Reproductive Performance of Indian Breeds of Cattle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Country Report on Animal Genetic Resources of India
COUNTRY REPORT ON ANIMAL GENETIC RESOURCES OF INDIA DEPARTMENT OF ANIMAL HUSBANDRY & DAIRYING MINISTRY OF AGRICUCLTURE GOVERNMENT OF INDIA Preparation of Country Report on AnGR Training for the preparation of Country Report was provided by the FAO (at Bangkok) to three Scientists viz. Dr. D K Sadana, PS from NBAGR, Dr. A. Batobyal, Jt. Commissioner, GOI and Dr. Vineet Bhasin, Sr. Scientist, ICAR. The NBAGR, Karnal was identified as the Nodal Institute to prepare the draft Country Report. The scientists of the Animal Genetic Resources Division prepared answers to the background questions, collected livestock data from various sources, examined, discussed and compiled the received input. Chief Nodal Officers of the five regions of the country (North, West, South, East and North East) were identified to coordinate the collection of information from the Nodal Officers (Data contributors) from different states of the Country. Three national workshops were organized, two at NBAGR, Karnal and one at UAS, Bangalore.In the National Workshops, the Nodal Officers from different states were given training and guidelines for answering the background questions. Subsequently, the Draft Report was updated with the details received from nodal officers and other data contributors. Following scientists have contributed in writing and preparation of the Draft Country Report on AnGR: 1. Dr. V.K. Taneja, DDG (AS), ICAR, New Delhi 2. Dr. S.P.S. Ahlawat, Director, NBAGR, National Coordinator 3. Dr. D.K. Sadana, P.S., Organising Secretary 4. Dr. Anand Jain, Sr. Scientist & Support Scientist for NE Region 5. Dr. P.K. Vij, Sr. Scientist & Chief Nodal Officer - Northern Region 6. -
Whole Genome Study of Linkage Disequilibrium in Sahiwal Cattle
South African Journal of Animal Science 2018, 48 (No. 2) Whole genome study of linkage disequilibrium in Sahiwal cattle H. Mustafa1,2#, N. Ahmad1, H. J. Heather2, K. Eui-soo2, W. A. Khan3, A. Ajmal1, K. Javed1, T. N. Pasha4, A. Ali1, J. J. Kim5 & T. S. Sonstegard2 1 Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan 2 United States Department of Agricultural, Maryland 27030, USA 3 Department of Biotechnology, University of Sargodha, Pakistan 4 Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan 5 Departemnt of Biotechnology, Yeungnam University Gyeongsan, Gyeongbuk 712749, Republic of Korea (Received 26 September 2017; Accepted 27 December 2017; First published online 30 December 2017) Copyright resides with the authors in terms of the Creative Commons Attribution 4.0 South African Licence. See: http://creativecommons.org/licenses/by/4.0/za Condition of use: The user may copy, distribute, transmit and adapt the work, but must recognise the authors and the South African Journal of Animal Science. ______________________________________________________________________________________ Abstract The linkage disequilibrium (LD) is an important tool to study quantitative trait locus (QTL) mapping and genetic selection. In this study, we identified the extent of linkage disequilibrium (LD) in Sahiwal (n = 14) cattle using the bovine high density single-nucleotide polymorphisms (SNPs) BeadChip. After data filtering, 500,968 SNPs comprising 2518.1 Mb of the genome, were used for the LD estimation. The minior allele frequency (MAF) was 0.21 in a substantial proportion of SNPs and mean distance between adjacent markers was 4.77 ± 2.83 kb. -
Evaluation of Genetic Variability in Kenkatha Cattle by Microsatellite Markers
1685 Asian-Aust. J. Anim. Sci. Vol. 19, No. 12 : 1685 - 1690 December 2006 www.ajas.info Evaluation of Genetic Variability in Kenkatha Cattle by Microsatellite Markers A. K. Pandey*, Rekha Sharma, Yatender Singh, B. Prakash and S. P. S. Ahlawat Core Lab, National Bureau of Animal Genetic Resources, Karnal-132 001, Haryana, India ABSTRACT : Kenkatha cattle, a draft purpose breed, which can survive in a harsh environment on low quality forage, was explored genetically exploiting FAO-suggested microsatellite markers. The microsatellite genotypes were derived by means of the polymerase chain reaction (PCR) followed by electrophoretic separation in agarose gels. The PCR amplicons were visualized by silver staining. The allelic as well as genotypic frequencies, heterozygosities and gene diversity were estimated using standard techniques. A total of 125 alleles was distinguished by the 21 microsatellite markers investigated. All the microsatellites were highly polymorphic with mean allelic number of 5.95±1.9 (ranging from 3-10 per locus). The observed heterozygosity in the population ranged between 0.250 and 0.826 with a mean of 0.540±0.171, signifying considerable genetic variation. Bottleneck was examined assuming all three mutation models which showed that the population has not experienced bottleneck in recent past. The population displayed a heterozygote deficit of 21.4%. The study suggests that the breed needs to be conserved by providing purebred animals in the breeding tract. (Key Words : Cattle, Genetic Variation, Kenkatha, Microsatellite) INTRODUCTION breeds. Widespread use of cross breeding, destruction of traditional production systems and a general thrust towards India has several indigenous cattle populations management systems which rely on greater inputs placed associated with different geographical areas. -
Unit 4 Milch Breeds
UNIT 4 MILCH BREEDS Structure 4.0 Objectives 4.1 Introduction 4.2 Milch Breeds of Cattle Indigenous Milch and Dual-purpose Breed Exotic Dairy Cattle Breeds Synthetic Crossbred Cattle Strains Breed Improvement in Cattle 4.3 Milch Breeds of Buffaloes Breed Improvement in Buffaloes 4.4 Milch Breeds of Goats Indigenous Goat breeds Exotic Dairy Goat Breeds Breed Improvement in Goats 4.5 Let Us Sum Up 4.6 Key Words 4.7 Some Useful Books 4.8 Answers to check your Progress 4.0 OBJECTIVES After reading this unit, we shall be able to: enumerate the names of different milch breeds of cattle, buffalo and goat; state the distribution of these breeds in their respective home tracts; describe the physical characteristics of these breeds; performance of these breeds; specify the reproduction and production; and indicate the concept of breed improvement. 4.1 INTRODUCTION Cattle, buffalo and goats constituting 404.1 million population are three major domestic animal species, which contribute over 91.0 million tonnes milk in the country. The buffaloes contribute maximum (52%) to total milk production followed by cattle (45%) and goats (3%). There are large number of well descript breeds of cattle, buffalo and goats which are widely distributed under different agro-climatic regions. Besides these, there is large population of non-descript animals. A breed is a group of inter-breeding domestic animals of a species. It shows similarity among its individuals in certain distinguishable characteristics (colour, shape, size of body parts). The breeds have been developed as a result of selection and breeding based on the needs of mankind as well as adaptation to agro-climatic conditions of their native home tracts. -
Study of Certain Reproductive and Productive Performance Parameters
The Pharma Innovation Journal 2020; 9(9): 270-274 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Study of certain reproductive and productive TPI 2020; 9(9): 270-274 © 2020 TPI performance parameters of malnad gidda cattle in its www.thepharmajournal.com Received: 21-06-2020 native tract Accepted: 07-08-2020 Murugeppa A Murugeppa A, Tandle MK, Shridhar NB, Prakash N, Sahadev A, Vijaya Associate Professor and Head, Department of Veterinary Kumar Shettar, Nagaraja BN and Renukaradhya GJ Gynaecology and Obstetrics, Veterinary College, Shivamogga, Abstract Karnataka, India The study was conducted to establish baseline information pertaining to productive and reproductive performance of Malnad Gidda and its crossbred in Shivamogga District of Karnataka. The data from 286 Tandle MK animals reared by 98 farmers from Thirtahalli, Hosanagara and Sagara taluks of Shivamogga district Director of Instruction (PGS), Karnataka Veterinary Animal were collected through a structured questionnaire. The parameters such as age at puberty (25.15±0.29 and Fisheries University, Bidar, months); age at first calving (39.32±2.99 months); dry period (6.22±1.26 months); calving interval Karnataka, India (13.68±2.55 months); gestation period (282.14±9.03 days); service period (136.73±10.03 days); lactation length (258.22 ± 10.95 days); milk yield per day (3.69±0.32 kg); total milk yield (227.19±8.31 kg); days Shridhar NB to reach peak milk yield (46.19±0.51 day); birth weight of the new born calf (8.71±0.45 kg); time taken Professor and Head, Department for placental expulsion of placenta (4.63±0.39 hours); onset of postpartum estrous (77.64±1.98 days); of Veterinary Pharmacology and Duration of estrous period (15.25±1.67 hours); time of ovulation (15.15 ± 1.7 hours) and length of estrus Toxicology, Veterinary College cycle (22.63±2.96. -
LPM-601 : Important Breeds of Cattle and Buffaloes
IMPORTANT BREEDS OF CATTLE AND BUFFALOES (LPM-601) Dr. S. P. Sahu, M.V.Sc., Ph.D. (LPM) Assistant Professor Department of LPM Bihar Veterinary College, Patna- 800 014 www.basu.org.in Population of Cattle (20th Livestock Census) Total Livestock population- 535.78 million (increase of 4.6% over Livestock Census 2012). Total number of cattle -192.49 million in 2019 (increase of 0.8 % over previous Census). Exotic/Crossbred and Indigenous/Non-descript Cattle population - 50.42 million and 142.11 million; respectively. Decline of 6 % in the total Indigenous (both descript and non- descript) Cattle. Classification of breeds of cattle on the basis of type of horns (Payne,1970): Short-horned zebu: Bachaur, Hariana, Krishna Valley, Gaolao, Nagori, Mewati, Ongole and Rathi. Lateral-horned zebu: Gir, Red Sindhi, Sahiwal, Dangi, Deoni, Nimari Lyre-horned zebu: Kankrej, Malvi, Tharparkar Long-horned zebu: Amritmahal, Hallikar, Kangayam and Khillari Small short-horned/lyre-horned zebu: Ponwar, Punganoor, Shahabadi, Kumauni Classification of breeds of Cattle on the basis of their utility: MILCH BREEDS OF CATTLE Sahiwal Original breeding tract in Montgomery district (Pakistan), Ferozepur and Amritsar districts in Punjab. Heavy breed, heavy body confirmation, typical coat colour is red/brown, head is medium sized, horns are short and stumpy. Dewlap is large and pendulous, hump in males is massive and droops on one side, tail is long almost touching the ground, navel flap is loose and hanging, udder is well developed. The average milk yield of this breed is between 1700 and 2700 kgs in lactation period of 300 days. Red Sindhi Original breeding tract in Karachi (Pakistan). -
Factors Affecting First Lactation Performance of Sahiwal Cattle in Pakistan
Arch. Tierz., Dummerstorf 51 (2008) 4, 305-317 1Department of Animal Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan 2Institute of Animal Nutrition and Feed Technology, University of Agriculture, Faisalabad, Pakistan 3Research Centre for Conservation of Sahiwal Cattle, Jhang, Pakistan 4Department of Livestock Management, University of Agriculture, Faisalabad, Pakistan ZIA UR REHMAN1, M. SAJJAD KHAN1, SHAUKAT ALI BHATTI2, JAVED IQBAL3 and ARSHAD IQBAL4 Factors affecting first lactation performance of Sahiwal cattle in Pakistan Abstract To study the environmental and genetic factors affecting productive and reproductive traits, data on 5,897 cows from five main recorded herds (for 1964-2004) of Sahiwal cattle in Pakistan were used. A general linear model was applied on the data. The 305-day milk yield, total milk yield, lactation length, age at first calving, dry period, calving interval and service period averaged 1,393 ± 12 kg, 1,429 ± 11 kg, 235 ± 2, 1,390 ± 4, 244 ± 3, 464 ± 3 and 1,78 ± 3 days, respectively. The age at first calving was effected by herd, year and season of birth. The 305-day and total milk yields were affected by herd, year, season of calving, age at first calving, service period and lactation length while all other first lactation traits were affected by herd, year, season of calving and 305-day milk yield. Animal model heritability estimates for these traits were 0.11 ± 0.029, 0.11 ± 0.028, 0.09 ± 0.027, 0.02 ± 0.019, 0.05 ± 0.019, 0.12 ± 0.027 and 0.04 ± 0.020, respectively. Rate of decline in first lactation milk yield was 7 l per year over the last 35 years with genetic trend close to zero. -
Genetic Diversity Among Indian Gir, Deoni and Kankrej Cattle Breeds Based on Microsatellite Markers
Indian Journal of Biotechnology Vol 9, April 2010, pp 126-130 Genetic diversity among Indian Gir, Deoni and Kankrej cattle breeds based on microsatellite markers D S Kale*, D N Rank, C G Joshi 1, B R Yadav 2, P G Koringa, K M Thakkar, T C Tolenkhomba 2 and J V Solanki Department of Animal Genetics and Breeding and 1Department of Animal Biotechnology College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand 388 001, India 2Livestock Genome Analysis Laboratory, Dairy Cattle Breeding Division National Dairy Research Institute (NDRI), Karnal 132 001, India Received 27 October 2008; revised 17 June 2009; accepted 20 August 2009 The present study was conducted to examine genetic diversity, genetic differentiation and genetic relationship among Gir, Deoni and Kankrej cattle breeds using microsatellite markers. The number of alleles observed at different loci ranged from 5 (HEL5) to 8 (CSRM60) with a total of 46 alleles across three breeds. The overall heterozygosity and polymorphic information content (PIC) values were 0.730 and 0.749, respectively. Nei’s standard genetic distance was least between Gir and Kankrej and highest between Deoni and Kankrej. In the analyzed loci, an overall significant deficit of heterozygotes across these breeds was found and it could be due to inbreeding within breeds. The overall genetic differentiation ( FST ) among breeds was moderate, but significantly different. All loci, except INRA035, contributed significantly to the overall differentiation. The highest FST values were found in HEL5 and lowest in INRA035. The overall Nem value indicated a high rate of genetic flow between the breeds, which is in agreement with their origin of close proximity in the geographical area. -
Are Adaptations Present to Support Dairy Cattle Productivity in Warm Climates?
J. Dairy Sci. 94 :2147–2158 doi: 10.3168/jds.2010-3962 © American Dairy Science Association®, 2011 . Invited review: Are adaptations present to support dairy cattle productivity in warm climates? A. Berman 1 Department of Animal Science, Hebrew University, Rehovot 76100, Israel ABSTRACT breeds did not increase heat dissipation capacity, but rather diminished climate-induced strain by decreas- Environmental heat stress, present during warm ing milk production. The negative relationship between seasons and warm episodes, severely impairs dairy reproductive efficiency and milk yield, although rela- cattle performance, particularly in warmer climates. tively low, also appears in Zebu cattle. This association, It is widely viewed that warm climate breeds (Zebu coupled with limited feed intake, acting over millennia, and Sanga cattle) are adapted to the climate in which probably created the selection pressure for a low milk they evolved. Such adaptations might be exploited for production in these breeds. increasing cattle productivity in warm climates and Key words: heat stress , adaptations , dairy productiv- decrease the effect of warm periods in cooler climates. ity The literature was reviewed for presence of such ad- aptations. Evidence is clear for resistance to ticks and INTRODUCTION tick-transmitted diseases in Zebu and Sanga breeds as well as for a possible development of resistance to Environmental stress has a severe effect on the pro- ticks in additional breeds. Development of resistance ductivity of animals and, in particular, on that of dairy to ticks demands time; hence, it needs to be balanced cattle. Environmental stress is a stumbling block for with potential use of insecticides or vaccination. -
BULLETIN (Nov 2017-Dec 2018)
1 Aspire IASThe name associated with excellence PT POINTERS–2020 TEA TIME BULLetin- 360-PT shots TEA TIME BULLETIN NEWSPAPER –360-PT Shots (Nov 2017-Dec 2018) © Copyright Aspire IAS All rights are reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of Aspire lAS. Aspire IASThe name associated with excellence 10/70 Old Rajeneder Nagar N.Delhi www.aspireias.com 8010068998/9999801394 ©2018 ASPIRE IAS. All rights reserved 2 Aspire IASThe name associated with excellence PT POINTERS–2020 TEA TIME BULLetin- 360-PT shots 1. Rohingyas • children affected by disasters and climate • Sufi induced Sunni Muslim. change etc • Lived in Burma since 12th century after India, 4. International vaccine institute China. at Seoul, South Korea • Stateless started in 1997 • Their dialect is Bengali by the initiative of UNDP • Other ethnic groups of Myanmar: - India full time member Bamar 5. Indian Pharma and medical device 2017 Shan conference Karen Themes: Kachin • Medical devices – ‘shaping the future- making the right choices’ Chin • Karenni Pharma – ‘shaping future of Indian Pharma’ Mon 6. Dhanush guns Kokang Chinese • upgraded version of Bofors Howitzer Rakhine • upgraded by Ordnance Factory Board Rohingyas Jabalpur 2. Factors affecting BIOME • maximum range 40 km Temperature [mean + variation] 7. Intergovernmental oceanographic Moisture Commission -150 members country Sunlight 8. Clouds are the result of adiabatic cooling Growing season generally. Soil 9. Golconda Fort important for diamonds, Drainage underground tunnel and clap sound that can Wind be heard even at the roof. -
Complaint Report
EXHIBIT A ARKANSAS LIVESTOCK & POULTRY COMMISSION #1 NATURAL RESOURCES DR. LITTLE ROCK, AR 72205 501-907-2400 Complaint Report Type of Complaint Received By Date Assigned To COMPLAINANT PREMISES VISITED/SUSPECTED VIOLATOR Name Name Address Address City City Phone Phone Inspector/Investigator's Findings: Signed Date Return to Heath Harris, Field Supervisor DP-7/DP-46 SPECIAL MATERIALS & MARKETPLACE SAMPLE REPORT ARKANSAS STATE PLANT BOARD Pesticide Division #1 Natural Resources Drive Little Rock, Arkansas 72205 Insp. # Case # Lab # DATE: Sampled: Received: Reported: Sampled At Address GPS Coordinates: N W This block to be used for Marketplace Samples only Manufacturer Address City/State/Zip Brand Name: EPA Reg. #: EPA Est. #: Lot #: Container Type: # on Hand Wt./Size #Sampled Circle appropriate description: [Non-Slurry Liquid] [Slurry Liquid] [Dust] [Granular] [Other] Other Sample Soil Vegetation (describe) Description: (Place check in Water Clothing (describe) appropriate square) Use Dilution Other (describe) Formulation Dilution Rate as mixed Analysis Requested: (Use common pesticide name) Guarantee in Tank (if use dilution) Chain of Custody Date Received by (Received for Lab) Inspector Name Inspector (Print) Signature Check box if Dealer desires copy of completed analysis 9 ARKANSAS LIVESTOCK AND POULTRY COMMISSION #1 Natural Resources Drive Little Rock, Arkansas 72205 (501) 225-1598 REPORT ON FLEA MARKETS OR SALES CHECKED Poultry to be tested for pullorum typhoid are: exotic chickens, upland birds (chickens, pheasants, pea fowl, and backyard chickens). Must be identified with a leg band, wing band, or tattoo. Exemptions are those from a certified free NPIP flock or 90-day certificate test for pullorum typhoid. Water fowl need not test for pullorum typhoid unless they originate from out of state. -
Genetic Diversity Study of Indigenous Cattle (Gir and Kankrej) Population of Rajasthan Using Microsatellite Markers
African Journal of Biotechnology Vol. 11(97), pp. 16313-16319, 4 December, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.2618 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Genetic diversity study of indigenous cattle (Gir and Kankrej) population of Rajasthan using microsatellite markers Mona Upreti1, Farah Naz Faridi2*, S. Maherchandani3, B. N. Shringi4 and S. K. Kashyap5 Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, 334001, Rajasthan, India. Accepted 30 November, 2012 The genetic diversity study of native Gir and Kankrej (Bos indicus) cattle populations were evaluated using nine microsatellite markers (ETH-225, CSRM-60, HEL-9, INRA-005, ETH-10, HAUT-24, BM1818, ILSTS-002 and ILSTS-006) suggested by FAO (ISAG). A total of 60 cattle were sampled from different places of local Rajasthan region. For each, 30 individuals were sampled. The mean number of observed and effective alleles in Kankrej were high (5.222 and 3.714) comparatively and the average expected heterozygosity values (0.5403) indicated high diversity in the Kankrej population than Gir (0.4520). High polymorphism information content (PIC) values observed for most of the markers with an average of 0.5116 are indicative of high polymorphism of these markers in Kankrej breed than in Gir (0.4202), which showed high informativeness of all the microsatellite markers in Kankrej breed. Three microsatellites markers (HAUT24, BM1818 AND ILSTS006) did not show amplification in both breeds. INRA005 was the only markers amplified in Kankrej. The allele diversity (mean observed number of alleles was 6.11; mean effective number of alleles was 5.187) and gene diversity (0.2771) values implied a substantial amount of genetic variability in both populations.