Latitudinal Gradients in Atlantic Reef Fish Communities: Trophic Structure and Spatial Use Patterns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species. -
Chromis Katoi, a New Species of Damselfish from the Izu Islands, Japan, with a Key to Species in the Chromis Notata Species Complex (Perciforms: Pomacentridae)
aqua, International Journal of Ichthyology Chromis katoi, a new species of damselfish from the Izu Islands, Japan, with a key to species in the Chromis notata species complex (Perciforms: Pomacentridae) Hiroki Iwatsubo1 and Hiroyuki Motomura2* 1) Kagoshima Museum of Aquatic Biodiversity, Kagoshima MS Building, 11-21 Nishisengoku, Kagoshima 892-0847, Japan 2) Kagoshima University Museum, 1-21-30 Korimoto, Kagoshima 890-0065, Japan *Corresponding author: E-mail: [email protected] Received: 09 May 2018 – Accepted: 31 May 2018 Keywords Schwanzflosse bei erwachsenen Tieren (im Gegensatz zu Western Pacific Ocean, damselfishes, new species, einem breiten, waagerechten Band, das beide Lappen der Chromis kennensis, Chromis notata, Chromis pura, Chromis Schwanzflosse bei notata aufweisen), die gelbe Farbe des yamakawai, Chromis westaustralis ganzen Körpers bei Jungtieren (im Gegensatz zum gräulichen bis bräunlichen Farbton während des ganzen Abstract Lebens bei notata); außerdem hat die neue Art weniger we- Chromis katoi n. sp., a new damselfish (Pomacentridae) iche Rückenflossenstrahlen, mehr röhrenförmige Seiten- belonging to the Chromis notata species complex, is de- linien-Schuppen, Brustflossenstrahlen und Kiemen- scribed on the basis of 11 specimens collected at a depth of blättchen sowie eine größere Rumpftiefe und Prä- 18 m off Hachijo Island, Izu Islands, Japan. The new Analflossenlänge. Angefügt ist ein Bestimmungsschlüssel species is similar to C. notata in having an indistinct white für die Arten des C.-notata-Komplexes. blotch at the end of the dorsal-fin base, and 4 or 5 and 11 or 12 scale rows above and below the lateral line, respec- Sommario tively, but differs in having the spinous portion of the dor- Chromis katoi n. -
Cirrhitidae 3321
click for previous page Perciformes: Percoidei: Cirrhitidae 3321 CIRRHITIDAE Hawkfishes by J.E. Randall iagnostic characters: Oblong fishes (size to about 30 cm), body depth 2 to 4.6 times in standard Dlength. A fringe of cirri on posterior edge of anterior nostril. Two indistinct spines on opercle. A row of canine teeth in jaws, the longest usually anteriorly in upper jaw and half-way back on lower jaw; a band of villiform teeth inside the canines, broader anteriorly (in lower jaw only anteriorly). One or more cirri projecting from tips of interspinous membranes of dorsal fin. Dorsal fin continuous, with X spines and 11 to 17 soft rays, notched between spinous and soft portions; anal fin with III spines and 5 to 7 (usually 6) soft rays; pectoral fins with 14 rays, the lower 5 to 7 rays unbranched and usually enlarged, with the membranes deeply incised; pelvic fins with I spine and 5 soft rays. Principal caudal-fin rays 15. Branchiostegal rays 6. Scales cycloid. Swimbladder absent. Vertebrae 26. Colour: variable with species. cirri lower pectoral-fin rays thickened and unbranched Remarks: The hawkfish family consists of 10 genera and 38 species, 33 of which occur in the Indo-Pacific region; 19 species are found in the Western Central Pacific. Habitat, biology, and fisheries: Cirrhitids are bottom-dwelling fishes of coral reefs or rocky substrata; the majority occur in shallow water. They use their thickened lower pectoral-fin rays to wedge themselves in position in areas subject to surge. All species are carnivorous, feeding mainly on benthic crustaceans. -
Trait Decoupling Promotes Evolutionary Diversification of The
Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament. -
View/Download
CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what -
Pomacentridae): Structural and Expression Variation in Opsin Genes
Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts. -
28. Annexe 2 Haplochromis
Description de ‘Haplochromis’ snoeksi ‘Haplochromis’ snoeksi (Perciformes: Cichlidae) a new species from the Inkisi River basin, Lower Congo Soleil WAMUINI L. *, ** Emmanuel VREVEN *** and Pierre VANDEWALLE** * I.S.P. Mbanza-Ngungu, Département de Biologie, B.P. 127 - Mbanza-Ngungu, Democratic Republic of Congo (DRC). E-mail: [email protected] ** Université de Liège, Faculté des Sciences, Laboratoire de Morphologie fonctionnelle et évolutive, B-4000 Liège, Belgium. E-mail: [email protected] *** Royal Museum for Central Africa, Vertebrate Section, Ichthyology, B-3080 Tervuren, Belgium; E-mail: [email protected] Abstract ‘Haplochromis’ snoeksi , new species, is described from a single locality, Ngeba village on the Ngeba /Ngufu River, a right bank affluent of the Inkisi River basin (Lower Congo; Democratic Republic of Congo). The species is distinguished from its riverine Congo River basin congeners by the following unique combination of characters: thorax partially naked, i.e. without small scales; 16 scales around caudal peduncle; and an upper lateral line with 23 scales. Résumé Une nouvelle espèce, ‘ Haplochromis ’ snoeksi , est décrite d’une seule localité, le village Ngeba sur la rivière Ngeba/Ngufu, un affluent de la rive droite de l’Inkisi (Bas-Congo; République Démocratique du Congo). Cette espèce se distingue des ses congénères des rivières de la province ichtyologiques du bassin du Congo par la combinaison des caractères suivants : un espace thoracique partiellement nu, c'est-à-dire dépourvu d’écailles, 16 écailles autour du pédoncule caudal et une ligne latéral supérieure avec 23 écailles. Introduction The family Cichlidae is characterized by a single nostril on either side of the head, a lateral line which is divided in two parts and a single continuous dorsal fin which has a spiny anterior and soft posterior fin-ray part (Snoeks, 1994; Nelson, 2006; Stiassny et al ., 2008). -
Towards a Global Names Architecture: the Future of Indexing Scientific Names
A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade. -
Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition. -
Fish Functional Traits Are Affected by Hydrodynamics at Small Spatial Scale
Marine Environmental Research 113 (2016) 116e123 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Fish functional traits are affected by hydrodynamics at small spatial scale * C. Bracciali a, b, G. Guzzo a, C. Giacoma b, J.M. Dean c, G. Sara a, d, a Dipartimento di Scienze della Terra e del Mare, University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy b Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy c Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, SC 29208, USA d CoNISMa, UO-Palermo, Via Archirafi, 18, 90123 Palermo, Italy article info abstract Article history: The Mediterranean damselfish Chromis chromis is a species with a broad distribution found both in the Received 17 October 2015 Mediterranean Sea and Eastern Atlantic as far south as the coast of Angola. We hypothesized that the Received in revised form species may have significant functional morphological plasticity to adapt along a gradient of environ- 28 November 2015 mental conditions. It is a non-migratory zooplanktivorous species and spends the daytime searching for Accepted 1 December 2015 food in the middle of the water column. Therefore, local hydrodynamics could be one of the environ- Available online 11 December 2015 mental factors affecting traits of C. chromis with repercussions at the population level. We compared the body condition, individual growth and body shapes of damselfish collected under two different hydro- Keywords: À1 À1 Mediterranean damselfish dynamic conditions (low ~10 cm s vs. -
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................ -
On the Validity of the Cirrhitid Fish Genus Itycirrhitus
aqua, International Journal of Ichthyology On the validity of the cirrhitid fish genus Itycirrhitus Michelle R. Gaither1-2 and John E. Randall3 1) California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA. E-mail: [email protected] 2) Hawai‘i Institute of Marine Biology, P.O. Box 1346, Kaneohe, HI 96744, USA. 3) Bishop Museum, 1525 Bernice St., Honolulu, HI 96817-2704, USA. E-mail: [email protected]. Received: 6 June 2012 – Accepted: 17 September 2012 Abstract der Familie (COI, d = 8-18%; cyt b, d = 12-20%). Dieser The hawkfish Cirrhitus wilhelmi Lavenberg & Yañez was Grad der Divergenz ist typisch für andere exemplarische described from Easter Island in 1972, reclassified in Vergleiche innerhalb der Cirrhitidae (COI, d = 15-20%; cyt Amblycirrhitus by Pequeño (1989), and the range extended b, d = 15-21%). to the Pitcairn Islands by Randall (1999). Randall (2001) described the new genus Itycirrhitus for this species. The Résumé similarity in general morphology and color to the Hawai- Le poisson-faucon Cirrhitus wilhelmi Ravenberg & Yañez ian Cirrhitops fasciatus and C. mascarenensis, type locality a été décrit en provenance de l’île de Pâques, en 1972, et Mauritius, prompted the present molecular study to deter- reclassé comme Amblycirrhitus par Pequeño (1989), et la mine the validity of Itycirrhitus. Combining mitochondrial distribution étendue jusqu’aux îles Pitcairn par Randall cytochrome oxidase I (COI) and cytochrome b (cyt b) (1999). Randall (2001) a décrit le nouveau genre Itycirrhi- sequence data from specimens of I. wilhelmi with compa- tus pour cette espèce. L’analogie en morphologie générale rable data from the two species of Cirrhitops, we found et en couleur avec Cirrhitops fasciatus d’Hawaï et C.