HANDBOOK of FISH BIOLOGY and FISHERIES Volume 1 Also Available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B

Total Page:16

File Type:pdf, Size:1020Kb

HANDBOOK of FISH BIOLOGY and FISHERIES Volume 1 Also Available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B HANDBOOK OF FISH BIOLOGY AND FISHERIES Volume 1 Also available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B. Hart and John D. Reynolds Volume 2 Fisheries Handbook of Fish Biology and Fisheries VOLUME 1 FISH BIOLOGY EDITED BY Paul J.B. Hart Department of Biology University of Leicester AND John D. Reynolds School of Biological Sciences University of East Anglia © 2002 by Blackwell Science Ltd a Blackwell Publishing company Chapter 8 © British Crown copyright, 1999 BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148‐5020, USA 108 Cowley Road, Oxford OX4 1JF, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The right of Paul J.B. Hart and John D. Reynolds to be identified as the Authors of the Editorial Material in this Work has been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First published 2002 Reprinted 2004 Library of Congress Cataloging‐in‐Publication Data has been applied for. Volume 1 ISBN 0‐632‐05412‐3 (hbk) Volume 2 ISBN 0‐632‐06482‐X (hbk) 2‐volume set ISBN 0‐632‐06483‐8 A catalogue record for this title is available from the British Library. Set in 9/11.5 pt Trump Mediaeval by SNP Best‐set Typesetter Ltd, Hong Kong Printed and bound in the United Kingdom by TJ International Ltd, Padstow, Cornwall. The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid‐free and elementary chlorine‐free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards. For further information on Blackwell Publishing, visit our website: http://www.blackwellpublishing.com Contents List of Contributors, x Preface, xii List of Abbreviations, xiv 1 BANISHING IGNORANCE: UNDERPINNING FISHERIES WITH BASIC BIOLOGY, 1 Paul J.B. Hart and John D. Reynolds 1.1 Introduction, 1 1.2 Global fisheries, 1 1.3 The quest for knowledge, 3 1.4 Part 1: Biodiversity, 4 1.5 Part 2: Production and population structure, 5 1.6 Part 3: Fish as predators and prey, 7 1.7 Part 4: Fish in ecosystems, 8 1.8 Ignorance banished?, 9 1.9 Conclusions, 10 Part 1: Biodiversity, 13 2 PHYLOGENY AND SYSTEMATICS OF FISHES, 15 A.C. Gill and R.D. Mooi 2.1 Introduction, 15 2.2 Phylogenetic methods and classification, 15 2.3 Fish diversity and phylogeny, 20 2.4 Conclusions, 36 3 HISTORICAL BIOGEOGRAPHY OF FISHES, 43 R.D. Mooi and A.C. Gill 3.1 Introduction, 43 3.2 Concepts and methods, 44 3.3 Distribution, faunal composition and historical biogeography by region, 47 3.4 Conclusions, 62 vi Contents Part 2: Production and Population Structure, 69 4 THE PHYSIOLOGY OF LIVING IN WATER, 71 Ole Brix 4.1 Introduction, 71 4.2 Buoyancy, or coping with pressure, 72 4.3 Swimming, 75 4.4 Osmoregulatory problems in fresh and salt water, 78 4.5 Respiration and special adaptations for living in low oxygen, 82 4.6 Digestion and absorption, 90 4.7 Bioluminescence, 91 4.8 Conclusions, 92 5 ENVIRONMENTAL FACTORS AND RATES OF DEVELOPMENT AND GROWTH, 97 Malcolm Jobling 5.1 Introduction, 97 5.2 Terminology of life-history stages, 97 5.3 Development and growth during early life history, 99 5.4 Growth models and equations, 102 5.5 Age determination, back-calculation and validation techniques, 104 5.6 Length–weight relationships and indices of condition and growth, 107 5.7 Energy budget and bioenergetics: energy partitioning and storage, 109 5.8 Growth at different latitudes: models of growth compensation, 113 5.9 Estimating food consumption, 115 5.10 Conclusions, 117 6 RECRUITMENT: UNDERSTANDING DENSITY-DEPENDENCE IN FISH POPULATIONS, 123 Ransom A. Myers 6.1 Introduction, 123 6.2 The link between spawner abundance and subsequent recruitment, 124 6.3 Generalities through meta-analysis, 129 6.4 Carrying capacity, 130 6.5 Variability in recruitment, 131 6.6 At what life-history stage does density-dependent mortality occur?, 131 6.7 Estimating density-dependent mortality from long-term surveys, 133 6.8 Pelagic egg, larval and juvenile stages, 136 6.9 Future research, 141 6.10 Conclusions, 144 Contents vii 7 LIFE HISTORIES OF FISH, 149 J.A. Hutchings 7.1 Introduction, 149 7.2 Influence of survival and growth rate on age, size and reproductive effort at maturity, 152 7.3 Offspring size and number strategies ,158 7.4 Alternative life-history strategies, 162 7.5 Effects of fishing on life history, 165 7.6 Conclusions, 167 8 MIGRATION, 175 Julian Metcalfe, Geoff Arnold and Robert McDowall 8.1 Introduction, 175 8.2 Exploitation and ecology, 178 8.3 Fish migrations, 179 8.4 Migratory mechanisms, 189 8.5 Techniques, 191 8.6 Distribution and genetics, 192 8.7 Fishery applications, 194 8.8 Conclusions, 194 9 GENETICS OF FISH POPULATIONS, 200 Robert D. Ward 9.1 Introduction, 200 9.2 Genetic tools, 200 9.3 Statistical tools, 205 9.4 Specimen and species identification, 206 9.5 Fish population genetics, 207 9.6 Genetics of sex determination in fish, 218 9.7 Conclusions, 218 10 BEHAVIOURAL ECOLOGY OF REPRODUCTION IN FISH, 225 Elisabet Forsgren, John D. Reynolds and Anders Berglund 10.1 General introduction, 225 10.2 Introduction to breeding systems, 225 10.3 Parental care, 228 10.4 Sexual selection, 230 10.5 Mating patterns, 236 10.6 Reproductive behaviour and life histories, 238 10.7 Reproductive behaviour and exploitation, 239 10.8 Conclusions, 241 viii Contents Part 3: Fish as Predators and Prey, 249 11 FISH FORAGING AND HABITAT CHOICE: A THEORETICAL PERSPECTIVE, 251 Gary G. Mittelbach 11.1 Introduction, 251 11.2 Foraging behaviour and diet choice, 252 11.3 Foraging models and fish growth, 254 11.4 Feeding rate and group size, 255 11.5 Foraging and habitat selection, 256 11.6 Conclusions, 262 12 FEEDING ECOLOGY OF PISCIVOROUS FISHES, 267 Francis Juanes, Jeffrey A. Buckel and Frederick S. Scharf 12.1 Introduction, 267 12.2 Adaptations for piscivory, 267 12.3 Components of predation, 271 12.4 Prey type and size selectivity, 274 12.5 Predator-size and prey-size relationships, 275 12.6 Population regulation, 277 12.7 Methods of studying predation in the field, 278 12.8 Implications for conservation and management, 279 12.9 Conclusions, 279 13 FISH AS PREY, 284 J. Krause, E.M.A. Hensor and G.D. Ruxton 13.1 Introduction, 284 13.2 Immobility, 285 13.3 Mobility, 287 13.4 Conclusions, 293 Part 4: Fish in Ecosystems, 299 14 TROPHIC ECOLOGY AND THE STRUCTURE OF MARINE FOOD WEBS, 301 Nicholas V.C. Polunin and J.K. Pinnegar 14.1 Introduction, 301 14.2 Food chains and food webs, 302 14.3 Interaction strength in food webs, 312 14.4 Implications of food webs and trophodynamics for fish and fisheries science, 314 14.5 Conclusions, 316 Contents ix 15 COMMUNITY ECOLOGY OF FRESHWATER FISHES, 321 Lennart Persson 15.1 Introduction, 321 15.2 Community patterns and basic ecological performance, 322 15.3 Competition and predation as structuring forces, 325 15.4 Fish community structure, productivity and habitat structure, 328 15.5 Effects of fish on lower trophic components, 331 15.6 From individual-level processes to population dynamics, 334 15.7 Conclusions, 337 16 COMPARATIVE ECOLOGY OF MARINE FISH COMMUNITIES, 341 K. Martha M. Jones, Dean G. Fitzgerald and Peter F. Sale 16.1 Introduction, 341 16.2 Biodiversity, 342 16.3 Habitat associations, 346 16.4 Differences in tropical and temperate production cycles, 350 16.5 Variation in recruitment dynamics, 351 16.6 Conclusions, 352 17 INTERACTIONS BETWEEN FISH, PARASITES AND DISEASE, 359 I. Barber and R. Poulin 17.1 Introduction, 359 17.2 Fish parasite diversity, 360 17.3 Evolution of host–parasite relationships, 365 17.4 Effects of parasites on fish population ecology, 374 17.5 Socioeconomic and human health implications of fish parasites, 376 17.6 Controlling parasite infections, 382 17.7 Recent applications of fish parasitology, 383 17.8 Conclusions, 384 Index, 390 Contributors Geoff Arnold The Centre for Environment, Elisabet Forsgren Department of Marine Fisheries and Aquaculture Science, Lowestoft Ecology, Göteborg University, Kristineberg Ma- Laboratory, Pakefield Road, Lowestoft, Suffolk rine Research Station, SE-450 34 Fiskebäckskil, NR33 0HT, UK. Sweden [email protected] [email protected] The Natural History Museum, I. Barber Edward Llwyd Building, Institute of A.C. Gill Cromwell Road, London SW7 5BD, UK Biological Sciences, The University of Wales [email protected] Aberystwyth, Aberystwyth, SY23 3DA, UK. [email protected] Paul J.B. Hart Department of Biology, University of Leicester, Leicester LE1 7RH, UK Anders Berglund Animal Ecology, Evolution- [email protected] ary Biology Centre, Uppsala University, Norbyvä- gen 18 D, SE-752 36 Uppsala, Sweden E.M.A. Hensor School of Biology, University [email protected] of Leeds, Leeds LS2 9JT, UK [email protected] Ole Brix Department of Zoology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway J.A. Hutchings Department of Biology, [email protected] Dalhousie University, Halifax, NS B3H 4J1, Canada [email protected] Jeffrey A. Buckel Department of Zoology, Center for Marine Sciences and Technology, North Malcolm Jobling The Norwegian College of Carolina State University, 303 College Circle, Fishery Science, University of Tromsø, N-9037 Morehead City, NC 28557, USA Tromsø, Norway [email protected] [email protected] Dean G.
Recommended publications
  • Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths (Ogrefish) by J.A
    click for previous page 1178 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths (ogrefish) by J.A. Moore, Florida Atlantic University, USA iagnostic characters: Small (to about 160 mm standard length) beryciform fishes.Body short, deep, and Dcompressed, tapering to narrow peduncle. Head large (1/3 standard length). Eye smaller than snout length in adults, but larger than snout length in juveniles. Mouth very large and oblique, jaws extend be- hind eye in adults; 1 supramaxilla. Bands of villiform teeth in juveniles are replaced with large fangs on dentary and premaxilla in adults; vomer and palatines toothless. Deep sensory canals separated by ser- rated ridges; very large parietal and preopercular spines in juveniles of one species, all disappearing with age. Gill rakers as clusters of teeth on gill arch in adults (lath-like in juveniles). No true fin spines; single, long-based dorsal fin with 16 to 20 rays; anal fin very short-based with 7 to 9 soft rays; caudal fin emarginate; pectoral fins with 13 to 16 soft rays; pelvic fins with 7 soft rays. Scales small, non-overlapping, spinose, goblet-shaped in adults; lateral line an open groove partially bridged by scales; no enlarged ventral keel scutes. Colour: entirely dark brown or black in adults. Habitat, biology, and fisheries: Meso- to bathypelagic, at depths of 75 to 5 000 m. Carnivores, with juveniles feeding on mainly crustaceans and adults mainly on fishes. May sometimes swim in small groups. Uncommon deep-sea fishes of no commercial importance. Remarks: The family was revised recently by Kotlyar (1986) and contains 1 genus with 2 species throughout the tropical and temperate latitudes.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Northern Wolffish,Anarhichas Denticulatus
    COSEWIC Assessment and Status Report on the Northern Wolffish Anarhichas denticulatus in Canada THREATENED 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Northern Wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 41 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm) Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 21 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R., and R.L. Haedrich. 2001. COSEWIC status report on the northern wolffish Anarhichas denticulatus in Canada, in COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-21 pp. Production note: COSEWIC would like to acknowledge Red Méthot for writing the status report on the Northern Wolffish, Anarhichas denticulatus in Canada, prepared under contract with Environment Canada. The report was overseen and edited by John Reynolds, COSEWIC Marine Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Loup à tête large (Anarhichas denticulatus) au Canada.
    [Show full text]
  • Larvae and Juveniles of the Deepsea “Whalefishes”
    © Copyright Australian Museum, 2001 Records of the Australian Museum (2001) Vol. 53: 407–425. ISSN 0067-1975 Larvae and Juveniles of the Deepsea “Whalefishes” Barbourisia and Rondeletia (Stephanoberyciformes: Barbourisiidae, Rondeletiidae), with Comments on Family Relationships JOHN R. PAXTON,1 G. DAVID JOHNSON2 AND THOMAS TRNSKI1 1 Fish Section, Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] [email protected] 2 Fish Division, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. [email protected] ABSTRACT. Larvae of the deepsea “whalefishes” Barbourisia rufa (11: 3.7–14.1 mm nl/sl) and Rondeletia spp. (9: 3.5–9.7 mm sl) occur at least in the upper 200 m of the open ocean, with some specimens taken in the upper 20 m. Larvae of both families are highly precocious, with identifiable features in each by 3.7 mm. Larval Barbourisia have an elongate fourth pelvic ray with dark pigment basally, notochord flexion occurs between 6.5 and 7.5 mm sl, and by 7.5 mm sl the body is covered with small, non- imbricate scales with a central spine typical of the adult. In Rondeletia notochord flexion occurs at about 3.5 mm sl and the elongate pelvic rays 2–4 are the most strongly pigmented part of the larvae. Cycloid scales (here reported in the family for the first time) are developing by 7 mm; these scales later migrate to form a layer directly over the muscles underneath the dermis. By 7 mm sl there is a unique organ, here termed Tominaga’s organ, separate from and below the nasal rosette, developing anterior to the eye.
    [Show full text]
  • Spotted Wolffish (Anarhichas Minor) in the Northwest Atlantic
    COSEWIC Assessment and Status Report on the Spotted Wolffish Anarhichas minor in Canada THREATENED 2001 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2001. COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 22 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R. and R.L. Haedrich. 2001. COSEWIC status report on the spotted wolffish Anarhichas minor in Canada, in COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-22 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Rapport du COSEPAC sur la situation du loup tacheté (Anarhichas minor) au Canada Cover illustration: Spotted Wolffish — from Scott and Scott, 1988.
    [Show full text]
  • Intertidal Migration of the Four-Eyed Fish Anableps Anableps in North Brazilian Mangrove Creeks
    Vol. 509: 271–287, 2014 MARINE ECOLOGY PROGRESS SERIES Published August 27 doi: 10.3354/meps10863 Mar Ecol Prog Ser Intertidal migration of the four-eyed fish Anableps anableps in North Brazilian mangrove creeks Uwe Krumme1,2,*, Marianna Audfroid Calderón1, Andreas Echterhoff1 1Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany 2Thünen Institute of Baltic Sea Fisheries (TI-OF), Alter Hafen Süd 2, 18069 Rostock, Germany ABSTRACT: The movement patterns of mangrove fish during tidal cycles are virtually unknown, yet needed to understand fish habitat use. The intertidal migration of the four-eyed fish Anableps anableps L. (Anablepidae, Cyprinodontiformes), a surface-swimming species, was observed along 2 large mangrove-lined creeks in North Brazil. The number, direction and size of the fish crossing fixed line transects were recorded at 5 min intervals using visual surveys during daylight at spring, mid- and neap tide cycles. Migration took place in a surge and was predictably structured and directly related to water level, current speed and direction, and recurred independent of creek and tide. The fish rode the early flood tide upstream towards the creek heads. After the ebb current peak, they returned in a surge along the same pathways. The intertidal distances travelled ranged from 0.7 to >2 km per tide. Fish density maxima occurred at early flood and late ebb tide, with more fish swimming alone during flood tide and largest group sizes during ebb tides. At neap high tides, fish aggregated in fewer accessible creek heads. When spring tides inundated wider creek areas and made additional creek heads available, maximum fish dispersal occurred.
    [Show full text]
  • Morphology and Significance of the Luminous Organs in Alepocephaloid Fishes
    Uiblein, F., Ott, J., Stachowitsch,©Akademie d. Wissenschaften M. (Eds), Wien; 1996: download Deep-sea unter www.biologiezentrum.at and extreme shallow-water habitats: affinities and adaptations. - Biosystematics and Ecology Series 11:151-163. Morphology and significance of the luminous organs in alepocephaloid fishes Y. I. SAZONOV Abstract: Alepocephaloid fishes, or slickheads (two families, Alepocephalidae and Platytroctidae), are deep-sea fishes distributed in all three major oceans at depths of ca. 100-5000 m, usually between ca. 500 and 3000 m. Among about 150 known species, 13 alepocephalid and all (ca. 40) platytroctid species have diverse light organs: 1) postcleithral luminous gland (all platytroctids); it releases a luminescent secredon which presumably startles or blinds predators and allows the fish to escape; 2) relatively large, regulär photophores on the head and ventral parts of the body in the alepocephalid Microphotolepis and in 6 (of 14) platytroctid genera. These organs may serve for countershading and possibly for giving signals to other individuals of the same species; 3) small "simple" or "secondary" photophores covering the whole body and fins in 5 alepocephalid genera, and a few such structures in 1 platytroctid; these organs may be used for Camouflage in the glow of spontaneous bioluminescence; 4) the mental light organ in 2 alepocephalid genera from the abyssal zone (Bathyprion and Mirognathus) may be used as a Iure to attract prey. Introduction Alepocephaloid fishes, or slickheads, comprise two families of isospondyl- ous fishes (Platytroctidae and Alepocephalidae). The group is one of the most diverse among oceanic bathypelagic fishes (about 35 genera with 150 species), and these fishes play a significant role in the communities of meso- and bathypelagic animals.
    [Show full text]
  • Order OSMERIFORMES
    click for previous page 1884 Bony Fishes Order OSMERIFORMES ARGENTINIDAE Argentines by J.R. Paxton and D.M. Cohen iagnostic characters: Small to moderate-sized (to 60 cm) osmeriform fishes, body slender to Dmoderate, moderately compressed, and generally elongate. Head small. Eye moderate to large, not tubular; interorbital space not narrow. Snout moderate, generally equal to eye diameter. Mouth small; premaxilla present. Jaw teeth small; premaxilla and maxilla without teeth; dentary teeth present or absent; teeth on vomer and palatine; teeth present or absent on tongue, sometimes enlarged and recurved. Fins without spines; dorsal fin somewhat before middle of body, with 10 to 14 rays; anal fin far behind dorsal fin, with 10 to 17 rays; pelvic fins under or slightly behind dorsal fin, with 10 to 15 rays; pectoral fins close to ventral edge of body, with 12 to 25 rays; dorsal adipose fin present over anal fin. Lateral line running straight back on midline of body, not extending onto tail. Scales cycloid or spinose, deciduous. No light organs or luminous tissue. Branchiostegal rays 4 to 6. Total vertebrae 43 to 70. Colour: light, often with silvery and/or dark lateral band. Habitat, biology, and fisheries: Benthopelagic on the outer shelf and upper slope, rarely to 1 400 m. Feed as carnivores on epibenthic and some pelagic invertebrates and fishes. Moderately common to rare fishes, rarely of commercial importance. Remarks: Two genera with some 20 species throughout the world ocean in tropical to temperate and northern boreal latitudes; however, they are rarely found in the tropical Pacific. A comprehensive revison of the family is needed.
    [Show full text]
  • 006336-W19 JIRCAS Working Report90 本文.Indd
    JIRCAS Working ReportSection No.90 Ⅳ - 2: Morioka and Vongvichith 117 Importance of resources of small-sized fishes as fundamental components of food resources and fish diversity in Lao PDR Shinsuke Morioka1, Bounsong Vongvichith2 1 Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan 2 Living Aquatic Resources Research Center (LRReC), National Agriculture and Forestry Research Institute of (NAFRI), Vientiane, Lao PDR Abstract Growth, reproduction, and lifespan were reviewed in three indigenous small-sized fishes in Lao PDR belonging to different taxa, Parambassis siamensis (Ambassidae), Rasbora rubrodorsalis (Cyprinidae), and Clupeichthys aesarnensis (Clupeidae). All three species were estimated to have short lifespans (< one year) and breed throughout the year with plural generation alternations within a year. Environment in high temperature accelerated initial growth in all species. In C. aesarnensis, while higher temperature was considered to lead to earlier maturation and downsizing of maturation size, evolutionary downsizing owing to overfishing was of another concern. As the recent economic development and population growth within the country has led to an increase in fish demand and deterioration of the environment, all the species are considered to be in danger of stock decline. Therefore, in the present study, some ideas for stock managements for these species based on biological aspects are discussed. Introduction Lao PDR is a country with rich resources of indigenous fish species, particularly in the basins of the Mekong River and its tributaries. Estimates of the numbers of indigenous fish species in this region range from 700 to more than 1,200 (Kottelat 2001; Sverdrup-Jensen 2002). Among these, various indigenous small-sized fishes are distributed across the country regardless of taxa.
    [Show full text]
  • Potential Effects of Dam Cascade on Fish
    Rev Fish Biol Fisheries DOI 10.1007/s11160-015-9395-9 ORIGINAL RESEARCH Potential effects of dam cascade on fish: lessons from the Yangtze River Fei Cheng . Wei Li . Leandro Castello . Brian R. Murphy . Songguang Xie Received: 23 October 2014 / Accepted: 13 July 2015 Ó Springer International Publishing Switzerland 2015 Abstract Construction of hydroelectric dams affect Corieus guichenoti will have a high risk of extinction river ecosystems, fish diversity, and fisheries yields. due to the combined effects of impoundment and However, there are no studies assessing the combined blocking. Modification of the flow regime will effects on fish caused by several adjacent dams and adversely affect the recruitment of 26 species that their reservoirs, as in a ‘dam cascade’. This study produce drifting eggs. The start of annual spawning for predicts the potential effects that a cascade of ten dams 13 fishes will be postponed by more than 1 month, and currently under construction in the upper Yangtze fish spawning and growth opportunities will be River in China will have on local fishes, and uses such reduced due to low water temperatures associated predictions to assess the effectiveness of possible fish with hypolimnetic discharges. Combined dam effects conservation measures. We found that the dam will further reduce the likelihood of successful cascade will have serious combined effects on fishes recruitment of some endangered species, such as mainly due to impoundment, habitat fragmentation Acipenser dabryanus and Psephurus gladius. Three and blocking, flow regime modification, and hypolim- countermeasures hold promise to mitigate the near- netic discharges. The impoundments will cause loss of term effects of the dam cascade, including preserva- critical habitats for 46 endemic species.
    [Show full text]
  • Osmoregulation in Three Species of Ambassidae (Osteichthyes: Perciformes) from Estuaries in Natal
    s. Afr. 1. Zool. 1990,25(4) 229 Osmoregulation in three species of Ambassidae (Osteichthyes: Perciformes) from estuaries in Natal T.J. Martin Coastal Research Unit of Zulu land, Department of Zoology, University of Zulu land, Kwa Dlangezwa, 3886 South Africa Received 25 July 1989; accepted 17 July 1990 Whole blood osmotic regulation was evaluated in three co-ocaming, estuarine species of Ambassis exposed to ambient salinities from fresh water (0,13%0) to 53%0. Blood molality of all three species, acclimated to fresh water, showed significant increases over the range of ambient salinities from fresh water through 5%0 and stabilized only in the range 18%..-35%0). Osmotic concentrations of all three species rose abruptly at salinities above 35%0 and no species survived direct transfer into ambient salinities above 53%0. A productus, collected in fresh water, required 24 h prior acclimation at 18%0 for survival in sea water (35%0). A gymnocephaJus acclimated in sea water showed the least tolerance of the three species to low salinities and experienced a 42% decrease in blood osmotic concentration when exposed to fresh water whereas the decrease for A. natalensis and A productus was only 20% and 23% respectively. Histological investigation of Ambassis kidneys indicated that all three species have structurally advanced kidneys of the mesonephric type common to most teleosts which spend a proportion of their lives in a hyposmotic medium. Osmotic regulatory characteristics of Ambassis species are discussed in relation to their distribution in estuaries. Die regulering van bloedosmose van die drie Ambassis-spesies wat in riviermondings voorkom en blootgestel is aan omringende water met soutgehaltes vanaf varswater (0,13%0) tot 53%0 is ge-evalueer.
    [Show full text]