Factors Affecting First Lactation Performance of Sahiwal Cattle in Pakistan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whole Genome Study of Linkage Disequilibrium in Sahiwal Cattle
South African Journal of Animal Science 2018, 48 (No. 2) Whole genome study of linkage disequilibrium in Sahiwal cattle H. Mustafa1,2#, N. Ahmad1, H. J. Heather2, K. Eui-soo2, W. A. Khan3, A. Ajmal1, K. Javed1, T. N. Pasha4, A. Ali1, J. J. Kim5 & T. S. Sonstegard2 1 Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan 2 United States Department of Agricultural, Maryland 27030, USA 3 Department of Biotechnology, University of Sargodha, Pakistan 4 Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan 5 Departemnt of Biotechnology, Yeungnam University Gyeongsan, Gyeongbuk 712749, Republic of Korea (Received 26 September 2017; Accepted 27 December 2017; First published online 30 December 2017) Copyright resides with the authors in terms of the Creative Commons Attribution 4.0 South African Licence. See: http://creativecommons.org/licenses/by/4.0/za Condition of use: The user may copy, distribute, transmit and adapt the work, but must recognise the authors and the South African Journal of Animal Science. ______________________________________________________________________________________ Abstract The linkage disequilibrium (LD) is an important tool to study quantitative trait locus (QTL) mapping and genetic selection. In this study, we identified the extent of linkage disequilibrium (LD) in Sahiwal (n = 14) cattle using the bovine high density single-nucleotide polymorphisms (SNPs) BeadChip. After data filtering, 500,968 SNPs comprising 2518.1 Mb of the genome, were used for the LD estimation. The minior allele frequency (MAF) was 0.21 in a substantial proportion of SNPs and mean distance between adjacent markers was 4.77 ± 2.83 kb. -
LPM-601 : Important Breeds of Cattle and Buffaloes
IMPORTANT BREEDS OF CATTLE AND BUFFALOES (LPM-601) Dr. S. P. Sahu, M.V.Sc., Ph.D. (LPM) Assistant Professor Department of LPM Bihar Veterinary College, Patna- 800 014 www.basu.org.in Population of Cattle (20th Livestock Census) Total Livestock population- 535.78 million (increase of 4.6% over Livestock Census 2012). Total number of cattle -192.49 million in 2019 (increase of 0.8 % over previous Census). Exotic/Crossbred and Indigenous/Non-descript Cattle population - 50.42 million and 142.11 million; respectively. Decline of 6 % in the total Indigenous (both descript and non- descript) Cattle. Classification of breeds of cattle on the basis of type of horns (Payne,1970): Short-horned zebu: Bachaur, Hariana, Krishna Valley, Gaolao, Nagori, Mewati, Ongole and Rathi. Lateral-horned zebu: Gir, Red Sindhi, Sahiwal, Dangi, Deoni, Nimari Lyre-horned zebu: Kankrej, Malvi, Tharparkar Long-horned zebu: Amritmahal, Hallikar, Kangayam and Khillari Small short-horned/lyre-horned zebu: Ponwar, Punganoor, Shahabadi, Kumauni Classification of breeds of Cattle on the basis of their utility: MILCH BREEDS OF CATTLE Sahiwal Original breeding tract in Montgomery district (Pakistan), Ferozepur and Amritsar districts in Punjab. Heavy breed, heavy body confirmation, typical coat colour is red/brown, head is medium sized, horns are short and stumpy. Dewlap is large and pendulous, hump in males is massive and droops on one side, tail is long almost touching the ground, navel flap is loose and hanging, udder is well developed. The average milk yield of this breed is between 1700 and 2700 kgs in lactation period of 300 days. Red Sindhi Original breeding tract in Karachi (Pakistan). -
Are Adaptations Present to Support Dairy Cattle Productivity in Warm Climates?
J. Dairy Sci. 94 :2147–2158 doi: 10.3168/jds.2010-3962 © American Dairy Science Association®, 2011 . Invited review: Are adaptations present to support dairy cattle productivity in warm climates? A. Berman 1 Department of Animal Science, Hebrew University, Rehovot 76100, Israel ABSTRACT breeds did not increase heat dissipation capacity, but rather diminished climate-induced strain by decreas- Environmental heat stress, present during warm ing milk production. The negative relationship between seasons and warm episodes, severely impairs dairy reproductive efficiency and milk yield, although rela- cattle performance, particularly in warmer climates. tively low, also appears in Zebu cattle. This association, It is widely viewed that warm climate breeds (Zebu coupled with limited feed intake, acting over millennia, and Sanga cattle) are adapted to the climate in which probably created the selection pressure for a low milk they evolved. Such adaptations might be exploited for production in these breeds. increasing cattle productivity in warm climates and Key words: heat stress , adaptations , dairy productiv- decrease the effect of warm periods in cooler climates. ity The literature was reviewed for presence of such ad- aptations. Evidence is clear for resistance to ticks and INTRODUCTION tick-transmitted diseases in Zebu and Sanga breeds as well as for a possible development of resistance to Environmental stress has a severe effect on the pro- ticks in additional breeds. Development of resistance ductivity of animals and, in particular, on that of dairy to ticks demands time; hence, it needs to be balanced cattle. Environmental stress is a stumbling block for with potential use of insecticides or vaccination. -
Livestock Improvement
7. Livestock Improvement Cattle Kankrej: The average first lactation milk yield and Crossbred strain of cattle: The total population of total milk yield of Kankrej cows at Sardar Krushinagar Frieswal females in 37 different Military farms under Agricultural University, Dantiwada, Gujarat were the Frieswal Project of PDC Meerut was 18,537 (10,935 2,431.99 and 2,517.97 kg respectively. The wet and adult cows, 5,659 young stock and 1,943 calves). The herd averages were 8.82 and 5.49 kg. Age at first number of elite cows producing 4,000-5,000 kg milk in calving, dry period, service period and calving interval a lactation was 920. averaged 1,348.62, 119.75, 133.17 and 411.76 days. The overall mean of 300 days milk yield in Frieswal Semen of 8 bulls of the first set was used for 1,060 cattle based on 36,092 lactation records of the progeny artificial inseminations with an overall conception rate of 135 bulls for the last 22 years (1991 to 2012) was of 50.94%. 3,231.46 kg. Milk yield increased over the lactations Gir: The unit located at Junagadh (Gujarat) registered and reached to 3,612 kg in fourth lactation. Peak yield 3,575 breedable females at farmers’ and 887 at associated averaged 14.68 kg. First lactation 300 days milk yield herds. The Germplasm unit had 63 elite breedable averaged 2,859.45 kg. The least squares means of age females. Semen of 6 bulls of the first set was used for at first calving, service period, dry period and calving 2,580 artificial inseminations with an overall conception interval were 965, 155.54, 110.67 and 432.17 days, rate of 49.61%. -
Genetic Variants of Β-Casein in Cattle and Buffalo Breeding Bulls in Karnataka State of India
Indian Journal of Biotechnology Vol 15, April 2016, pp 178-181 Genetic variants of β-casein in cattle and buffalo breeding bulls in Karnataka state of India K P Ramesha1*, Akhila Rao1, M Basavaraju1, Rani Alex2, M A Kataktalware1, S Jeyakumar 1 and S Varalakshmi1 1ICAR-National Dairy Research Institute (NDRI), Southern Regional Station, Bengaluru 560 030, India 2ICAR-Central Institute for Research on Cattle, Meerut 250 001, India Received 4 October 2014; revised 25 February 2015; accepted 17 April 2015 Among the genetic variants of bovine β-casein gene (CSN2), A1 and A2 are the most common. β-Casein contains 209 amino acids and A1 and A2 variants differ only at position 67 in the amino acid chain CAT, which is histidine in A1, and CCT, which is proline in case of A2. Various studies suggest that A1 casein present in milk is likely to cause health problems. The present study involved screening of 391 bulls belonging to seven breeds of cattle and two breeds of buffaloes from different regions of Karnataka for genetic variants A1 and A2 in β-casein gene using ACRS (amplification created restriction sites) method with TaqI restriction enzyme. The results indicated that A2 allele is fixed in Deoni and Khillar breed of cattle and both the buffalo breeds (Murrah & Surti). It was observed that the frequency of A1 allele was very low in Malnad Gidda (0.014), Kasargod variety (0.042) and Jersey (0.077), while the frequency of A1 allele in Holstein Friesian and Holstein Friesian crossbred males was 0.169 and 0.294, respectively. -
Performance of Crossbred Dairy Cattle at Military Dairy Farms in Pakistan
Hassan and Khan The Journal of Animal & Plant Sciences, 23(3): 2013, Page:J.705 Anim.-714 Plant Sci. 23(3):2013 ISSN: 1018-7081 PERFORMANCE OF CROSSBRED DAIRY CATTLE AT MILITARY DAIRY FARMS IN PAKISTAN F. Hassan and M. S. Khan Department of Animal Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan Corresponding Author Email: [email protected] ABSTRACT Crossbreeding has been considered as a quick way of increasing performance of low productive tropical breeds. Crossbreeding of indigenous cattle with exotic such as Holstein is underway in Pakistan for the last four decades. Data on first lactation milk yield of crossbred dairy cattle (n=2025) from three Military dairy herds for 1985-2006 were used for this study to evaluate performance of crossbred dairy cattle. The exotic cattle represented mainly Holstein while Jersey, Ayrshire and Red Dane were also used sporadically. The local cattle were generally Sahiwal. The total first lactation milk yield for crossbreds averaged 1633±47.0 kg. The highest total milk yield was found for Neelum Military dairy farm (2328±62.3 kg) and lowest for Lahore Military dairy farm (1356±50.1 kg). These values had almost 1000 kg range. The first lactation length in this study averaged 240±5.5 days. Cows had longest lactation length at Neelum Military farm (264±6.8 days) while cows at Lahore Military farm (229±5.5 days) had the shorter lactations. First lactation performance of different genetic groups showed higher total milk yield for 50% exotic inheritance (1749±33.3 kg) as compared to all other genetic groups. -
Animal Breeding Policies and Strategies in Bangladesh
Animal Breeding Policies and Strategies in South Asia Edited by Nure Alam Siddiky SAARC Agriculture Centre (SAC) South Asian Association for Regional Cooperation i Animal Breeding Policies and Strategies in South Asia Regional Expert Consultation on Animal Breeding Polices and Strategies for the Genetic Improvement of Indigenous Animal Resources in South Asia held on 11-13 April 2018 at Hotel da yatra, Pokhara, Nepal Edited by Nure Alam Siddiky Senior Program Officer SAARC Agriculture Centre 2018 @ 2018 SAARC Agriculture Centre Published by the SAARC Agriculture Centre (SAC), BARC Complex, New Airport Road, Farmgate, Dhaka-1215, Bangladesh (www.sac.org.bd) All rights reserved No part of this publication may be reproduced, stored in retrieval system or transmitted in any form or by any means electronic, mechanical, recording or otherwise without prior permission of the publisher Citation Siddiky, N.A., ed. (2018). Animal Breeding Policies and Strategies in South Asia. SAARC Agriculture Centre, Dhaka-1215, Bangladesh, p.172 The book contains the papers and proceedings of the regional expert consultation meeting on animal breeding policies and strategies for the genetic improvement of indigenous animal resources in South Asia held on 11-13 April 2018 at Hotel da yatra, Pokhara, Nepal organized by SAARC Agriculture Centre, Dhaka, Bangladesh. The authors for country paper preparation and presentation were the focal point experts nominated by respective SAARC Member States. The opinions expressed in this publication are those of the authors and do not imply any opinion whatsoever on the part of SAC, especially concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. -
Snomed Ct Dicom Subset of January 2017 Release of Snomed Ct International Edition
SNOMED CT DICOM SUBSET OF JANUARY 2017 RELEASE OF SNOMED CT INTERNATIONAL EDITION EXHIBIT A: SNOMED CT DICOM SUBSET VERSION 1. -
Conservation and Utilisation of the Sahiwal Cattle in Kenya
Muhuyi et al. 35 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ Conservation and utilisation of the Sahiwal cattle in Kenya W.B. Muhuyi, I. Lokwaleput & S.N. Ole Sinkeet Kenya Agricultural Research Institute, National Animal Husbandry Research Centre Naivasha, P.O. Box 25, Naivasha, Kenya Summary registración de la raza Sahiwal en el libro de registro de razas de Kenya. Sahiwal cattle are indigenous to Pakistan and India, and were imported to Kenya in 1930s Key words: Herd management, Characteristics, and 1940s. The breed has been developed as a Breeding plan, Performance production systems. dual-purpose breed and is utilised in smallholder farming systems, beef and dairy ranching in marginal areas of Kenya which Introduction form 80% of the country. Conservation efforts include keeping of Sahiwal herds on state The Kenya Sahiwal is a dual-purpose breed farms, individual ranches and the which has been bred in Kenya since 1939. The establishment of the Sahiwal semen bank at breed originated in Pakistan and India. The the Central Artificial Insemination Station at Sahiwal breeding stock, mainly bulls, were Kabete near Nairobi. Breeding of the Sahiwal imported, maintained and used for upgrading has been promoted by the formation of the indigenous zebu cattle at thirteen livestock Sahiwal Breeders Society which has improvement centres, namely Ngong, established breed standards for registration of Kabianga, Baraton, Maseno, Sang’alo, Sahiwal cattle with the Kenya Stud Book. Chebororwa, Machakos, Ndomba, Chemeron, Katumani, Mariakani, Naivasha and Resumen Marimba. The first three bulls were imported from Pusa in India. After 1945, 60 Sahiwal bulls and 10 Sahiwal cows were imported La raza bovina Sahiwal es originaria de from Jahangirabad in Pakistan. -
Crossbreeding in Cattle: a Review
Barwa et al. Ind.Available J. Pure onlineApp. Biosci. at www.ijpab.com (2021) 9(1), xxx -xxx ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8534 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2021) 9(1), 450-456 Review Article Peer-Reviewed, Refereed, Open Access Journal Crossbreeding in Cattle: A Review Deepti Kiran Barwa1*, Asit Jain2, Ashutosh Dubey3 and Aayush Yadav4 1,2Assistant Professor, Department of Animal Genetics and Breeding, 3,4Ph.D. Scholar, Department of Livestock Production College of Veterinary Science & A.H., Anjora, Durg, Chhattisgarh India *Corresponding Author E-mail: [email protected] Received: 10.12.2020 | Revised: 14.01.2021 | Accepted: 20.01.2021 ABSTRACT The importance of crossbreeding in livestock species has been known for a long time; it has been used heavily in cattle to improve productivity for several decades. Crossbreeding allow to combine favorable characteristics from the breeds involved and to exploit heterosis. Crossbreeding system is of two types viz. terminal and continuous depending on retention of crossbred female in the herd or not. In cattle crossbreeding is mainly used to improve milk production in India while in tropics crossbreeding with zebu cattle is done to improve adoptability and disease resistant ability. The ideal exotic inheritance to be maintained in the indigenous cattle is 50% where there is scarcity of green fodder and 62.5% is suggested where there is adequate feed and fodder along with good marketing facilities. Though crossbreeding with exotic germplasm resulted in improves production and reproduction potential but it also resulted in dilution of indigenous livestock. -
Prevalence of the Beta Case in Variants Among Tharparkar, Rathi, Sahiwal, Kankrej and Cross Breed and Its Influence Under Selective Pressure
Int.J.Curr.Microbiol.App.Sci (2019) 8(3): 1842-1848 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 03 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.803.218 Prevalence of the Beta Case in Variants among Tharparkar, Rathi, Sahiwal, Kankrej and Cross Breed and its Influence under Selective Pressure Mrinalini Saran1*, Ankita Gurao1, Rajeev Kumar Joshi2 and S.K. Kashyap1 1Department of Veterinary Microbiology and Biotechnology, 2Department of Animal Genetics and Breeding, RAJUVAS, Bikaner, India *Corresponding author ABSTRACT Milk has been regarded as wholesome food since centuries. The major milk proteins are K e yw or ds the casein (80%) and the whey proteins (10%). One of the prominent milk proteins in cattle i.e. beta casein, is encoded by highly polymorphic genes, leading to formation of 12 Beta-casein, A2 type milk, Cross- protein variants. Among them A1 and A2 variant are the most frequent; the A2 being the bred, Bos indicus primitive type present in Bos indicus at higher percentage than Bos taurus. Most of the indicine cattle breed is A2 type carrying presence of histidine in A1 in contrast to proline Article Info in A2 makes it susceptible to gastrointestinal proteolysis digestion to release beta- casomorphin-7 (BCM-7), which has been implicated in various human health ailments. Accept ed: 15 February 2019 The following study has been conducted to concisely predict the diminishing percent of A2 Available Online: allele in the cross -bred Rathi cattle herd in compared to the pure-bred Rathi and other 10 March 2019 indigenous cattle and evaluate the change in A2 allele frequency in course of generations. -
English Speaking Republic of Trinidad and Tobago (T&T) Lies at 10On Latitude and 60Ow Longitude (Figure 1) Covering an Area of 5,128 Sq
Trinidad and Tobago’s Country Report for FAO’s State of the World’s Animal Genetic Resources May 20, 2005 Prepared by: Ministry of Agriculture, Land and Marine Resources By: Mrs. Lillawatti Rastogi – Deputy Director, Animal Production Mr. Mitra Suepaul _ Livestock Officer, Animal Production Mrs. Cheryl Roach-Benn _ Livestock Officer, Livestock Research Mr. Ian Paul _ Livestock Officer, Livestock Research Mr. Dreams Carnarvon _ Livestock Officer, Extension, Training and Information Services Mr. Govindra Ram _ Livestock Officer, Livestock Research Ms. Sharda Durbal _ Agricultural Assistant, Extension Services i Table of Contents………………………………………………………………... Page List of Acronyms…………………………………………………………………. ii List of Tables……………………………………………………………………… iii List of Figures…………………………………………………………………….. iv List of Appendices…………………………………………………………………. v Executive Summary………………………………………………………………. vi 1.0 Description of the Animal Genetic Resources in the Farm Animal Sector………………………………………………………………. 1 1.01 Introduction to Trinidad and Tobago and its Agricultural Sector Country Description …………………………………………….….…. 1 1.1 Animal Production Systems and Breeds Involved……………………….. 19 1.2 Conservation activities/programmes……………………………………. 33 1.3 Description of breeds, their uses and technologies employed…………… 35 1.4 Identification of problems in conservation and utilization………………. 42 2.0 Analyzing Changing demands on National Livestock Production……………. 44 2.1 Past Policies for Animal Genetic Resources…………………………….. 44 2.2 Future Demands and Trends…………………………………………….. 46 2.3 Possible Strategies in the Conservation and Utilization of Animal Genetic Resources………………………………………………………………… 49 2.4 Outlining Future National Policy, Strategy and Management Plans for the Conservation, Use and Development of Animal Genetic Resources….… 50 3.0 Reviewing The State of National Capacities and Assessing Future Capacity Building Requirements……………………………………………… 53 4.0 Identifying National Priorities for the Conservation And Utilisation of AnGR..