The Conservation, Sustainable Use and Management of Mangrove Habitats in Oman

Total Page:16

File Type:pdf, Size:1020Kb

The Conservation, Sustainable Use and Management of Mangrove Habitats in Oman The Conservation, Sustainable Use and Management of Mangrove Habitats in Oman Zakiya Musallam Mohammed Al-Afifi PhD University of York Environment and Geography September 2018 Abstract Mangroves are significant contributors to human wellbeing in many tropical and sub- tropical coastal communities and deliver a wide range of provisioning, regulating, cultural and supporting ecosystem services. Worldwide, the value of these services has been researched, but not in Oman. I explore the role of mangrove ecosystems in Oman dominated by Avicennia marina and the value of their services based on perceptions of locals, key utilisers of the ecosystem. I also examine temporal and spatial change in mangrove cover and identify the drivers of environmental change affecting these ecosystems. Perceptions were captured using self-completed questionnaires, aerial extent was estimated from aerial photgraphs and secondary fisheries data were used to evaluate the support of Omani fisheries by mangroves. Carbon sequestration was estimated through a combination of field sampling and reported allometric equations and the service of storm buffering evaluated using data from windroses and mangrove extent. For cultural services assessment, mapping and semi-structured interviews with locals were used. I found that Oman‘s mangroves are mainly threatened by cyclonic events, both intense marine wave action and flash flooding from the landward side, as well as urbanisation, leading to coastal squeeze with implications for sea-level rise. While mangroves do not appear to highly support commercial fisheries in Oman, they do support ecologically important ecosystem engineers and essential prey for higher tropic levels (including commercially important species). Estimated values of carbon stock ranged from 59.90 to 133.05 t/ha, much lower values for A. marina inhabiting more favourable environmental conditions in other parts of the world. Cultural services were highly appreciated by locals, reflecting the influence of both Arabic and Islamic identity in Omani society. Intrinsic, instrumental and relational values of nature were all highlighted by locals. An Ecosystem Based Management approach is advocated for the conservation and sustainable use of mangroves in Oman. ii List of Contents Abstract………………………...…………………...…………………………… ii List of Contents……………………………………….…………………………. iii List of Tables…………..………………………………………..…..…........…... vii List of Figures………………………………………...…………………………. ix List of Appendices…………………………………………………………....…. xiv Acknowledgements………………………………………….……….……….…. xv Declaration……….…………………………………………….…………....…... xvi Dedication…………..……………………………………………..…….....……. xvii Chapter 1 Introduction……………………………………….…………... 1 1.1. Ecosystems and human well-being……………….…... 2 1.2. Biological and physico-chemical characteristics of mangrove ecosystems…………………...…..………… 3 1.3. Environmental factors influencing mangroves………... 4 1.4. Valuable services and benefits of mangroves………… 6 1.4.1. Provisioning services………….……………. 6 1.4.2. Regulating services……………………….…. 7 1.4.3. Cultural services…….……………………….. 8 1.4.4. Supporting services………………………….. 8 1.4.5. The role of mangroves in the support of neighbouring ecosystems…………..……….. 8 1.5. Ecological indicators as measures of service flow……. 9 1.6. Towards successful management of mangroves……… 12 1.6.1. Conservation: a valuable management option …………………………………………. 12 1.6.2. Restoring the present for the future….…… 13 1.7. Mangrove Ecosystems in the Middle East: the Omani Experience …………………...…………………..…… 15 1.8. Thesis aim and objectives………….………………….. 17 1.9. Thesis contents………………………………………... 19 Chapter 2 Contrasting patterns of long-term change in mangrove area at coastal sites in Oman: the role of environmental and anthropogenic drivers………………………….……………… 21 2.1. Introduction……………………..…………..………… 21 2.2. Methodology………………………………………….. 23 2.2.1. Study sites………………….……………... 23 2.2.1.1. Cyclone-affected sites……………………. 23 2.2.1.1.1. Al-Qurum Nature Reserve….....………….. 23 2.2.1.1.2. Qurayyat…………….…………………..... 24 2.2.1.2. ―Control‖ sites: not cyclone-affected…...... 24 2.2.1.2.1. Harmul……………………………………. 24 2.2.1.2.2. Mahout……………………………………. 24 2.2.2. Spatial changes of mangroves…………... 25 iii 2.3. Results………………………………………………… 27 2.3.1. Changes in spatial extent of mangroves… 27 2.3.2. Cyclones and storminess at the different sites.............................................................. 29 2.3.3. Effects of urbanisation……….………….. 34 2.3.4. Sea-Level Rise (SLR)…………………….. 39 2.4. Discussion……………………………..……………… 41 2.4.1. Changes in spatial extent of mangroves… 41 2.4.2. Cyclones and storminess at the different sites……………………………………….. 42 2.4.2.1. Cyclone Gonu…………………...……….. 42 2.4.2.2. Cyclone Phet………………………….….. 46 2.4.3. Effects of variable precipitation on mangroves in Oman………………………. 47 2.4.4. Urbanisation………………….………….. 48 2.4.5. Sea-level rise (SLR)………….…………… 50 2.5. Conclusion…………………………………….……… 52 Chapter 3 Local perceptions of mangrove ecosystem services in Oman… 54 3.1. Introduction………….………………………………... 54 3.2. Methodology………………………………...………... 55 3.3. Results………………………..……………………….. 58 3.3.1. Socio-economic characteristics of respondents…………………………………… 58 3.3.2. Respondent opinions and attitudes towards nature in general and towards mangrove habitats in particular…………………….. 61 3.3.2.1. Public awareness of mangrove habitats and benefits…………………………………… 61 3.3.2.2. Perceptions of changes to estuarine trees (mangroves)…………………………...…. 62 3.3.2.3. Public perceptions towards natural benefits …………………………………………… 63 3.3.3. Significance of ecosystem services provided by mangroves…………………… 64 3.3.4. Activities at the sites……………………… 67 3.4. Discussion…………………………………………….. 69 3.4.1. Overview………………………………….. 69 3.4.2. Socio-economic characteristics of respondents …………………………………. 69 3.4.3. Respondent opinion and attitudes towards nature in general and mangrove habitats in particular……………………………… 70 3.4.3.1. Public awareness of mangrove habitats and benefits………………………..………….. 70 iv 3.4.3.2. Perceptions of mangrove change……….... 71 3.4.3.3. Public perception of natural benefits of mangroves………………………………… 72 3.4.5. Activities at the sites……………………… 75 3.5. Some reflections on the study………………………… 76 3.6. Conclusions…………………………………………… 77 Chapter 4 An initial assessment of the role and value of Omani mangroves for fisheries………………………………………. 80 4.1. Introduction…………………….…………………….. 80 4.2. Methodology…………………………………………. 85 4.3. Results………………………………………………… 87 4.3.1. Overview………………………………….. 87 4.3.2. Species mangrove-association…………… 88 4.3.3. Commercial value of mangrove-associated species……………………………………. 89 4.3.4. Commercial mangrove-associated species in Oman……………………………….….. 89 4.4. Discussion……………..……………………………… 93 4.4.1. Overview…………………………..……… 93 4.4.2. Species mangrove-association…………… 94 4.4.2. Commercial value of mangrove-associated species………………………………..…… 97 4.4.3. Commercial mangrove-associated species in Oman…………………………………... 103 4.5. Conclusion……………………………………………. 104 Chapter 5 How important are carbon sequestration and storm buffering services at Al-Qurum mangroves, Oman?................................. 106 5.1. Introduction…………………………………….…….. 106 5.2. Methodology……………………………………..…… 111 5.2.1. Study area……………………….……….. 111 5.2.2. Quantification of AGB and carbon…….… 112 5.2.3. Storm buffering potential………………… 115 5.3. Results………………………………………………… 115 5.3.1. H and DBH ranges of Avicennia marina… 115 5.3.2. AGB estimates and carbon stock in Avicennia marina………………………… 118 5.3.3. Protective role of mangroves against waves and storminess……………………. 120 5.4. Discussion……………………………..……………… 125 5.4.1. Estimation of AGB and carbon stock……. 125 5.4.1.1. H and DBH ranges of Avicennia marina… 125 5.4.1.2. AGB estimates and carbon stock in Avicennia marina………………………… 126 5.4.2. Defensive role of mangroves against v winds, waves and storminess ……….......... 128 5.5. Conclusion……………………….…………………… 130 Chapter 6 Cultural services in Qurayyat: assessing and mapping the local experience………………………………………………. 132 6.1. Introduction……………………………………...…… 132 6.2. Methodology…………………………………………. 135 6.3. Results…………………………...……………………. 139 6.3.1. Socio-economic characteristics of respondents…………………………………… 139 6.3.2. Frequency of visits……………….………. 141 6.3.3. Identification, understanding and mapping of cultural services……………………….. 141 6.3.4. Individual preferences for landscapes…… 149 6.3.5. Disservices of mangroves……………..….. 154 6.3.6. Perceptions of site management…………. 158 6.4. Discussion…………………………………………….. 160 6.4.1. Socio-economic characteristics of respondents ………………………………. 161 6.4.2. Frequency of visits………………………... 161 6.4.3. Identifying, understanding and mapping cultural services………………………….. 161 6.4.4. Individual preferences for landscapes…… 163 6.4.5. Disservices of mangroves………………… 164 6.4.6. Perceptions of site management………….. 166 6.5. Conclusion…………………………………………….. 167 Chapter 7 General discussion and conclusions…………..……………… 168 7.1. Thesis summary and key findings……………………. 168 7.2. Management approaches towards mangroves at the study sites……………………………………………... 171 7.3. Can management approaches perform better?............... 174 7.4. Recommendations and suggestions for further work... 181 Appendices……………………………………………………………………… 175 Abbreviations…………………………………………………………………… 229 References…………………………………………………..…………………… 231 vi List of Tables Table 1.1. The most commonly used indicators to monitor the flow of ecosystem services. Obtained from Wood et al. (2010), Egoh et al. (2012) and Plieninger et al.
Recommended publications
  • Avicennia Marina Mangrove Forest
    MARINE ECOLOGY PROGRESS SERIES Published June 6 Mar Ecol Prog Ser Resource competition between macrobenthic epifauna and infauna in a Kenyan Avicennia marina mangrove forest J. Schrijvers*,H. Fermon, M. Vincx University of Gent, Department of Morphology, Systematics and Ecology, Marine Biology Section, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium ABSTRACT: A cage exclusion experiment was used to examine the interaction between the eplbenthos (permanent and vls~tlng)and the macroinfauna of a high intertidal Kenyan Avicennia marina man- grove sediment. Densities of Ollgochaeta (families Tubificidae and Enchytraeidae), Amphipoda, Insecta larvae, Polychaeta and macro-Nematoda, and a broad range of environmental factors were fol- lowed over 5 mo of caging. A significant increase of amphipod and insect larvae densities in the cages indicated a positive exclusion effect, while no such effect was observed for oligochaetes (Tubificidae in particular), polychaetes or macronematodes. Resource competitive interactions were a plausible expla- nation for the status of the amphipod community. This was supported by the parallel positive exclusion effect detected for microalgal densities. It is therelore hypothesized that competition for microalgae and deposited food sources is the determining structuring force exerted by the epibenthos on the macrobenthic infauna. However, the presence of epibenthic predation cannot be excluded. KEY WORDS: Macrobenthos . Infauna . Epibenthos - Exclusion experiment . Mangroves . Kenya INTRODUCTION tioned that these areas are intensively used by epiben- thic animals as feeding grounds, nursery areas and Exclusion experiments are a valuable tool for detect- shelters (Hutchings & Saenger 1987).In order to assess ing the influence of epibenthic animals on endobenthic the importance of the endobenthic community under communities.
    [Show full text]
  • (Rhizophora Mucronata and Avicennia Marina): an Overview
    Advances in Biological Research 11 (4): 161-170, 2017 ISSN 1992-0067 © IDOSI Publications, 2017 DOI: 10.5829/idosi.abr.2017.161.170 Antihyperglycemic Properties of Mangrove Plants (Rhizophora mucronata and Avicennia marina): An Overview O.H. Aljaghthmi, H.M. Heba and I.M. Abu Zeid Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia Abstract: The increased occurrences of diabetes have led to the utilization of the curative plants in search of the best remedies. The usage of medicinal plants has been embraced worldwide since it is a critical part of the public healthcare. Rhizophora mucronata and Avicenna marina are vulnerable plants that require protection for their continued significance in the cure of diabetes. The two plants have proved to be antiviral and antibacterial in nature. Traditionally, the Rhizophora mucronata and Avicenna marina were utilized to cure diabetes. Although there is tremendous progress in the diabetes cure through the oral hypoglycemic compounds, there is a consistent search for the newer medicines. Mostly these mangrove trees have antidiabetic activity despite the fact that they have not been accepted. However, the traditional medicine system has used such plants with success. This review showed some of the previous data on the Rhizophora mucronata and Avicenna marina that were tested on the rats in medical laboratories. Key words: Rhizophora mucronata Avicenna marina Diabetes Bioactive compounds. INTRODUCTION that the species have bioactive compounds potential for long-term treatment of diabetes and other significant The diabetes complications involve the retinal, renal disorders. The two plants are not directly consumed as and the cardiovascular complications.
    [Show full text]
  • TESIS DE DOCTORADO Desarrollo De Herramientas Moleculares Para Su Aplicación En La Mejora De La Trazabilidad De Los Alimentos Fátima C
    TESIS DE DOCTORADO Desarrollo de herramientas moleculares para su aplicación en la mejora de la trazabilidad de los alimentos Fátima C. Lago Soriano 2017 Desarrollo de herramientas moleculares para para moleculares Desarrollo de herramientas : DO Fátima Soriano Lago C. TESIS DOCTORA DE la los trazabilidad de alimentos aplicaciónla su mejora de en 2017 Escuela Internacional de Doctorado Fátima C. Lago Soriano TESIS DE DOCTORADO DESARROLLO DE HERRAMIENTAS MOLECULARES PARA SU APLICACIÓN EN LA MEJORA DE LA TRAZABILIDAD DE LOS ALIMENTOS Dirigida por los Doctores: Montserrat Espiñeira Fernández Juan Manuel Vieites Baptista de Sousa Página 1 de 153 AGRADECIMIENTOS Cuando una etapa llega a su fin, es cuando por fin puedes mirar a atrás, respirar profundamente, y acordarte de aquellos que te acompañaron. Del mismo modo, es difícil entender los agradecimientos de una tesis hasta que pones el punto y final. Es en este momento cuando se puede percibir la gratitud que sientes a todas las personas que han estado presentes durante esa etapa, ya bien sea codo a codo o simplemente trayéndote un café calentito en el momento preciso. Pero también es cierto que, entre toda esa gente que ha estado ahí, hay pocas caras que se dibujan clara e intensamente en mi cabeza. En primerísimo lugar, me gustaría dar las gracias de una manera muy especial a Montse por muchos, muchísimos motivos: por darme cariño y amistad desde el día en que nos conocimos; porque a lo largo de esta década hemos compartido muchísimos momentos alegres, acompañados de risas y carcajadas, pero también los más tristes de mi vida, inundados de lágrimas y angustia; por estar ahí para lo que sea, para todo, y tener siempre tendida su mano amiga; por escucharme una y otra vez, sin cansarse, y aconsejarme sabiamente; por confiar en mí y guiarme, no solo durante el desarrollo de esta tesis, sino también en mi formación y día a día; por su eterna paciencia;… y, sobre todo, por poner en mi vida al “morenocho”, ese pequeño loquito tímido que me comería a besos.
    [Show full text]
  • Diverse Deep-Sea Anglerfishes Share a Genetically Reduced Luminous
    RESEARCH ARTICLE Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment Lydia J Baker1*, Lindsay L Freed2, Cole G Easson2,3, Jose V Lopez2, Dante´ Fenolio4, Tracey T Sutton2, Spencer V Nyholm5, Tory A Hendry1* 1Department of Microbiology, Cornell University, New York, United States; 2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States; 3Department of Biology, Middle Tennessee State University, Murfreesboro, United States; 4Center for Conservation and Research, San Antonio Zoo, San Antonio, United States; 5Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and *For correspondence: that these bacteria have undergone extreme genome reduction although they are not vertically [email protected] (LJB); transmitted.
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • Ecuador's Biodiversity Hotspots
    Ecuador’s Biodiversity Hotspots Destination: Andes, Amazon & Galapagos Islands, Ecuador Duration: 19 Days Dates: 29th June – 17th July 2018 Exploring various habitats throughout the wonderful & diverse country of Ecuador Spotting a huge male Andean bear & watching as it ripped into & fed on bromeliads Watching a Eastern olingo climbing the cecropia from the decking in Wildsumaco Seeing ~200 species of bird including 33 species of dazzling hummingbirds Watching a Western Galapagos racer hunting, catching & eating a Marine iguana Incredible animals in the Galapagos including nesting flightless cormorants 36 mammal species including Lowland paca, Andean bear & Galapagos fur seals Watching the incredible and tiny Pygmy marmoset in the Amazon near Sacha Lodge Having very close views of 8 different Andean condors including 3 on the ground Having Galapagos sea lions come up & interact with us on the boat and snorkelling Tour Leader / Guides Overview Martin Royle (Royle Safaris Tour Leader) Gustavo (Andean Naturalist Guide) Day 1: Quito / Puembo Francisco (Antisana Reserve Guide) Milton (Cayambe Coca National Park Guide) ‘Campion’ (Wildsumaco Guide) Day 2: Antisana Wilmar (Shanshu), Alex and Erica (Amazonia Guides) Gustavo (Galapagos Islands Guide) Days 3-4: Cayambe Coca Participants Mr. Joe Boyer Days 5-6: Wildsumaco Mrs. Rhoda Boyer-Perkins Day 7: Quito / Puembo Days 8-10: Amazon Day 11: Quito / Puembo Days 12-18: Galapagos Day 19: Quito / Puembo Royle Safaris – 6 Greenhythe Rd, Heald Green, Cheshire, SK8 3NS – 0845 226 8259 – [email protected] Day by Day Breakdown Overview Ecuador may be a small country on a map, but it is one of the richest countries in the world in terms of life and biodiversity.
    [Show full text]
  • MARKET FISHES of INDONESIA Market Fishes
    MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • American Samoa Archipelago Fishery Ecosystem Plan 2017
    ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT: AMERICAN SAMOA ARCHIPELAGO FISHERY ECOSYSTEM PLAN 2017 Western Pacific Regional Fishery Management Council 1164 Bishop St., Suite 1400 Honolulu, HI 96813 PHONE: (808) 522-8220 FAX: (808) 522-8226 www.wpcouncil.org The ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT for the AMERICAN SAMOA ARCHIPELAGO FISHERY ECOSYSTEM PLAN 2017 was drafted by the Fishery Ecosystem Plan Team. This is a collaborative effort primarily between the Western Pacific Regional Fishery Management Council, NMFS-Pacific Island Fisheries Science Center, Pacific Islands Regional Office, Division of Aquatic Resources (HI) Department of Marine and Wildlife Resources (AS), Division of Aquatic and Wildlife Resources (Guam), and Division of Fish and Wildlife (CNMI). This report attempts to summarize annual fishery performance looking at trends in catch, effort and catch rates as well as provide a source document describing various projects and activities being undertaken on a local and federal level. The report also describes several ecosystem considerations including fish biomass estimates, biological indicators, protected species, habitat, climate change, and human dimensions. Information like marine spatial planning and best scientific information available for each fishery are described. This report provides a summary of annual catches relative to the Annual Catch Limits established by the Council in collaboration with the local fishery management agencies. Edited By: Marlowe Sabater, Asuka Ishizaki, Thomas Remington, and Sylvia Spalding, WPRFMC. This document can be cited as follows: WPRFMC, 2018. Annual Stock Assessment and Fishery Evaluation Report for the American Samoa Archipelago Fishery Ecosystem Plan 2017. Sabater, M., Ishizaki, A., Remington, T., Spalding, S. (Eds.) Western Pacific Regional Fishery Management Council.
    [Show full text]
  • APPENDIX 1 Resources for Training in Reef Monitoring Skills Suggested Training Plan the Entire Training Course Can Actually Be Taught in a Week’S Time
    APPENDIX 1 Resources for training in reef monitoring skills Suggested training plan The entire training course can actually be taught in a weeks time. However, it is recommended that the training be spread over the course of 3 years in order to allow the team sufficient time to practice under supervision and to allow the study area to actually change in response to management activities enough to be observed. If a community is being trained by external trainers, at least two visits by them should be planned for each year. The trainees should be encouraged to collect data 2 to 4 times a year (i.e. once per season) together with their local development workers. Year & Scheduled Activities Ongoing Season Activities Year 1. Season 1. Introduce the idea of participatory monitoring & evaluation to (e.g. Nov.-Mar.) key community leaders. Check the site for appropriate biophysical and socioeconomic conditions, logistics, and counterpart arrangements and offer to conduct the training. Year 1. Season 2. Review of basic reef ecology and management. Teach Chapters (e.g. Apr.-May) 1-4 and the data collection and recording steps of Chapters 5- 3-4 days 9. Have trainees practice collecting data while experienced people collect baseline data (on the benthos, reef fishes, and invertebrates). Intro to Monitoring & Evaluation of Coral Reefs (1 hr talk) Observing Corals and Algae [data collection] (1 hr talk/ 1 day fieldwork) Observing Reef Fishes [data collection] (1 hr talk/ 1 day fieldwork) Monitoring Fish Catch [data collection] (1-2 hr talk & planning) Human Activities & Natural Disturbances (1 hr talk) Drawing Up a Monitoring Plan (1-2 hr talk & planning) Year 1.
    [Show full text]
  • Scientific Name Changed 2018
    Fishes of the Maldives Indian Ocean 2018. Scientific names of Fishes updated by Charlotte Moritz. Rays by Khadeeja Ali, Marine Research Centre, Maldives. Family Page Common Name in book: Scientific Name in 2014 book: Scientific Name Changed 2018: Sharks and Rays 42 Pink Whipray Himantura fai Pateobatis fai 42 Mangrove or White-spotted whipray Himantura granulata Urogymnus granulatus 43 Jenkins Whipray Himantura jenkinsi Pateobatis jenkinsi 44 Blotched Fantail Ray Taeniura meyeni Taeniurops meyeni 45 White-spotted Eagle Ray Aetobatus narinari Aetobatus oscellatus 45 Ornate Eagle Ray Aetobatus vespertilio Aetomylaeus vespertilio Moray Eels 56 Peppered Moray Siderea picta Gymnothorax pictus 56 White-eyed Moray Siderea thyrsoidea Gymnothorax thyrsoideus Anglerfishes 65 Giant Anglerfish Antennarius commersoni Antennarius commerson 66 Spotfin Anglerfish Antennarius nummifer Antennatus nummifer 66 Freckled Anglerfish Antennarius coccineus Antennatus coccineus Lizardfishes 70 Red-marbled Lizardfish Synodus rubromarginatus Synodus rubromarmoratus Squirrelfishes 74 Speckled Squirrelfish Sargocentron punctatissimus Sargocentron punctatissimum Gurnards 85 Flying Gurnard Dactylopus orientalis Dactylopterus orientalis Flatheads 92 Fringe-lip Flathead Thysanophrys otaitensis Sunagocia otaitensis Groupers 101 Small-spotted Grouper Epinephelus caeruleopunctatus Epinephelus coeruleopunctatus Basslets 108 Flame Basslet Pseudanthias ignitis Pseudanthias ignitus Triple Tails 111 Triple Tail Lobotus surinamensis Lobotes surinamensis Emperors 136 Blue-line
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]