Ecological Degradation of the Yangtze and Nile Delta-Estuaries in Response to Dam Construction with Special Reference to Monsoonal and Arid Climate Settings

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Degradation of the Yangtze and Nile Delta-Estuaries in Response to Dam Construction with Special Reference to Monsoonal and Arid Climate Settings water Review Ecological Degradation of the Yangtze and Nile Delta-Estuaries in Response to Dam Construction with Special Reference to Monsoonal and Arid Climate Settings Zhongyuan Chen 1,*, Hao Xu 2 and Yanna Wang 1 1 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; [email protected] 2 Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China; [email protected] * Correspondence: [email protected] Abstract: This study reviews the monsoonal Yangtze and the arid Nile deltas with the objective of understanding how the process–response between river-basin modifications and delta-estuary ecological degradation are interrelated under contrasting hydroclimate dynamics. Our analysis shows that the Yangtze River had a long-term stepwise reduction in sediment and silicate fluxes to estuary due to dam construction since the 1960s, especially after the Three Gorges Dam (TGD) closed in 2003. By contrast, the Nile had a drastic reduction of sediment, freshwater, and silicate fluxes immediately after the construction of the Aswan High Dam (AHD) in 1964. Seasonal rainfall in the mid-lower Yangtze basin (below TGD) complemented riverine materials to its estuary, but little was available to the Nile coast below the AHD in the hyper-arid climate setting. Nitrogen (N) and phosphate (P) fluxes in both river basins have increased because of the overuse of N- and P-fertilizer, land-use changes, Citation: Chen, Z.; Xu, H.; Wang, Y. urbanization, and industrialization. Nutrient ratios (N:P:Si) in both delta-estuaries was greatly Ecological Degradation of the Yangtze altered, i.e., Yangtze case: 75:1:946 (1960s–1970s), 86:1:272 (1980s–1990s) and 102:1:75 (2000s–2010s); and Nile Delta-Estuaries in Response and Nile case: 6:1:32 (1960s–1970s), 8:1:9 (1980s–1990s), and 45:1:22 (2013), in the context of the to Dam Construction with Special optimum of Redfield ratio (N:P:Si = 16:1:16). This led to an ecological regime shift evidenced by Reference to Monsoonal and Arid Climate Settings. Water 2021, 13, 1145. a long-term change in phytoplankton communities in the Yangtze estuary, where silicious algae https://doi.org/10.3390/w13091145 tended to lose dominance since the end of the 1990s, when more toxic dinoflagellates began to emerge. In the Nile estuary, such a regime shift was indicated by the post-dam dramatic reduction in Academic Editor: Bommanna zooplankton standing crop and fish landings until the early 2000s when biological recovery occurred Krishnappan due to nutrient inputs from anthropogenic sources. Although the Yangtze had higher human impacts than the Nile in terms of population, industrialization, and fertilizer application, N concentrations Received: 18 March 2021 in the Nile estuarine waters surpassed the Yangtze in recent decades. However, eutrophication Accepted: 19 April 2021 in the Yangtze estuary is much more intensive than in the Nile, leading to the likelihood of its Published: 21 April 2021 estuarine water becoming more acidic than ever before. Therefore, ecological degradation in both delta-estuaries does not follow a linear trajectory, due not only to different climate dynamics but Publisher’s Note: MDPI stays neutral also to human forcings. The comparative insights of this study should be incorporated into future with regard to jurisdictional claims in integrated coastal management of these two important systems. published maps and institutional affil- iations. Keywords: altered nutrient ratio; riverine flux; bio-transformation; river-basin-scale; post-dam consequences Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. 1. Introduction This article is an open access article distributed under the terms and River basins have been extensively modified by intensive human activities over the conditions of the Creative Commons last half-century, causing severe environmental degradation globally in delta-estuary sys- Attribution (CC BY) license (https:// tems [1,2]. Overuse of bio-chemical fertilizers, water transfers, urbanization, deforestation, creativecommons.org/licenses/by/ and industrialization in river basins have increasingly degraded healthy habitats on which 4.0/). human society depends. Dam construction in river basins has considerably altered the Water 2021, 13, 1145. https://doi.org/10.3390/w13091145 https://www.mdpi.com/journal/water Water 2021, 13, 1145 2 of 10 which human society depends. Dam construction in river basins has considerably altered the delivery of riverine materials to the sea, mainly sediment, water, nitrogen (N), phos- Water 2021, 13, 1145phate (P), and silicate (Si). As a result, the health of delta-estuarine systems remains at risk 2 of 10 [1,3]. Using China’s Yangtze delta and Egypt’s Nile delta as a comparative example, the objective of thisdelivery paper was of riverine to highlight materials how to riverine the sea, mainly delivery sediment, processes water, and nitrogen related (N), mech- phosphate anisms undergo(P), change and silicate and how (Si). Asdelta a result,-estuarine the health responses of delta-estuarine occur ecologically, systems remainsgiven their at risk [1,3]. Using China’s Yangtze delta and Egypt’s Nile delta as a comparative example, the contrasting geographic setting in terms of climate change and anthropogenic intervention objective of this paper was to highlight how riverine delivery processes and related mecha- (hereafter dualnisms forcings). undergo Although change both and how the delta-estuarineYangtze and Nile responses delta- occurestuaries ecologically, have some given their similarities in processcontrasting-response geographic of environmental setting in terms degradation, of climate change there and are anthropogenic also differences intervention that inform how(hereafter human dualimpacts forcings). affect Although these two both important the Yangtze deltaic and systems. Nile delta-estuaries have some The humansimilarities population in process-response is a key forcing of in environmental modifying the degradation, land surface there of are both also river differences basins. There werethat informabout how200 million human impactspeople affectin the these Yangtze two important basin in the deltaic 1960s systems. and, since then, it has increasedThe to human about 400 population million is (http://www.stat a key forcing in modifyings.gov.cn/tjsj/ndsj/ the land ( surfaceaccessed of bothon river 2 March 2021))[basins.4], of which There about were about 70 million 200 million now live people in the in theYangtze Yangtze Delta. basin The inthe population 1960s and, since then, it has increased to about 400 million (http://www.stats.gov.cn/tjsj/ndsj/ (accessed on of the Nile delta was about 43 million in the 1980s, and it increased to nearly 100 million 2 March 2021)) [4], of which about 70 million now live in the Yangtze Delta. The population by 2019, almostof all the of Nile whom delta live was in about the delta 43 million (https://databank.worldbank.org/home.aspx in the 1980s, and it increased to nearly 100 million by (accessed on 2 March2019, almost 2021) all)[5 of]. whom live in the delta (https://databank.worldbank.org/home.aspx The Yangtze(accessed River, on including 2 March 2021))its delta [5]., is located in the monsoonal climate zone of East Asia, while theThe Nile Yangtze delta is River, arid in including NW-Africa, its delta, although is located its upper in the basin monsoonal is also climate highly zone of monsoonal. Geologically,East Asia, while the Yangtze the Nile is delta composed is arid of in many NW-Africa, large- althoughscale sub its-basins upper basin is also (Figure 1A) throughouthighly monsoonal. the entire Geologically, basin, but thethe YangtzeNile has is fewer composed tributaries, of many large-scalemostly in sub-basinsthe upper basin (Figure(Figure 1B).1A ) throughoutDuring past the decades, entire basin, numerous but the Niledams has have fewer been tributaries, built in mostly the in the upper basin (Figure1B). During past decades, numerous dams have been built in the Yangtze basin, including the Three Gorges Dam (TGD, closed in 2003, and about 1800 km Yangtze basin, including the Three Gorges Dam (TGD, closed in 2003, and about 1800 km from the coast).from In the coast).Nile basin, In the there Nile basin,is only there one is major only onedam, major the dam,Aswan the High Aswan Dam High Dam (AHD) dam on(AHD) the mainstream, dam on the mainstream, which was which closed was in closed 1964 inand 1964 about and about 1000 1000 km kmfrom from the the coast. coast. UnderstandingUnderstanding the position the position of the dam of the sites dam in sites the inriver the riverbasin basin is important is important in stud- in studying ying riverine materialriverine transport material transport (discussion (discussion given givenbelow). below). Figure 1. Figure(A) The 1. Yangtze (A) The River Yangtze basin, River showing basin, the locationshowing of the the location Three Gorges of the Dam Three (TGD) Gorges and DatongDam (TGD) hydro-gauging and station. (BDatong) The Nile hydro River-gauging basin, showing station. the (B location) The Nile of the River Aswan basin, High showing Dam (AHD). the Thelocation lithology of the of bothAswan river High basins is modifiedDam from [(AHD).6,7]. The lithology of both river basins is modified from [6,7]. Water 2021, 13, 1145 3 of 10 Water 2021, 13, 1145 3 of 10 Inevitably, dam construction has changed the river water from high to low turbidity. N- andInevitably, P-fluxes dam have construction increased significantly has changed in the both river systems water, frombut Si high flux to has low decreased. turbidity. N-This and had P-fluxes led to deleterious have increased ecological significantly responses in bothin both systems, systems. but The Si fluxgoal has of this decreased. review Thiswas to had discuss led to the deleterious scientific ecologicalunderstanding responses of how in these both changes systems. have The impacted goal of this these review two wassystems to discuss in order the to scientific provide understanding insights for their of howmanagement.
Recommended publications
  • EICC-Gesi Conflict Minerals Reporting Template
    The following list represents the CFSI's latest smelter name/alias information as of this templates release. This list is updated frequently, and the most up-to-date version can be found on the CFSI website http://www.conflictfreesourcing.org/conflict-free-smelter-program/exports/cmrt-export/. The presence of a smelter here is NOT a guarantee that it is currently Active or Compliant within the Conflict-Free Smelter Program. Please refer to the CFSI web site www.conflictfreesourcing.org for the most current and accurate list of standard smelter names that are Active or Compliant. Names included in column B represent company names that are commonly recognized and reported by the supply chain for a particular smelter. These names may include former company names, alternate names, abbreviations, or other variations. Although the names may not be the CFSI Standard Smelter Name, the reference names are helpful to identify the smelter, which is listed under column C in the Smelter Reference List. Column C is the list of the official standard smelter names, understood to be the legal names of the eligible smelters. The majority of smelters will have the same entry for both columns, however Metal Smelter Reference List Gold Abington Reldan Metals, LLC Gold Accurate Refining Group Gold Advanced Chemical Company Gold AGR Mathey Gold AGR(Perth Mint Australia) Gold Aida Chemical Industries Co., Ltd. Gold Al Etihad Gold Refinery DMCC Gold Allgemeine Gold-und Silberscheideanstalt A.G. Gold Almalyk Mining and Metallurgical Complex (AMMC) Gold Amagasaki Factory, Hyogo Prefecture, Japan Gold AngloGold Ashanti Córrego do Sítio Mineração Gold Anhui Tongling Nonferrous Metal Mining Co., Ltd.
    [Show full text]
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • The Effect of Meteorological Variables on the Transmission of Hand, Foot
    RESEARCH ARTICLE The Effect of Meteorological Variables on the Transmission of Hand, Foot and Mouth Disease in Four Major Cities of Shanxi Province, China: A Time Series Data Analysis (2009-2013) Junni Wei1*, Alana Hansen2, Qiyong Liu3,4, Yehuan Sun5, Phil Weinstein6, Peng Bi2* 1 Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China, 2 Discipline of Public Health, School of Population Health, The University of Adelaide, Adelaide, Australia, 3 State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 4 Shandong University Climate Change and Health Center, Jinan, Shandong, China, 5 Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China, 6 Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia OPEN ACCESS * [email protected] (JW); [email protected] (PB) Citation: Wei J, Hansen A, Liu Q, Sun Y, Weinstein P, Bi P (2015) The Effect of Meteorological Variables on the Transmission of Hand, Foot and Mouth Abstract Disease in Four Major Cities of Shanxi Province, China: A Time Series Data Analysis (2009-2013). Increased incidence of hand, foot and mouth disease (HFMD) has been recognized as a PLoS Negl Trop Dis 9(3): e0003572. doi:10.1371/ journal.pntd.0003572 critical challenge to communicable disease control and public health response. This study aimed to quantify the association between climate variation and notified cases of HFMD in Editor: Rebekah Crockett Kading, Genesis Laboratories, UNITED STATES selected cities of Shanxi Province, and to provide evidence for disease control and preven- tion.
    [Show full text]
  • Deciphering the Spatial Structures of City Networks in the Economic Zone of the West Side of the Taiwan Strait Through the Lens of Functional and Innovation Networks
    sustainability Article Deciphering the Spatial Structures of City Networks in the Economic Zone of the West Side of the Taiwan Strait through the Lens of Functional and Innovation Networks Yan Ma * and Feng Xue School of Architecture and Urban-Rural Planning, Fuzhou University, Fuzhou 350108, Fujian, China; [email protected] * Correspondence: [email protected] Received: 17 April 2019; Accepted: 21 May 2019; Published: 24 May 2019 Abstract: Globalization and the spread of information have made city networks more complex. The existing research on city network structures has usually focused on discussions of regional integration. With the development of interconnections among cities, however, the characterization of city network structures on a regional scale is limited in the ability to capture a network’s complexity. To improve this characterization, this study focused on network structures at both regional and local scales. Through the lens of function and innovation, we characterized the city network structure of the Economic Zone of the West Side of the Taiwan Strait through a social network analysis and a Fast Unfolding Community Detection algorithm. We found a significant imbalance in the innovation cooperation among cities in the region. When considering people flow, a multilevel spatial network structure had taken shape. Among cities with strong centrality, Xiamen, Fuzhou, and Whenzhou had a significant spillover effect, which meant the region was depolarizing. Quanzhou and Ganzhou had a significant siphon effect, which was unsustainable. Generally, urbanization in small and midsize cities was common. These findings provide support for government policy making. Keywords: city network; spatial organization; people flows; innovation network 1.
    [Show full text]
  • Silk Road Fashion, China. the City and a Gate, the Pass and a Road – Four Components That Make Luoyang the Capital of the Silk Roads Between 1St and 7Th Century AD
    https://publications.dainst.org iDAI.publications ELEKTRONISCHE PUBLIKATIONEN DES DEUTSCHEN ARCHÄOLOGISCHEN INSTITUTS Dies ist ein digitaler Sonderdruck des Beitrags / This is a digital offprint of the article Patrick Wertmann Silk Road Fashion, China. The City and a Gate, the Pass and a Road – Four components that make Luoyang the capital of the Silk Roads between 1st and 7th century AD. The year 2018 aus / from e-Forschungsberichte Ausgabe / Issue Seite / Page 19–37 https://publications.dainst.org/journals/efb/2178/6591 • urn:nbn:de:0048-dai-edai-f.2019-0-2178 Verantwortliche Redaktion / Publishing editor Redaktion e-Jahresberichte und e-Forschungsberichte | Deutsches Archäologisches Institut Weitere Informationen unter / For further information see https://publications.dainst.org/journals/efb ISSN der Online-Ausgabe / ISSN of the online edition ISSN der gedruckten Ausgabe / ISSN of the printed edition Redaktion und Satz / Annika Busching ([email protected]) Gestalterisches Konzept: Hawemann & Mosch Länderkarten: © 2017 www.mapbox.com ©2019 Deutsches Archäologisches Institut Deutsches Archäologisches Institut, Zentrale, Podbielskiallee 69–71, 14195 Berlin, Tel: +49 30 187711-0 Email: [email protected] / Web: dainst.org Nutzungsbedingungen: Die e-Forschungsberichte 2019-0 des Deutschen Archäologischen Instituts stehen unter der Creative-Commons-Lizenz Namensnennung – Nicht kommerziell – Keine Bearbeitungen 4.0 International. Um eine Kopie dieser Lizenz zu sehen, besuchen Sie bitte http://creativecommons.org/licenses/by-nc-nd/4.0/
    [Show full text]
  • CHINA BRIEFING the Practical Application of China Business
    CHINA BRIEFING The Practical Application of China Business Business Guide to Central China HEILONGJIANG Harbin Urumqi JILIN Changchun XINJIANG UYGHUR A. R. Shenyang LIAONING INNER MONGOLIABEIJING A. R. GANSU Hohhot HEBEI TIANJIN Shijiazhuang Yinchuan NINGXIA Taiyuan HUI A. R. Jinan Xining SHANXI SHAN- QINGHAI Lanzhou DONG Xi'an Zhengzhou JIANG- SHAANXI HENAN SU TIBET A.R. Hefei Nan- jing SHANGHAI Lhasa ANHUI SICHUAN HUBEI Chengdu Wuhan Hangzhou CHONGQING ZHE- Nanchang JIANG Changsha HUNAN JIANGXIJIANGXI GUIZHOU Fuzhou Guiyang FUJIAN Kunming Taiwan YUNNAN GUANGXI GUANGDONG ZHUANG A. R. Guangzhou Nanning HONG KONG MACAU HAINAN Haikou Featuring the Central Chinese Provinces and Autonomous Regions of Henan, Hubei, Hunan, Inner Mongolia, Jiangxi and Shanxi Including the Mainland Cities of Baotou, Changde, Changsha, Datong, Hohhot, Kaifeng, Luoyang, Manzhouli, Nanchang, Taiyuan, Wuhan, Yichang and Zhengzhou Produced in association with Dezan Shira & Associates Business Guide to Central China Published by: Asia Briefing Ltd. All rights reserved. No part of this book may be reproduced, stored in retrieval systems or transmitted in any forms or means, electronic, mechanical, photocopying or otherwise without prior written permission of the publisher. Although our editors, analysts, researchers and other contributors try to make the information as accurate as possible, we accept no responsibility for any financial loss or inconvenience sustained by anyone using this guidebook. The information contained herein, including any expression of opinion, analysis, charting or tables, and statistics has been obtained from or is based upon sources believed to be reliable but is not guaranteed as to accuracy or completeness. © 2008 Asia Briefing Ltd. Suite 904, 9/F, Wharf T&T Centre, Harbour City 7 Canton Road, Tsimshatsui Kowloon HONG KONG ISBN 978-988-17560-4-6 China Briefing online: www.china-briefing.com "China Briefing" and logo are registered trademarks of Asia Briefing Ltd.
    [Show full text]
  • Argus China Petroleum News and Analysis on Oil Markets, Policy and Infrastructure
    Argus China Petroleum News and analysis on oil markets, policy and infrastructure Volume XII, 1 | January 2018 Yuan for the road EDITORIAL: Regional gasoline The desire to avoid tax has been a far more significant factor underlying imports markets are so far unmoved by a of mixed aromatics than China’s octane deficit. potential fall in Chinese exports The government has announced plans to make it impossible to buy or sell owing to stricter tax enforcement gasoline without producing a complete invoice chain showing that consumption tax has been paid, from 1 March. And gasoline refining margins shot to nearly $20/bl, their highest since mid-2015. Of course, Beijing has tried to stamp out tax evasion in the gasoline market many times before. But, if successful, this poses Mixed aromatics imports 2017 an existential threat — to trading companies and the blending firms that use ’000 b/d Mideast mixed aromatics to produce gasoline outside the refining system, largely avoiding US Gulf 4.39 the Yn2,722/t ($51/bl) tax collected on gasoline produced by refineries. Around 22.59 300,000 b/d of gasoline is produced this way. And that has caused the surplus that forces state-owned firms to market their costlier fuel overseas. Europe But there is little panic outside south China, where most blending takes place. 77.69 The Singapore market is discounting any threat that a crackdown on tax avoidance might choke off Chinese exports — gasoline crack spreads fell this month. China’s prices are now above those in Singapore, yet its gasoline exports show no sign of letting up.
    [Show full text]
  • Land-Use Efficiency in Shandong (China)
    sustainability Article Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model Yayuan Pang and Xinjun Wang * Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; [email protected] * Correspondence: [email protected] Received: 20 November 2020; Accepted: 14 December 2020; Published: 18 December 2020 Abstract: A reasonable evaluation of land-use efficiency is an important issue in land use and development. By using a super-SBM model, the construction and cultivated land-use efficiency of 17 cities in Shandong from 2006 to 2018 were estimated and the spatial-temporal variation was analyzed. The results showed that: (1) The land use efficiency levels were quite different, and low-efficiency cities impacted the overall development process. (2) The efficiency values of construction land generally fluctuated and rose, meaning that room remains for future efficiency improvements. Cultivated land generally showed a high utilization efficiency, but it fluctuated and decreased. (3) The construction land-use efficiency was highest in the midland region, especially in Laiwu city, followed by the eastern region and Qingdao city, and the western region. The spatial variation in cultivated land presented a trend of “high in the middle, low in the periphery,” centered on Jinan and Yantai city. (4) Pure technical efficiency was the main restriction driving inefficient utilization in the western region, while scale efficiency played that role in the east. Based on the findings, policy suggestions were proposed to improve the land-use efficiency in Shandong and promote urban sustainable development. Keywords: land use; efficiency level; super-SBM model; Shandong Province; construction land; cultivated land 1.
    [Show full text]
  • Beijing Baidu Netcom Science and Technology Co., Ltd
    Beijing Baidu Netcom Science and Technology Co., Ltd. v. Qingdao Aoshang Network Technology Co., Ltd. et al., An Unfair Competition Dispute Guiding Case No. 45 (Discussed and Passed by the Adjudication Committee of the Supreme People’s Court Released on April 15, 2015) CHINA GUIDING CASES PROJECT English Guiding Case (EGC45) November 15, 2015 Edition * * The citation of this translation of the Guiding Case is: 《北京百度网讯科技有限公司诉青岛奥商网络技 术有限公司等不正当竞争纠纷案》 (Beijing Baidu Netcom Science and Technology Co., Ltd. v. Qingdao Aoshang Network Technology Co., Ltd., An Unfair Competition Dispute ), CHINA GUIDING CASES PROJECT , English Guiding Case (EGC45), Nov. 15, 2015 Edition , available at http://cgc.law.stanford.edu/guiding -cases/guiding -case -45. This document was primarily prepared by Jasmine Chen, Jeffrey Chivers, Oma Lee, Jeremy Schlosser, Yifan Yang, and Shiyue Zhang. The document was finalized by Sean Webb, Jordan Corrente Beck, and Dr. Mei Gechlik. Minor editing, such as splitting long paragraphs, adding a few words included in square brackets, and boldfacing the headings to correspond with those boldfaced in the original Chinese version, was done to make the piece more comprehensible to readers. The following text, otherwise, is a direct translation of the original text and reflects the formatting of the Chinese document released by the Supreme People’s Court. The following Guiding Case was discussed and passed by the Adjudication Committee of the Supreme People’s Court of the People’s Republic of China and was released on April 15, 2015, available at http://www.chinacourt.org/article/detail/2015/04/id/1602323.shtml. See also 《最高人民法院关于发布第十批指 导性案例的通知》 (The Supreme People’s Court’s Notice Concerning the Release of the Tenth Batch of Guiding Cases ), Apr.
    [Show full text]
  • Bangladesh Chittagong China Hong Kong Shenzhen
    Japan Tokyo 14 Dalian Seoul 15 Yokohama 17 South 13 Tianjin 8 16 Korea 12 Osaka-wan 10 Inch'on Kobe 7 6 9 Beijing Qingdao Busan Australia Australia 34 Brisbane 34 Brisbane Australia Australia 3 Shanghai Australia Brisbane 34 34 Brisbane 34 Brisbane China Taipei Australia Brisbane 29 34 New Delhi 21 Australia Taiwan Brisbane 5 Kao-hsiung Sydney 34 Guangzhou 32 Sydney 11 Perth 32 Hong Kong 36 Adelaide 2 Perth Bangladesh 36 35 Adelaide 4 35 Shenzhen Sydney Sydney Chittagong Sydney 32 32 Nagpur 23 Perth Perth Adelaide 32 18 Perth 36 36 Adelaide Mumbai (Bombay) 20 Philippines 36 Adelaide 35 35 Manila 27 Melbourne35 India 33 Melbourne 33 Sydney 32 Perth Thailand 36 Adelaide Sydney Auckland 35 Melbourne 32 Melbourne Vietnam Perth Melbourne 33 33 37 Auckland Bangkok 30 36 Adelaide33 37 Bangalore 22 19 Chennai (Madras) 35 31 Ho Chi Minh City Auckland Auckland Auckland 37 37 Melbourne New Zealand 37 33 New Zealand Melbourne Colombo 28 Sri Lanka Main Transport Terminals Trade(import-export) value Population (million people) 33 Malaysia Connections (billion US dollars) in 2007 AucklandNew Zealand 37 New Zealand Kuala Lumpur New Zealand Road Asia Highway >1000 0 - 2 Auckland 25 Network 37 26 Port of Tanjung 1 Indonesia International Airport 500 - 1000 2 - 5 Pelepas Singapore River New Zealand Sea Harbour 100 - 500 5 - 10 New Zealand River Harbour <100 0 245 490 Miles > 10 Free Economic Zone Jakarta 24 0 245 490 KM 1. Singapore 2. Hong Kong 3. Shanghai 4. Shenzhen 5. Kaohsiung 6. Busan 7. Beijing 8. Dalian Singapore is the world’s biggest container port with yearly throughput Hong Kong is a hub port serving the South Asian Pacific region and Shanghai is the power house for the economic growth of China.
    [Show full text]
  • Federal Register/Vol. 80, No. 220
    Federal Register / Vol. 80, No. 220 / Monday, November 16, 2015 / Notices 70759 Revised AD cash deposit Exporter Producer rate (percent) BEIJING SAI LIN KE HARDWARE CO., LTD ............................ XUZHOU GUANG HUAN STEEL TUBE PRODUCTS CO., 69.2 LTD. WUXI FASTUBE INDUSTRY CO., LTD ..................................... WUXI FASTUBE INDUSTRY CO., LTD .................................... 69.2 JIANGSU GUOQIANG ZINC-PLATING INDUSTRIAL COM- JIANGSU GUOQIANG ZINC-PLATING INDUSTRIAL COM- 69.2 PANY, LTD. PANY, LTD. WUXI ERIC STEEL PIPE CO., LTD .......................................... WUXI ERIC STEEL PIPE CO., LTD ......................................... 69.2 QINGDAO XIANGXING STEEL PIPE CO., LTD ....................... QINGDAO XIANGXING STEEL PIPE CO., LTD ...................... 69.2 WAH CIT ENTERPRISES .......................................................... GUANGDONG WALSALL STEEL PIPE INDUSTRIAL CO. 69.2 LTD. GUANGDONG WALSALL STEEL PIPE INDUSTRIAL CO. LTD GUANGDONG WALSALL STEEL PIPE INDUSTRIAL CO. 69.2 LTD. HENGSHUI JINGHUA STEEL PIPE CO., LTD .......................... HENGSHUI JINGHUA STEEL PIPE CO., LTD ......................... 69.2 ZHANGJIAGANG ZHONGYUAN PIPE-MAKING CO., LTD ...... ZHANGJIAGANG ZHONGYUAN PIPE-MAKING CO., LTD ..... 69.2 WEIFANG EAST STEEL PIPE CO., LTD .................................. WEIFANG EAST STEEL PIPE CO., LTD ................................. 69.2 SHIJIAZHUANG ZHONGQING IMP & EXP CO., LTD .............. BAZHOU ZHUOFA STEEL PIPE CO. LTD ............................... 69.2 TIANJIN BAOLAI INT’L TRADE
    [Show full text]
  • Transport Corridors and Regional Balance in China: the Case of Coal Trade and Logistics Chengjin Wang, César Ducruet
    Transport corridors and regional balance in China: the case of coal trade and logistics Chengjin Wang, César Ducruet To cite this version: Chengjin Wang, César Ducruet. Transport corridors and regional balance in China: the case of coal trade and logistics. Journal of Transport Geography, Elsevier, 2014, 40, pp.3-16. halshs-01069149 HAL Id: halshs-01069149 https://halshs.archives-ouvertes.fr/halshs-01069149 Submitted on 28 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Transport corridors and regional balance in China: the case of coal trade and logistics Dr. Chengjin WANG Key Laboratory of Regional Sustainable Development Modeling Institute of Geographical Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing 100101, China Email: [email protected] Dr. César DUCRUET1 National Centre for Scientific Research (CNRS) UMR 8504 Géographie-cités F-75006 Paris, France Email: [email protected] Pre-final version of the paper published in Journal of Transport Geography, special issue on “The Changing Landscapes of Transport and Logistics in China”, Vol. 40, pp. 3-16. Abstract Coal plays a vital role in the socio-economic development of China. Yet, the spatial mismatch between production centers (inland Northwest) and consumption centers (coastal region) within China fostered the emergence of dedicated coal transport corridors with limited alternatives.
    [Show full text]