KAJIAN PENANGKAPAN IKAN TORANI (Hirundichthys Oxycephalus) DENGAN JARING INSANG HANYUT BERKELANJUTAN DI SELAT MAKASSAR, SULAWESI BARAT
Total Page:16
File Type:pdf, Size:1020Kb
KAJIAN PENANGKAPAN IKAN TORANI (Hirundichthys oxycephalus) DENGAN JARING INSANG HANYUT BERKELANJUTAN DI SELAT MAKASSAR, SULAWESI BARAT STUDY ON SUSTAINABILITY CATCHING OF TORANI (Hirundichthys oxycephalus) WITH DRIFTING GILL NETS IN MAKASSAR STRAIT, WEST SULAWESI MAHFUD PALO PROGRAM STUDI ILMU PERIKANAN FAKULTAS ILMU KELAUTAN DAN PERIKANAN UNIVERSITAS HASANUDDIN 2019 DAFTAR ISI Halaman DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN I PENDAHULUAN 1 Latar Belakang 1 Identifikasi Masalah 6 Tujuan Penelitian 7 Kebaharuan dan Manfaat Penelitian 7 Hipotesis Penelitian 8 Kerangka Pikir Penelitian 8 II TELAAH PERIKANAN JARING INSANG IKAN TERBANG 11 Deskripsi Jaring Insang Ikan Terbang 11 Kapal Penangkap 16 Anak Buah Kapal (ABK) 19 III SELEKTIVITAS JARING INSANG IKAN TERBANG 21 Abstrak 21 Pendahuluan 21 Metode Penelitian 23 Hasil Penelitian 26 Pembahasan 36 Kesimpulan 42 IV SHORTENING DAN POLA TERJERAT HASIL TANGKAPAN JARING INSANG IKAN TERBANG 43 Abstrak 43 Pendahuluan 43 Metode Penelitian 46 Hasil Penelitian 48 Pembahasan 62 Kesimpulan 73 V ESTIMASI ZONA PENANGKAPAN POTENSIL IKAN TERBANG Hirundichthys oxycephalus 74 Abstrak 74 Pendahuluan 74 Metode Penelitian 77 Hasil Penelitian 80 Pembahasan 99 Kesimpulan 108 VI PEMBAHASAN UMUM 109 VII KESIMPULAN DAN SARAN 117 Kesimpulan 117 Saran 117 DAFTAR PUSTAKA 118 SUMMARY MAHFUD PALO. Study on Sustainability Catching of Torani (Hirundichthys oxycephalus) with Drifting Gill Nets in Makassar Strait, West Sulawesi. Supervised by NAJAMUDDIN, MUKTI ZAINUDDIN and ST. AISJAH FARHUM Flying fish in the Makassar Strait waters have long experienced a decline in production as has been reported by several researchers. Likewise, flying fish in the waters of Takalar, which shows its sustainability status, is categorized as less sustainable. The Makassar Strait is the main area for catching flying fish especially Hirundichthys oxycephalus in Indonesia because it is supported by an aquatic environment that has high water productivity. In these waters complex water dynamics take place by the presence of two important water mass circulations, namely “Arus Lintas Indonesia” (ARLINDO) and “Arus Monsun Indonesia” (ARMONDO) which pass through the Makassar Strait. Various physical processes that take place in the waters of the Makassar Strait and the influence of oceanographic factors in them are oriented towards the formation of the H.oxycephalus fishing ground. Catching of flying fish (Torani), H. oxycephalus in this waters using drifting gill nets with mesh sizes of 2.54 and 3.18 cm were very intensive throughout the year. However some of the problems faced by fishermen and environmental managers are that it is difficult to release fish from the net, catching small fish and unknown potential fishing ground. Therefore this study was conducted with the aim of: 1) Analyzing CPUE of toranic gill nets, 2) Analyzing the selectivity of toranic gill nets, 3) Analyzing the design of drifting gill nets that are suitable for catching fish that are easily removed from net meshes and 4) Analyzing potential zones for fishing of flying fish in every season. The research was carried out in several stages, namely the design of gill nets for CPUE and selectivity with different sizes of mesh, design for entangled patterns of catches with differences in shortening in the laboratory and capture trials of each design in the field. Analysis of variance and the Tukey test were carried out on both gill net designs that were tested to obtain selective gill nets and gill nets with catches that were easily released from net meshes, while to determine potential zones of capture of H. Oxycephalus, Empirical Cumulative Distribution Function (ECDF) was performed. The results of the design of gill nets with different mesh sizes showed that gill nets of mesh size 3.18 cm were more selective with the highest CPUE of 3.11 kg. Hauling- 1 per piece of net compared to gill nets of mesh size of 2.54 and 3.81 cm each of 0.95 kg .hauling-1 and 0.52 kg. hauling-1per piece net. The average length of H. oxycephalus caught in the net tested (mesh size 2.54, 3.18, and 3.81 cm) respectively 16.04, 18.26 and 20.74 cm with a range of 13.6-17.5 cm, 16.5-20.5 cm and 18.0-22.3 cm, optimum length of each is 14.65 cm, 18.34 cm and 21.97 cm with selection factors 5.7687, while L50 gill nets are 2.54, 3.18, and 3.81 cm mesh size are 13.49, 17.17 and 20.81 cm respectively. In this study it was also found that in the size of the fork length 16.3 cm H. oxycephalus had spawned. The design of nets with different shortening shows that gill nets with 30% of shortening get the best wedged catch pattern with significant differences between gilled and snagged patterns, while gill nets with 40% and 50% of shortening get the best snagged catch pattern also with significant differences. The wedged catch pattern for H. oxycephalus with a distinctive morphology of the round body, lengthwise slender, height 6.3 times its length with a blunt head, pectoral fins extending to the end of the dorsal fin will facilitate the fishermen pulling forward from net meshes compared to gilled and snagged catches . The results of the catch of H. oxycephalus were obtained at most in the optimum range of Sea Surface Temperature (SST) and chlorophyll-a concentration. These two oceanographic factors form the “Zona Potensial Penangkapan Ikan” (ZPPI) in September and October (Transition Season II), each in the coordinates 2 ° 33'21.60 "- 4 ° 22'15.60" LS; 117 ° 31'44.40 "- 118 ° 34'08.40" BT and 2 ° 26'49.20 "- 4 ° 22'37.20" LS; 117 ° 43'48.00 "- 119 ° 15'50.40" BT, April (Transition Season I) at coordinates 3 ° 45'0 "- 4 ° 22'19.20" LS; 117 ° 33'39.60 "- 119 ° 19'40.80" BT and at coordinates 2 ° 47'38.40 "- 4 ° 22'19.20" LS; 118 ° 02'45.60 "- 119 ° 19'40.80" BT and 2 ° 13'01.20 "- 3 ° 29'42.0" LS; 117 ° 55'48 "- 118 ° 57'46.80" BT in June and August (East Season). Keywords: H. oxycephalus, gill nets, selectivity and shortening DAFTAR PUSTAKA Ahrenholz, D. W. & J. W. Smith, 2010. Effect of Hang-in Percentage on Catch Rates of Flounder in the North Carolina Inshore Gill-Net Fishery. North American Journal of Fisheries Management 30:1401–1407, 2010 Ali, S.A. & M.N. Nessa, 2006. Status Ilmu Pengetahuan Ikan Terbang di Indonesia. Prosiding. Lokakarya Nasional Perikanan Ikan Terbang. Makassar, 20-21 September 2005. UNHAS-DKP-PPO LIPI Ali, S.A., 2005. Kondisi Sediaan dan Keragaman Populasi Ikan Terbang (Hirundichthys oxycephalus), 1852) di Laut Flores dan Selat Makassar. Disertasi, PASCASARJANA-UH. ________, 2005a. Perkembangan kematangan gonad dan musim pemijahan ikan terbang (Hirundicthys oxycephalus) di Laut Flores, Sulawesi Selatan.Torani.No.6 (edisi khusus): 416-424. Ali, S.A., M.N. Nessa, M.I. Djawad & S.B.A. Omar, 2005. Analisis Struktur Populasi Ikan Terbang (Hirundichthys oxycephalus) dari Laut Flores dan Selat Makassar untuk Penentuan Wilayah Pengelolaan dan Konservasi. Torani, 15 (2) 136-144 Ali, S.A., M.N. Nessa, I. Djawad & S.B.A. Omar, 2005. Hubungan antara kematangan gonad ikan terbang dengan beberapa parameter lingkungan di laut Flores, Sulawesi Selatan.Torani.No.6 (edisi khusus): 403-410. Ali, S.A., M.N. Nessa, I. Djawad & S.B.A. Omar, 2004. Musim dan Kelimpahan Ikan Terbang (Oxocoitidae) di Sekitar kab. Takalar (Laut Flores) SUL-SEL. Torani, 14 (3) 165- 172 _________, 2004a. Analisis Fluktuasi Hasil Tangkapan dan Hasil Maksimum Lestari Ikan Terbang (Exocoitidae) di SUL-SEL. Torani, 14 (2) 104-112 Andrade, H.A. & A.E. Garcia .1999. Skipjack tuna in relation to sea surface temperature off the southern Brazilian coast. Fisheries Oceanography. 8: 245-254. Angelsen, K.K., Haugen, K. and Floen, S. 1979. The catching efficiency of cod gillnets with different hanging ratio (E) and different floatline buoyancy. ICES CM. 1979/B:19. Anggreini, A. P., S. S. Astuti, I. Miftahudin, P. I. Novita & D. G. R. Wiadnya, 2017. Uji Selektivitas Alat Tangkap Gillnet Millenium Terhadap Hasil Tangkapan Ikan Kembung (Rastrelinger Brachysoma). Journal of Fisheries and Marine Science Vol. 1 No.1 Arami, H. & A. Mustafa, 2010. Analisis Selektivitas Gillnet Yang Dioperasikan Di Perairan Lentea, Kecamatan Kaledupa Selatan Kabupaten Wakatobi. Warta-Wiptek, Volume 18 Nomor : 01 Ashari, F., S. Redjeki & Kunarso, 2014. Keterkaitan Jumlah Tangkapan Ikan Pelagis Kecil dengan Distribusi CHL-a dan Suhu Permukaan Laut Menggunakan Citra Modis di Laut Jawa dan Selat Makassar. Journal of Marine Research. Vol. 3, No. 3, 366-373 Ayaz, A., U. Altinagac, U. Ozekinci, O. Ozen, A. Altin & A. Ismen, 2011. Effect of twine thickness on selectivity of gillnets for bogue, Boops boops, in Turkish waters. Mediterranean Marine Science, 12/2, 358-368 Ayaz, A., U. Altinagac, U. Ozekinci, O. Ozen, A. Altin & A. Ismen, 2011. Effect of twine thickness on selectivity of gillnets for bogue, Boops boops, in Turkish waters. Mediterranean Marine Science, 12/2, 358-368 Ayodhyoa, A. U. 1972. Craft and Gear. Correspondence Course Centre. Bogor. Ayodhyoa A.U., 1981. Metode Penangkapan Ikan. Yayasan Dewi Sri, Bogor. Balik, I. & H. Çubuk, 2001. Effect of hanging ratio on efficiency and selectivity of gillnets on capture of pikeperch (Stizostedion lucioperca (L.)) and tench (Tinca tinca L.). Journal of Fisheries & Aquatic Sciences 2001, Cilt/Volume 18, Sayi/Issue (1-2): 149-154 Block, B.A., S.L.H. Teo, A. Walli, A. Boustany, M.J.W. Stokesbury, C.J. Farwell, K.C. Weng, H. Dewar & T.D. Williams, 2005. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127. Borgstrom, R., 1989. Direct estimationof gill net selectivity for roach (Rutilus rutilus (L)) in a small lake. Fisheries Research, 7: 289-298 Çat, A.E.