(Rhizophora Mucronata and Avicennia Marina): an Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Avicennia Marina Mangrove Forest
MARINE ECOLOGY PROGRESS SERIES Published June 6 Mar Ecol Prog Ser Resource competition between macrobenthic epifauna and infauna in a Kenyan Avicennia marina mangrove forest J. Schrijvers*,H. Fermon, M. Vincx University of Gent, Department of Morphology, Systematics and Ecology, Marine Biology Section, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium ABSTRACT: A cage exclusion experiment was used to examine the interaction between the eplbenthos (permanent and vls~tlng)and the macroinfauna of a high intertidal Kenyan Avicennia marina man- grove sediment. Densities of Ollgochaeta (families Tubificidae and Enchytraeidae), Amphipoda, Insecta larvae, Polychaeta and macro-Nematoda, and a broad range of environmental factors were fol- lowed over 5 mo of caging. A significant increase of amphipod and insect larvae densities in the cages indicated a positive exclusion effect, while no such effect was observed for oligochaetes (Tubificidae in particular), polychaetes or macronematodes. Resource competitive interactions were a plausible expla- nation for the status of the amphipod community. This was supported by the parallel positive exclusion effect detected for microalgal densities. It is therelore hypothesized that competition for microalgae and deposited food sources is the determining structuring force exerted by the epibenthos on the macrobenthic infauna. However, the presence of epibenthic predation cannot be excluded. KEY WORDS: Macrobenthos . Infauna . Epibenthos - Exclusion experiment . Mangroves . Kenya INTRODUCTION tioned that these areas are intensively used by epiben- thic animals as feeding grounds, nursery areas and Exclusion experiments are a valuable tool for detect- shelters (Hutchings & Saenger 1987).In order to assess ing the influence of epibenthic animals on endobenthic the importance of the endobenthic community under communities. -
Spatial Structure and Genetic Variation of a Mangrove Species (Avicennia Marina (Forssk.) Vierh) in the Farasan Archipelago
Article Spatial Structure and Genetic Variation of a Mangrove Species (Avicennia marina (Forssk.) Vierh) in the Farasan Archipelago Rahmah N. Al-Qthanin 1,* and Samah A. Alharbi 2 1 Biology Department, College of Sciences, King Khalid University, Abha 61421, Saudi Arabia 2 Biology Department, College of Applied Sciences, Umm-Al-Qura University, Makkah 21421, Saudi Arabia; [email protected] * Correspondence: [email protected] Received: 12 August 2020; Accepted: 18 November 2020; Published: 30 November 2020 Abstract: Avicennia marina (Forssk.) Vierh is distributed in patches along the Farasan archipelago coast and is the most common mangrove species in the Red Sea. However, to date, no studies have been directed towards understanding its genetic variation in the Farasan archipelago. In this investigation, genetic variations within and among natural populations of Avicennia marina in the Farasan archipelago were studied using 15 microsatellite markers. The study found 142 alleles on 15 loci in nine populations. The observed (Ho) and expected (He) heterozygosity values were 0.351 and 0.391, respectively, which are much lower than those of earlier studies on A. marina in the Arabian Gulf. An inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (FST = 0.301) was similar to other mangrove species. Our findings suggest that the sea current direction and coastal geomorphology might affect genetic dispersal of A. marina. The more isolated populations with fewer connections by sea currents exhibited lower genetic variation and differentiation between populations. The genetic clustering of populations fell into three main groups—Group 1 (populations of Farasan Alkabir Island), Group 2 (populations of Sajid Island), and Group 3 (mix of one population of Farasan Alkabir Island and a population of Zifaf Island). -
Rhizophora Mucronata Lam.)
antioxidants Article Untargeted Metabolomic Profiling, Multivariate Analysis and Biological Evaluation of the True Mangrove (Rhizophora mucronata Lam.) 1, 2, 2 Nabeelah Bibi Sadeer y, Gabriele Rocchetti y , Biancamaria Senizza , Domenico Montesano 3,* , Gokhan Zengin 4 , Ahmet Uysal 5, Rajesh Jeewon 1, Luigi Lucini 2,* and Mohamad Fawzi Mahomoodally 1,* 1 Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; [email protected] (N.B.S.); [email protected] (R.J.) 2 Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; [email protected] (G.R.); [email protected] (B.S.) 3 Department of Pharmaceutical Sciences, Food Science and Nutrition Section, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy 4 Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; [email protected] 5 Department of Medicinal Laboratory, Vocational School of Health Services, Selcuk University, 42130 Konya, Turkey; [email protected] * Correspondence: [email protected] (D.M.); [email protected] (L.L.); [email protected] (M.F.M.); Tel.: +39-075-5857919 (D.M.); +39-0523-599156 (L.L.); +230-57327341 (M.F.M.) These authors contributed equally to this work and are the co-first authors. y Received: 2 October 2019; Accepted: 15 October 2019; Published: 16 October 2019 Abstract: Currently, there is a renewed interest towards the development of plant-based pharmacophores. In this work, 16 extracts prepared from the leaves, twigs, roots and fruits of a hydro-halophyte, Rhizophora mucronata Lam. -
Phylogenetic Relationships Among the Mangrove Species of Acanthaceae Found in Indian Sundarban, As Revealed by RAPD Analysis
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(3):179-184 ISSN: 0976-8610 CODEN (USA): AASRFC Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis Surya Shekhar Das 1, Swati Das (Sur) 2 and Parthadeb Ghosh* 1Department of Botany, Bolpur College, Birbhum, West Bengal, India 2Department of Botany, Nabadwip Vidyasagar College, Nadia, West Bengal, India _____________________________________________________________________________________________ ABSTRACT RAPD markers were successfully used to identify and differentiate all the five species of Acanthaceae found in the mangrove forest of Indian Sundarban, to assess the extent of interspecific genetic diversity among them, to reveal their molecular phylogeny and to throw some light on the systematic position of Avicennia. The dendrogram reveals that the five species under study exhibits an overall similarity of 60.7%. Avicennia alba and A. officinalis (cluster C1) have very close relationship between them and share a common node in the dendrogram at a 73.3% level of similarity. Avicennia marina and Acanthus ilicifolius (cluster C2) also have close relationship between them as evident by a common node in the dendrogram at 71.8% level of similarity. Acanthus volubilis showed 68.1% similarity with cluster C1 and 60.7% similarity with cluster C2. Our study also supported the view of placing Avicennia under Acanthaceae. Regarding the relative position of Avicennia within Acanthaceae, it was shown to be very close to Acanthoideae. In comparison to other species, A. marina showed most genetic variability, suggesting utilization of this species over others for breeding programme and as source material in in situ conservation programmes. -
Pakistan: Sindh Coastal Community Development Project – Mangroves Raised by Coastal Forest Division Sindh Forest Department, Government Of
Environmental Monitoring Report Final Monitoring Report June 2013 Pakistan: Sindh Coastal Community Development Project – Mangroves Raised by Coastal Forest Division Sindh Forest Department, Government of Sindh At Shah Bundar & Keti Bundar Prepared by International Union for Conservation of Nature, Pakistan Country Office for the Government of Sindh, Pakistan and the Asian Development Bank. CURRENCY EQUIVALENTS (as of 30 June 2013) Currency unit – pak rupees (PRs) PRs 1.00 = $ .01005 $1.00 = PRs. 99.5500 ABBREVIATIONS ADB – Asian Development Bank CBO – community based organization CFD – Coastal Forest Department DFO – divisional forest officer CO – community organization EA – environmental assessment GIS – geographic information system GPS – global positioning system IUCN – International Union for Conservation Of Nature M&E – monitoring and evaluation MoU – memorandum of understanding NRSP – National Rural Support Programme PMU – project management unit SCCDP – Sindh Coastal Community Development Project SCD A – Sindh Coastal Development Authority SFD – Sindh Forest Department SRS – sample random sampling VO – village organization This environmental monitoring report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development -
Avicennia Marina: a Novel Convivial Phyto Medicine for Antibiotic Resistant Pathogenic Bacteria
Open Access Journal of Biomedical Studies RESEARCH ARTICLE Avicennia Marina: A Novel Convivial Phyto Medicine for Antibiotic Resistant Pathogenic Bacteria Vibha Bhardwaj* Director Environment Laboratories, RAK Municipality, Ras Al Khaimah, United Arab Emirates *Corresponding author: Dr. Vibha Bhardwaj, Director Environment Laboratories, RAK Municipality, Ras Al Khaimah, United Arab Emirates, E-mail: [email protected] Citation: Vibha Bhardwaj (2021) Avicennia Marina: A Novel Convivial Phyto Medicine for Antibiotic Resistant Pathogenic Bacteria. J Biomed Stud 1: 101 Abstract This study investigated two different concentration of methanol extracts of the leaves of Avicennia marina against five human pathogenic bacteria, to determine their efficacy against multidrug resistant microbes. Powdered leaves of the tree were treated with two different concentration of methanol (10% w/v and 20% w/v) using hot extraction method. Crude methanol extracts of the leaves of Avicennia marina was investigated for their antibacterial activity against a wide range of bacteria (both gram-positive and gram-negative) by disc diffusion method. Multidrug resistant (MDR) strains of Bacillus subtilis (ATCC 6633), E. coli (ATCC 8739), Salmonella enterica (ATCC 14028), Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 27853) were used in the study. Ciprofloxacin was used as standard. The antimicrobial activities of the crude extracts were increased with increasing the concentration. The methanolic leaves extracts of A. marina showed a remarkable inhibition of the microorganisms. The potency shown by these extracts recommends their use against multidrug resistant microorganisms. It is clear that n-hexane extract was the most effective extract. Additionally, Multidrug resistant (MDR) strains of E. coli, Bacillus subtilis and Staphylococcus aureus was strongly inhibited by both concentration of methanol extracts of A. -
Shrubland Ecotones; 1998 August 12–14; Ephraim, UT
Seed Bank Strategies of Coastal Populations at the Arabian Sea Coast M. Ajmal Khan Bilquees Gul Abstract—Pure populations of halophytic shrubs (Suaeda fruticosa, Karachi, Pakistan, have demonstrated that dominant Cressa cretica, Arthrocnemum macrostachyum, Atriplex griffithii, perennial halophytic shrubs and grasses maintain a persis- etc.) and perennial grasses (Halopyrum mucronatum, Aeluropus tent seed bank (Gulzar and Khan 1994; Aziz and Khan lagopoides, etc.) dominate the vegetation of the Arabian Sea coast 1996). Six different coastal dune communities showed a –2 at Karachi, Pakistan. The coastal populations maintained a per- very small seed bank (30-260 seed m , Gulzar and Khan sistent seed bank. There is a close relationship between seed bank 1994), while coastal swamp communities had a larger seed –2 flora and existing vegetation. The size of the seed bank varies with bank (11,000 seed m ). The Cressa cretica seed bank at the species dominating the population. Arthrocnemum macro- Karachi showed a persistent seed bank (Aziz and Khan stachyum, which dominated the coastal swamps, had the highest 1996), with the number of seeds reaching its maximum –2 seed density, 940,000 seed m–2, followed by Halopyrum mucronatum, (2,500 seed m ) after dispersal and dropping down to 500 –2 which showed 75,000 seed m–2. For all other species (Suaeda fruti- seed m a few months later. Gul and Khan (1998) reported cosa, Cressa cretica, Atriplex griffithii, and Aeluropus lagopoides), that coastal swamps dominated by Arthrocnemum seed bank varies from 20,000 to 35,000 seed m–2. Seed bank of all macrostachyum showed a great deal of variation from upper species substantially reduced a few months after dispersal. -
Island Bats: Evolution, Ecology, and Conservation
CHA P T E R 1 3 The Ecology and Conservation of Malagasy Bats Paul A. Racey, Steven M. Goodman, and Richard K. B. Jenkins Introduction Despite the important contribution that bats make to tropical biodiversity and ecosystem function, as well as the threatened status of many species, conserva tion initiatives for Madagascar’s endemic mammals have rarely included bats. Until recently, most mammalogical research in Madagascar concerned lemurs, rodents, and tenrecs. This focus resulted in a dearth of information on bat bi ology. However, since the mid1990s considerable advancement has been made following the establishment of capacitybuilding programs for Malagasy bat biologists, and bats are now included in biodiversity surveys and a growing number of field studies are in progress. In this chapter we summarize the advances made in recent years in un derstanding the diversity of Malagasy bats and briefly describe their biogeo graphic affinities and levels of endemism. We draw attention to the importance of understanding the ecology of these animals and why this is a prerequisite to their conservation. In discussing monitoring and hunting, we highlight some of the reasons that make bat conservation notably different from other vertebrate conservation challenges on the island. The Diversity of Malagasy Bats The recent surge of interest in Malagasy bats has resulted in the discovery and description of nine new taxa on the island. The rate of new discoveries quickly makes statements on endemism and species richness out of date. For example, of the 37 bat taxa listed for Madagascar in table 13.1, only 29 were treated in the 2005 Global Mammal Assessment in Antananarivo. -
Scientific Note the Endangered Illidge's Ant Blue Butterfly (Acrodipsasillidgeo from an Intertidal Habitat Managed for Mosquito Control
Journal of the American Mosquito Control Association, 2O(I):91-93,200'4 Copyright @ 2OO4 by the American Mosquito Conffol Association, Inc. SCIENTIFIC NOTE THE ENDANGERED ILLIDGE'S ANT BLUE BUTTERFLY (ACRODIPSASILLIDGEO FROM AN INTERTIDAL HABITAT MANAGED FOR MOSQUITO CONTROL M. J. BREITFUSST ,qNo P E. R. DALE' ABSTRACT. Acrodipsas illidgei is an endangered butterfly inhabiting mangrove forests in southeastern Queensland, Australia. Concern over the effects of mosquito control activities prompted a broad-scale survey for the species at Coomera Island, in southeastern Queensland. The butterfly was recorded on the edge of an old-growth mangrove forest in close proximity to mosquito control runnels. Other forms of mosquito control at Coomera Island are unlikely to impact on the species because of the mode of action of larvicides used and the fact larvae occur within ant colonies formed in hollow stems and branches of mangrove trees. Further studies are required to more fully understand the relationships between mosquito control activities and the population dynamics of endangered species such as A. illidgei. KEY WORDS Butterfly, Queensland, mangrove, mosquito control Environmental concern regarding the effects of and have rarely been observed in the wild because some mosquito control techniques on threatened of naturally low population numbers, the small size species has prompted debate at local, state, of adults, and flight activity (Braby 2000). national, and international forums. Of particular The aim of this paper is to discuss the habitat of concern in Australia has been the unsubstantiated A. illidgei at Coomera Island, an important nontarget threat to endangered species such as mosquito-breeding site that has experienced Illidge's ant blue butterfly (Acrodipsas illidgei mosquito control operations to reduce pest numbers (Waterhouse and Lyell)) from mosquito control for the past l8 years. -
Substrate Characteristics and Its Impact On
Journal of Biological Researches: 19 (82-86) 2014 SUBSTRATE CHARACTERISTICS AND ITS IMPACT ON DISTRIBUTION OF MANGROVE SPECIES : A Case Study In Sungai Barong Kecil In The Sembillang National Park At Banyuasin, South Sumatra Yuanita Windusari1, Sarno1, Edward Saleh2, Laila Hanum1 1Biology Department of Mathematic and Natural Sciences Faculty, Sriwijaya University, 2Technology of Agriculture of Agriculture Faculty, Sriwijaya University e-mail : [email protected] ABSTRACT The composition and density of vegetation in the mangrove areas affected soil conditions. Areas with a smooth distribution of substrat particles contain higher organic matter, and is characterized by the growth of mangrove better and more diverse. How environmental conditions affect the distribution of mangrove substrats observed in this study. The study was conducted in the area of Sungai Barong Kecil and Sungai Barong Besar which is part of the Sembilang National Park, Banyuasin District, South Sumatra. The study was conducted in May and June 2014. Location determined substrats by purposive sampling with particular consideration, and samples were taken using a modified PVC pipe at a depth of 10-30 cm, while the checkered line method with parallel lines used for observation shoreline mangrove distribution. Physical parameters such as salinity environmental chemistry, pH, and moisture. Analysis was performed on substrat particle size, substrat organic matter content, as well as the condition and type of mangrove. The results showed that the Sungai Barong Kecil area tend to have a much smoother distribution of substrat particles (clay content and higher dust). This leads to more easily grow mangroves and mangrove species were found to be more diverse (Avicennia marina, Avicennia alba, Rhizophora mucronata and Avicennia officianalis). -
Mangrove Guidebook for Southeast Asia
RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat. -
Mangrove Wetlands
WETLAND MANAGEMENT PROFILE MANGROVE WETLANDS Mangrove wetlands are characterised by Description trees that are uniquely adapted to tolerate Mangroves are woody plants, usually trees (woodland daily or intermittent inundation by the sea. to forest) but also shrubs, growing in the intertidal Distinctive animals are nurtured in their zone and able to withstand periods of inundation by sheltered waters and mazes of exposed seawater each day. In this profile, the term ”mangrove mangrove roots; others live in the underlying wetland” is used to refer to wetlands that are characterised by dominance of mangroves. mud. A familiar sight on the coast throughout “Mangrove associates” are non-woody plants that Queensland, mangrove wetlands provide mainly or commonly occur in mangrove wetlands. frontline defence against storm damage, The terms “mangrove forest” and “mangrove swamp” enhance reef water quality and sustain are sometimes used in regard to particular types of fishing and tourism industries. These habitat mangrove wetland or to mangrove wetland in general. assets can be preserved and loss and degradation (through pollution and changed MANGROVE wetlands are characterised water flows) averted by raising awareness of by the dominance of mangroves — woody the benefits of mangrove wetlands and by implementing integrated plans for land and plants growing in the intertidal zone and resource use in the coastal zone. able to withstand periods of inundation by seawater each day. Situated in land zone 1, mangrove wetlands are invariably in the intertidal zone and sometimes extend narrowly for many kilometres inland along tidal rivers, also around some near-shore islands. Accordingly, they are below the level of Highest Astronomical Tide (HAT) and typically are in the lower, most frequently and deeply inundated parts of the intertidal zone.