters long, up to 60 meters wide and 24 meters in height, was carved through a limestone ridge by Stock Creek. The railroad constructed through the tunnel in 1893 still operates, but only to transport coal. When the tracks are clear, Natural Tunnel State Park offers walking tours. William Jennings Bryan called Natural Tunnel the “Eighth Wonder of the World,” a title, we may recall from Chapter 39, also awarded to Old Jumbo well of Iowa, Natural Tunnel $5.00 Wonder of the World The Eighth Natural Tunnel was a subject of Outlines of the Earth's History, A Popular Study in Physiography (1898) by Nathaniel S. Shaler. All the while that subterranean streams are cutting the caverns downward, the open-air rivers into which they discharge are deepening their beds, and thereby preparing for the construction of yet lower stories of caves. These open-air streams commonly flow in steep-sided, narrow valleys, which themselves were caves until the galleries became so wide that they could no longer support the roof. Thus we often find that for a certain distance the roof over a large stream has fallen in, so that the water flows in the open air. Then it will plunge under an arch and course, it may be, for some miles, before it again arrives at a place where the roof has disappeared, or perhaps attains a field occupied by rocks of another character, in which caverns were not formed. At places these old river caverns are abandoned by the streams, which find other courses. They form natural tunnels, which are not infrequently of considerable length. One such in southwestern Virginia has been made useful for a railway passing from one valley to another, thus sparing the expense of a costly excavation. 596 DRAFT 8/8/2013 Updates at http://www.unm.edu/~rheggen/UndergroundRivers.html Chapter 40 -- Karstology Scallops The small scoop-like depressions in karst walls, floors and ceilings are known as "scallops." The depressions, typically a few centimeters in width, have a steep wall on the upstream side and a gentler slope on the downstream side. The figure illustrates the formation of a scallop. Boundary-layer flow separated from the main current splits when it re-engages, the lower portion eddying upstream, an effect at a much larger scale known to whitewater enthusiasts as a "hydraulic." Overshooting flow continues downstream and the process repeats. L Abrasion from the eddy sculpts the scallop. While we refrain from crediting engineering fluid mechanics with omnipotence in all 45,000 maters fluid, quantitative explanation of the process has indeed been hypothesized, The figure to the right, adapted from 40,000 "Deducing Flow Velocity in Cave Conduits from Scallops," NSS Bulletin 36:2 (1974) by Rane Curl, relates a particular Reynolds 35,000 number, Re, to the ratio of scallop length L to conduit diameter D. The figure's shape has theoretical basis; its 30,000 numerical placement is the result of experimentation. Re, Scallop Reynolds Number 25,000 10 100 D/L Take a 2-meter circular conduit with 0.1 meter scallops. D/L of 20 indicates a Re of 32,500. Re ν V L where V is flow velocity, and v is kinematic viscosity, 0.0000013 square meters/second at 10o C. In our example, V is 0.4 meters/second. 597 DRAFT 8/8/2013 Updates at http://www.unm.edu/~rheggen/UndergroundRivers.html Chapter 40 -- Karstology Pop Quiz Let us test our knowledge of karstology. Q: What can we deduce about the geologic history of the cross-section shown to the right? A: As stalactites and stalagmites don't form under water, this cavern subsequently flooded. Q: And what about the future? A: Chapter 81, Mainlining the Sewage, suggests an unfortunate consequence of an oil leak from the red car. Q: Stalagmites or Stalactites in Indiana's Lost River? A: Stalactites. 598 DRAFT 8/8/2013 Updates at http://www.unm.edu/~rheggen/UndergroundRivers.html Chapter 41 -- Sinkholes CHAPTER 41 SINKHOLES Sinkholes are natural depressions in the land surface caused by the ceiling collapse of karst cavities not far below the surface. Sinkholes may range in both diameter and depth from a few to several hundred meters, may vary in form from bowl-shaped to precipitous chasms and may be created gradually or catastrophically. Our interest in sinkholes derives from the fact that sinkholes are almost aways associated with subterranean streams. A subterranean cavern of sinkhole magnitude is the product of water pass-through at a rate sufficient to bear away vast quantities of solute. A stagnant aquifer leaves no caves. It is not uncommon for inflow and outflow conduits to be recognizable immediately after sinkhole collapse, but once the sinkhole attracts local runoff, washed-in soil tends to obscure the hydrologic features. Degraded limestone covered by only a thin horizon of soil can lead to a saucer-shaped depression that develops continuously, but slowly. If the limestone is replaced by cascading particulates too stable to be washed onward, a sinkhole may remain only a few meters in dimension. 599 DRAFT 8/8/2013 Updates at http://www.unm.edu/~rheggen/UndergroundRivers.html Chapter 41 -- Sinkholes Whatever the surficial appearance of a sinkhole, however, there is reasonable certainty of active karst channels below Precipitation Typical hydrologic pathways Runoff Evaporation Spring Journalistic Pursuit As our subterranean journey is as much a passage though social history as it is one of science, we'll note how sinkholes have been described in popular journalism. While the Roman encyclopedists (Chapter 3) were geographically aware of karst, theirs wasn't a scientific curiosity. By the 18th century, however, the emerging natural sciences had become parlor talk in lettered class. In The Natural History of Lancashire, Cheshire, and the Peak in Derbyshire (1700), Charles Leigh noticed that in Derbyshire, Several cavities, which the Inhabitants call Swallows, [and] into these run several Rivulets of Water, but where the water has its Exit is not known... It is from them these Subterraneous Rivers are formed. Derbyshire landscape "Observation on the White Limestone and other Eocene or Older Tertiary Formations of Virginia, South Carolina, and Georgia," Quarterly Journal of the Geologic Society, 1845, One of the characteristic features of the region of tertiary white marl and limestone in South Carolina and Georgia, is the frequent occurrence of lime-sinks, or funnel-shaped cavities, arising from natural tunnels in the subjacent limestone, through some of which subterranean rivers flow. At Wantoot, there is one of these sinks in the limestone, and a spring issues from the rock so much above the temperature of the air during a frost as to send off clouds of steam.
Recommended publications
  • Kemp's Ridley Sea Turtle Headstart 08/1994 Program (NOAA Tech Memo NMFS-OPR-3) TED Regulations for Shrimp Trawls 57 FR 57348 12/04/1992 Recovery Plan - U.S
    Fishing Permits Habitat Conservation Grants Fisheries Environmental Analyses Endangered Spec Search Go fish! nmlkji This si nmlkj All of NMFS Home Threatened and Endangered Species Divisions/Branches Lists What We Do Fishery Bulletins The following list of species under NMFS Fishery Quotas jurisdiction, listed as threatened or endangered, Fishery Regulations for each state and territory. Click on the state, News/Media territory or areas below to view a list of Species: National Employee 1. Southeast Region (North Carolina to Texas and Locator the Caribbean) FOIA Information 2. South Atlantic (North Carolina to Key West Public Records Florida) Request 3. Gulf of Mexico 4. Alabama 5. Florida - Atlantic Coast 6. Florida - Gulf Coast 7. Georgia 8. Louisiana 9. Mississippi 10. North Carolina 11. Puerto Rico 12. South Carolina 13. Texas 14. U.S. Virgin Islands Home · Privacy Policy · Disclaimer · About Us · Information Quality · Contact Us · Last Updated: February 2, 2010 NOAA Fisheries Office of Protected Resources OPR Home | About OPR | Species | Permits | Laws & Policies | Programs | Education | Publications Loggerhead Turtle (Caretta caretta) Species Marine Mammals Status | Taxonomy | Species Description | Habitat | Distribution | Cetaceans Population Trends | Threats | Conservation Efforts | Regulatory Overview | Pinnipeds Key Documents | More Info Marine Turtles Marine & Anadromous Fish Status Marine Invertebrates & ESA Threatened - throughout its range Plants Species of Concern Taxonomy Threatened & Endangered Kingdom: Animalia Species Phylum: Chordata Critical Habitat Maps Class: Reptilia Order: Testudines Loggerhead turtle hatchling (Caretta caretta) Family: Cheloniidae Contact OPR Photo: Mary Wozny, Broward Glossary Genus: Caretta County Florida Sea Turtle OPR Site Map Species: caretta Conservation Program Species Description Did You Know? Loggerheads were named for their relatively large heads, which support powerful jaws and enable them to feed on Search OPR hard-shelled prey, such as whelks and conch.
    [Show full text]
  • Amblyopsidae, Amblyopsis)
    A peer-reviewed open-access journal ZooKeys 412:The 41–57 Hoosier(2014) cavefish, a new and endangered species( Amblyopsidae, Amblyopsis)... 41 doi: 10.3897/zookeys.412.7245 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana Prosanta Chakrabarty1,†, Jacques A. Prejean1,‡, Matthew L. Niemiller1,2,§ 1 Museum of Natural Science, Ichthyology Section, 119 Foster Hall, Department of Biological Sciences, Loui- siana State University, Baton Rouge, Louisiana 70803, USA 2 University of Kentucky, Department of Biology, 200 Thomas Hunt Morgan Building, Lexington, KY 40506, USA † http://zoobank.org/0983DBAB-2F7E-477E-9138-63CED74455D3 ‡ http://zoobank.org/C71C7313-142D-4A34-AA9F-16F6757F15D1 § http://zoobank.org/8A0C3B1F-7D0A-4801-8299-D03B6C22AD34 Corresponding author: Prosanta Chakrabarty ([email protected]) Academic editor: C. Baldwin | Received 12 February 2014 | Accepted 13 May 2014 | Published 29 May 2014 http://zoobank.org/C618D622-395E-4FB7-B2DE-16C65053762F Citation: Chakrabarty P, Prejean JA, Niemiller ML (2014) The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana. ZooKeys 412: 41–57. doi: 10.3897/zookeys.412.7245 Abstract We describe a new species of amblyopsid cavefish (Percopsiformes: Amblyopsidae) in the genus Amblyopsis from subterranean habitats of southern Indiana, USA. The Hoosier Cavefish, Amblyopsis hoosieri sp. n., is distinguished from A. spelaea, its only congener, based on genetic, geographic, and morphological evi- dence. Several morphological features distinguish the new species, including a much plumper, Bibendum- like wrinkled body with rounded fins, and the absence of a premature stop codon in the gene rhodopsin.
    [Show full text]
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Dreams of Nature Dossier Immerse Yourself Tour │23 Days│Active Guilin – Yangshuo – Zhangjiajie - Yangtze River Cruise - Wulong – Emeishan - Chengdu
    Dreams of Nature Dossier Immerse Yourself Tour │23 Days│Active Guilin – Yangshuo – Zhangjiajie - Yangtze River Cruise - Wulong – Emeishan - Chengdu Towering pinnacles swathed in mist, sky-skimming mountains and nature at its most verdant are just some of the wonders included on this scenic tour. Indulge your senses with China’s most dramatic natural highlights. TOUR HIGHLIGHTS: Cruise peacefully on the Li Lose yourself amongst the pinnacles of Zhangjiajie Four nights on the Yangtze Explore Wulong Visit Pandas in Chengdu Visit wendywutours.com.au Call 1300 727 998 to speak to a Reservations Consultant Dreams of Nature tour inclusions . Return international flights, taxes and current fuel surcharges (unless a land only option is selected) . All accommodation . Meals as stated on itinerary . All sightseeing and entrance fees . All transportation and transfers . English-speaking National Escort (If your group is 10 or more passengers) Personal expenditures e.g. drinks, optional excursions or shows, insurance of any kind, customary tipping, early check in or late checkout and other items not specified on the itinerary are at your own expense. Immerse Yourself Designed for those who wish to be further immersed in the authentic charm of Asia; our Immerse Yourself Tours include more cultural and active experiences. You will be accompanied by our dedicated and professional National Escorts or Local Guides, whose unparalleled knowledge will turn your holiday into an unforgettable experience. Our Immerse Yourself tours include: Cycling and walking through classic sites Unique cultural experiences and encounters Off the beaten track destinations More evenings at leisure for independent exploration Active Tour ‘Dreams of Nature’ is an active tour.
    [Show full text]
  • Working Copy of Thesis
    MACROINVERTEBRATE STRUCTURE AND DRIFT IN THE BLANCO RIVER: A KARST TEXAS STREAM SUBJECT TO HYDROLOGIC VARIABILITY THESIS Presented to the Graduate Council of Texas State University-San Marcos in Partial Fulfillment of the Requirements for the Degree Master of SCIENCE by David Pendergrass, B.A. San Marcos, Texas December 2006 MACROINVERTEBRATE STRUCTURE AND DRIFT IN THE BLANCO RIVER: A KARST TEXAS STREAM SUBJECT TO HYDROLOGIC VARIABILITY Committee Members Approved: __________________________________ Dr. Timothy H. Bonner, Chair __________________________________ Dr. Thomas L. Arsuffi __________________________________ Dr. Alan W. Groeger _____________________________________ Dr. Glenn Longley Approved: ________________________ Dr. J. Michael Willoughby Dean of the Graduate College ACKNOWLEDGEMENTS Jesus is the author of the Blanco River and the ultimate source of the pleasure and success I have enjoyed in this study. Thank you for giving me this opportunity and teaching me joy in every circumstance. My sincere gratitude goes to my professors who were unrelenting in their desire to see me produce quality work. Casey Williams, thank you for the mentoring and friendship. Pete Diaz, Sarah Frey, Brad Caston and the many others who offered field and lab time: my sincerest thanks. The Nature Conservancy, Texas State University-San Marcos and private donors paved the way for this research and put food on my table. Finally, to my wife Krista: you bore the weight of this thesis too. I knew when we married that you loved me but your persistent support these last three years has raised my understanding of your love to unimaginable heights. This manuscript was submitted on November 11, 2006. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS..............................................................................................
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Endangered Species
    Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Endangered species From Wikipedia, the free encyclopedia Main page Contents For other uses, see Endangered species (disambiguation). Featured content "Endangered" redirects here. For other uses, see Endangered (disambiguation). Current events An endangered species is a species which has been categorized as likely to become Random article Conservation status extinct . Endangered (EN), as categorized by the International Union for Conservation of Donate to Wikipedia by IUCN Red List category Wikipedia store Nature (IUCN) Red List, is the second most severe conservation status for wild populations in the IUCN's schema after Critically Endangered (CR). Interaction In 2012, the IUCN Red List featured 3079 animal and 2655 plant species as endangered (EN) Help worldwide.[1] The figures for 1998 were, respectively, 1102 and 1197. About Wikipedia Community portal Many nations have laws that protect conservation-reliant species: for example, forbidding Recent changes hunting , restricting land development or creating preserves. Population numbers, trends and Contact page species' conservation status can be found in the lists of organisms by population. Tools Extinct Contents [hide] What links here Extinct (EX) (list) 1 Conservation status Related changes Extinct in the Wild (EW) (list) 2 IUCN Red List Upload file [7] Threatened Special pages 2.1 Criteria for 'Endangered (EN)' Critically Endangered (CR) (list) Permanent link 3 Endangered species in the United
    [Show full text]
  • Sinking of the RMS Lusitania 1 Sinking of the RMS Lusitania
    Sinking of the RMS Lusitania 1 Sinking of the RMS Lusitania Sinking of the RMS Lusitania 1915 painting of the sinking. Date 7 May 1915 Time 14:10 – 14:28 Location North Atlantic Ocean, near Old Head of Kinsale, Ireland Cause Torpedoed by German U-boat. Outcome • 1,198 of the 1,959 people aboard killed, leaving 761 survivors. • Turned international opinion against Germany and led towards American entry into World War I. The sinking of the Cunard ocean liner RMS Lusitania occurred on 7 May 1915 during the First World War, as Germany waged submarine warfare against Britain. The ship was identified and torpedoed by the German U-boat U-20 and sank in 18 minutes. The vessel went down 11 miles (18 km) off the Old Head of Kinsale,[1] Ireland, killing 1,198 of the 1,959 people aboard, leaving 761 survivors. The sinking turned public opinion in many countries against Germany, contributed to the American entry into World War I and became an iconic symbol in military recruiting campaigns of why the war was being fought.[2] Lusitania had the misfortune to fall victim to torpedo attack relatively early in the First World War, before tactics for evading submarines were properly implemented or understood. The contemporary investigations both in the UK and the United States into the precise causes of the ship's loss were obstructed by the needs of wartime secrecy and a propaganda campaign to ensure all blame fell upon Germany. Argument over whether the ship was a legitimate military target raged back and forth throughout the war as both sides made misleading claims about the ship.
    [Show full text]
  • Comal County Regional Habitat Conservation Plan Environmental Impact Statement
    Draft Comal County Regional Habitat Conservation Plan Environmental Impact Statement Prepared for: Comal County, Texas Comal County Commissioners Court Prepared by: SWCA Environmental Consultants Smith, Robertson, Elliott, Glen, Klein & Bell, L.L.P. Prime Strategies, Inc. Texas Perspectives, Inc. Capital Market Research, Inc. April 2010 SWCA Project Number 12659-139-AUS DRAFT COMAL COUNTY REGIONAL HABITAT CONSERVATION PLAN ENVIRONMENTAL IMPACT STATEMENT April 2010 Type of Action: Administrative Lead Agency: U.S. Department of the Interior Fish and Wildlife Service Responsible Official: Adam Zerrenner Field Supervisor U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas For Information: Bill Seawell Fish and Wildlife Biologist U.S. Fish and Wildlife Service 10711 Burnet Road, Suite 200 Austin, Texas Tele: 512-490-0057 Abstract: Comal County, Texas, is applying for an incidental take permit (Permit) under section 10(a)(1)(B) of the Endangered Species Act of 1973, as amended 16 U.S.C. § 1531, et seq. (ESA), to authorize the incidental take of two endangered species, the golden-cheeked warbler (Dendroica chrysoparia) and the black-capped vireo (Vireo atricapilla), referred to collectively as the “Covered Species.” In support of the Permit application, the County has prepared a regional habitat conservation plan (Proposed RHCP), covering a 30-year period from 2010 to 2040. The Permit Area for the Proposed RHCP and the area of potential effect for this Environmental Impact Statement (EIS) is Comal County in central Texas. The requested Permit would authorize the following incidental take and mitigation for the golden-cheeked warbler: Take: As conservation credits are created through habitat preservation, authorize up to 5,238 acres (2,120 hectares) of golden-cheeked warbler habitat to be impacted over the 30-year life of the Proposed RHCP.
    [Show full text]
  • Cave Biodiversity of the Southern Cumberland Plateau Kirk S
    b-3-guidebook_Guidebook3 6/18/2014 10:01 PM Page 159 Cave Biodiversity of the Southern Cumberland Plateau Kirk S. Zigler, NSS 62696; Matthew L. Niemiller, NSS 53235; and Danté B. Fenolio The South Cumberland Region of Tennessee, Alabama, and Georgia (Figure 1) is known for its tremendous diversity of caves, including huge pits, massive stream passages, and tight crawls. Less well known is that the region also supports tremendous cave biodiversity (Niemiller, Zigler, and Fenolio, 2013). Here we discuss many of the species that inhabit caves of the region, focusing on the southern Cumberland Plateau. Cave Biodiversity Four ecological classes of organisms can be found in caves: trogloxenes, subtroglophiles, eutroglophiles, and troglobionts (Culver and Pipan, 2009). Trogloxenes are not typically found in caves and cannot persist there for long periods of time. They must either find their way back to the surface or ultimately perish. Subtroglophiles are commonly found in caves but are associated with surface habitats for at least part of their life cycle. Some are seasonal inhabitants of caves and others move back and forth from cave to surface habitats for feeding, such as cave-roosting bats, cave crickets, and Allegheny Woodrats (Neotoma magister). Eutroglophiles are commonly found underground but can be found in surface habitats. Unlike trogloxenes and subtroglophiles, eutroglophiles can complete their entire life cycle Figure 1 - The South Cumberland Region at the junction of underground. Examples include the Cave Salamander Tennessee, Alabama, and Georgia. Figure courtesy of Nick Hollingshead. (Eurycea lucifuga) and the Cave Orbweaver (Meta ovalis). Troglobionts are obligate, permanent residents of subterranean habitats.
    [Show full text]
  • Jamaica Ecoregional Planning Project Jamaica Freshwater Assessment
    Jamaica Ecoregional Planning Project Jamaica Freshwater Assessment Essential areas and strategies for conserving Jamaica’s freshwater biodiversity. Kimberly John Freshwater Conservation Specialist The Nature Conservancy Jamaica Programme June 2006 i Table of Contents Page Table of Contents ……………………………………………………………..... i List of Maps ………………………………………………………………. ii List of Tables ………………………………………………………………. ii List of Figures ………………………………………………………………. iii List of Boxes ………………………………………………………………. iii Glossary ………………………………………………………………. iii Acknowledgements ………………………………………………………………. v Executive Summary ……………………………………………………………… vi 1. Introduction and Overview …………………………………………………………..... 1 1.1 Planning Objectives……………………………………... 1 1.2 Planning Context………………………………………... 2 1.2.1 Biophysical context……………………………….. 2 1.2.2 Socio-economic context…………………………... 5 1.3 Planning team…………………………………………… 7 2. Technical Approach ………………………………………………………………….…. 9 2.1 Information Gathering…………………………………... 9 2.2 Freshwater Classification Framework…………………... 10 2.3 Freshwater conservation targets………………………… 13 2.4 Freshwater conservation goals………………………….. 15 2.5 Threats and Opportunities Assessment…………………. 16 2.6 Ecological Integrity Assessment……………………... 19 2.7 Protected Area Gap Assessment………………………… 22 2.8 Freshwater Conservation Portfolio development……….. 24 2.9 Freshwater Conservation Strategies development…….. 30 2.10 Data and Process gaps…………………………………. 31 3. Vision for freshwater biodive rsity conservation …………………………………...…. 33 3.1 Conservation Areas …………………………………..
    [Show full text]
  • The Release of Endogenous Nitrogen and Phosphorus in the Danjiangkou Reservoir: a Double-Membrane Diffusion Model Analysis
    Hindawi Journal of Sensors Volume 2021, Article ID 6610178, 11 pages https://doi.org/10.1155/2021/6610178 Research Article The Release of Endogenous Nitrogen and Phosphorus in the Danjiangkou Reservoir: A Double-Membrane Diffusion Model Analysis Zhiqi Wang,1,2,3 Hongxin Ren,2 Zhaolong Ma,3,4,5 Zhihong Yao,2 Pengfei Duan,6 and Guodong Ji 1 1Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China 2School of Surveying, Mapping, and Geographic Information, North China University of Water Resource and Electric Powder, Zhengzhou 450000, China 3River and Lake Protection Center of Ministry of Water Resources, Beijing 100038, China 4Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China 5China Institute of Water Resource and Hydropower Research, No. 20 Chegongzhuang West Road, Haidian District, Beijing 100044, China 6Key Laboratory of Ecological Security in Water Source Area of the Middle Route of South-to-North Water Transfer Project in Henan Province, Nanyang Normal University, 473000, China Correspondence should be addressed to Guodong Ji; [email protected] Received 9 November 2020; Revised 12 January 2021; Accepted 25 January 2021; Published 13 February 2021 Academic Editor: Yuan Li Copyright © 2021 Zhiqi Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Endogenous contamination from the newly submerged sediment may have an impact on the water quality of the Danjiangkou Reservoir, the water source of the middle route of the South-to-North Water Diversion Project.
    [Show full text]