An Adaptive Tuning System for MIDI Pianos

Total Page:16

File Type:pdf, Size:1020Kb

An Adaptive Tuning System for MIDI Pianos David Løberg Code Groven.Max: School of Music Western Michigan University Kalamazoo, MI 49008 USA An Adaptive Tuning [email protected] System for MIDI Pianos Groven.Max is a real-time program for mapping a renstemningsautomat, an electronic interface be- performance on a standard keyboard instrument to tween the manual and the pipes with a kind of arti- a nonstandard dynamic tuning system. It was origi- ficial intelligence that automatically adjusts the nally conceived for use with acoustic MIDI pianos, tuning dynamically during performance. This fea- but it is applicable to any tunable instrument that ture overcomes the historic limitation of the stan- accepts MIDI input. Written as a patch in the MIDI dard piano keyboard by allowing free modulation programming environment Max (available from while still preserving just-tuned intervals in www.cycling74.com), the adaptive tuning logic is all keys. modeled after a system developed by Norwegian Keyboard tunings are compromises arising from composer Eivind Groven as part of a series of just the intersection of multiple—sometimes oppos- intonation keyboard instruments begun in the ing—influences: acoustic ideals, harmonic flexibil- 1930s (Groven 1968). The patch was first used as ity, and physical constraints (to name but three). part of the Groven Piano, a digital network of Ya- Using a standard twelve-key piano keyboard, the maha Disklavier pianos, which premiered in Oslo, historical problem has been that any fixed tuning Norway, as part of the Groven Centennial in 2001 in just intonation (i.e., with acoustically pure tri- (see Figure 1). The present version of Groven.Max ads) will be limited to essentially one key. Temper- accepts input via MIDI keyboards or a MIDI file. ing provided a wider range of available keys, but at This input is analyzed and rerouted to three sepa- the expense of the purity of the intervals. Mechani- rate instruments (real or virtual) tuned to produce a cal solutions involving keyboards with more keys 36-tone scale. In performance, one can either select per octave, such as Giovanni Battista Doni’s cem- fixed, twelve-note scales from among the 36 avail- balo pentarmonico from 1635 with 68 keys per oc- able tones, or use the adaptive tuning feature for tave, or Julian Carrillo’s sixteenth-tone piano from dynamically selecting just intervals while modulat- the mid 20th century with 96 keys per octave, re- ing keys. quired performers to learn a new, and sometimes awkward, playing technique, and thus never gained Background widespread popularity. A more comprehensive overview of microtonal keyboards can be found in Keislar (1987). Eivind Groven and His Renstemt Organ Groven sought a solution that would require only a standard keyboard (and keyboardist), yet use The Norwegian composer and ethnomusicologist a larger number of pitches per octave. At any given Eivind Groven (1901–1977) spent much of his life time, each individual key on the manual is con- striving to bridge the gap between his native folk nected to one of three possible pipes, each tuned to music and Western classical music. His most no- a slightly different frequency. One can either pre- ticeable accomplishment in this regard was the select a fixed set of twelve pipes for the duration of construction of the 36-tone renstemt, or pure- a performance or engage the adaptive tuning fea- tuned, pipe organ for playing both traditional folk ture or the renstemningsautomat for dynamic and standard classical repertoire. The scale is based tuning. on just intonation, a tuning system using acousti- Inspired by telephony, Groven built his first ren- cally pure intervals from the harmonic series. The stemningsautomat most remarkable feature of the organ is Groven’s using automatic telephone switchboard relays that, in essence, routed calls Computer Music Journal, 26:2, pp. 50–61, Summer 2002 from the organ manual to the bank of pipes (see ᭧ 2002 Massachusetts Institute of Technology. Figure 2). 50 Computer Music Journal Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/014892602760137176 by guest on 30 September 2021 Figure 1. World Premie`re Figure 2. Eivind Groven of the Groven Piano, 19 soldering relays in his April 2001, Oslo, Norway automatic tuning device. (Disklaviers courtesy of Yamaha Scandinavia). This was cutting-edge technology in 1939, when this project was begun, as the automatic switch- board had not been in widespread use in Norway for very many years. In the 1960s, the closet-sized switchboard interface was replaced by a smaller de- vice using electronic transistors, built by Bjørn Raad at the Central Institute for Industrial Re- search in Oslo, Norway. Although showing signs of age, this interface is still in operation today and services both the pipe organ and 36-tone electronic organ built in 1965. These organs, along with a 43-tone electronic organ (built in 1965 but no longer in operation), are housed at the Eivind Groven Institute for Just Intonation on the out- skirts of Oslo, Norway. Further background infor- mation about Groven’s work can be found in Code (2001; in press), Groven (1927, 1934, 1935, 1948a, 1948b, 1955, 1968, 1971), and Lysdahl (1997). More recently, interest in Groven’s work has led to the development of computer programs that simulate aspects of his renstemningsautomat (but not in real-time), such as those written by Jørn Ar- vidsen (1982) and Lars Frandsen (1995). Knut-Einar Skaarberg (1995) has adapted Groven’s tuning logic into a program that controls the MIDI pitch-bend function of an electronic synthesizer in perfor- mance (with polyphonic textures using multiple MIDI channels). Code 51 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/014892602760137176 by guest on 30 September 2021 Groven.Max was originally developed for use the other to select a tuning. (A similar concept was with custom-tuned pianos, but it can also be used employed in Cooper’s 1998 software RealTime with synthesizers or other MIDI-controlled in- Tuner 1.2.) When a tuning key was pressed, a set of struments. There is currently a project underway relays actuated electromagnets to stretch or relax with NoTAM (Norwegian Network for Technol- each string individually in accordance with a given ogy, Acoustics, and Music) to renovate Groven’s scheme. While the piano was not supposed to pipe organ and replace the current electronic inter- change tuning by itself, it could (in theory) be in- face with a computer-operated system using stantly re-tuned during performance by pressing an- Groven.Max. While the work of Arvidsen , Frand- other of the 23 available tuning keys. The design sen, and Skaarberg represents the first transferences was never fully tested, as Groven was unable to ob- of Groven’s logic from hardware to software, there tain funding to build a prototype piano and turned are of course numerous other precursors to his attention to organ instead. Groven.Max within the field of automatic (and In 2001, his original goal of creating a variably- semi-automatic) tuning systems. Other adaptive tuned acoustic piano was finally realized with the tuning systems and software for various electronic world premiere of the Groven Piano. Named in instruments not related to Groven’s work have also honor of Groven’s hundredth birthday, the Groven been developed since his death. See, for example, piano comprises a network of three acoustic pi- Cooper’s RealTime Tuner (available from anos, a control keyboard, and a computer interface socrates.berkeley.edu/ϳwcooper/realtimetuner running Groven.Max software. Like Groven’s or- .html), Gannon’s and Weyler’s Justonic (available gan, the pianist plays upon a standard keyboard from www.justonic.com), as well as Denckla that, instead of making its own sound, sends a (1997), Polansky (1987), Scholz (1986), and Steck MIDI signal to Groven.Max. Three Disklavier pi- and Roush (1998). It is beyond the scope of the anos, donated for the premiere by Yamaha Scandi- present article, however, to provide a comprehen- navia, were each tuned differently, thus providing sive survey of such work. 36 strings per octave to match the organ’s 36 pipes. Groven himself cites as a precedent John Hay- Thus, unlike Skaarberg’s program, Groven.Max wood Compton’s 1933 British patent describing an does not send pitch-bend or system-exclusive com- mands to retune the instruments dynamically, but ‘‘enharmonic’’ organ similar in operation to Harold simply reroutes the MIDI signal for each note Waage’s more recent ‘‘intelligent keyboard’’ (1988). played to the piano with the desired tuning for that Compton’s organ featured an extra set of equal- pitch (similar in function to Groven’s renstemning- tempered pitches 14 cents below the first that sautomat). The premiere took place on 19 April would be automatically inserted when necessary to 2001 at Norges musikkhøgskole (The Norwegian produce more favorably-tuned thirds and sixths. Academy of Music) in Oslo, Norway, with support from Yamaha Scandinavia, Norsk Kulturra˚d, the Ei- vind Groven Institute for Just Intonation, the US- The Groven Piano Norway Fulbright Foundation, and the University of Oslo. (Photographs and audio samples of the pre- Groven’s first attempts to solve the keyboard’s miere are available online at vms.cc.wmich.edu/ ‘‘tuning problem’’ actually did not use the organ, ϳcode/groven/konsert.html.) The concert, which but rather the piano, and they involved an auto- was intended to demonstrate the versatility of the mated, but not adaptive, re-tuning system. In the instrument, featured classical, jazz, and folk music mid 1930s, he received patents in several countries with both solo piano and ensemble pieces. The for a variable tuning device for piano (e.g., British North American premiere of the Groven Piano is patent No. 422,669; 1935).
Recommended publications
  • The Group-Theoretic Description of Musical Pitch Systems
    The Group-theoretic Description of Musical Pitch Systems Marcus Pearce [email protected] 1 Introduction Balzano (1980, 1982, 1986a,b) addresses the question of finding an appropriate level for describing the resources of a pitch system (e.g., the 12-fold or some microtonal division of the octave). His motivation for doing so is twofold: “On the one hand, I am interested as a psychologist who is not overly impressed with the progress we have made since Helmholtz in understanding music perception. On the other hand, I am interested as a computer musician who is trying to find ways of using our pow- erful computational tools to extend the musical [domain] of pitch . ” (Balzano, 1986b, p. 297) Since the resources of a pitch system ultimately depend on the pairwise relations between pitches, the question is one of how to conceive of pitch intervals. In contrast to the prevailing approach which de- scribes intervals in terms of frequency ratios, Balzano presents a description of pitch sets as mathematical groups and describes how the resources of any pitch system may be assessed using this description. Thus he is concerned with presenting an algebraic description of pitch systems as a competitive alternative to the existing acoustic description. In these notes, I shall first give a brief description of the ratio based approach (§2) followed by an equally brief exposition of some necessary concepts from the theory of groups (§3). The following three sections concern the description of the 12-fold division of the octave as a group: §4 presents the nature of the group C12; §5 describes three perceptually relevant properties of pitch-sets in C12; and §6 describes three musically relevant isomorphic representations of C12.
    [Show full text]
  • Unified Music Theories for General Equal-Temperament Systems
    Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories.
    [Show full text]
  • Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors
    Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors Richard Bass Journal of Music Theory, Vol. 38, No. 2. (Autumn, 1994), pp. 155-186. Stable URL: http://links.jstor.org/sici?sici=0022-2909%28199423%2938%3A2%3C155%3AMOOAWI%3E2.0.CO%3B2-X Journal of Music Theory is currently published by Yale University Department of Music. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/yudm.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jul 30 09:19:06 2007 MODELS OF OCTATONIC AND WHOLE-TONE INTERACTION: GEORGE CRUMB AND HIS PREDECESSORS Richard Bass A bifurcated view of pitch structure in early twentieth-century music has become more explicit in recent analytic writings.
    [Show full text]
  • MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
    Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions.
    [Show full text]
  • Intervals and Transposition
    CHAPTER 3 Intervals and Transposition Interval Augmented and Simple Intervals TOPICS Octave Diminished Intervals Tuning Systems Unison Enharmonic Intervals Melodic Intervals Perfect, Major, and Minor Tritone Harmonic Intervals Intervals Inversion of Intervals Transposition Consonance and Dissonance Compound Intervals IMPORTANT Tone combinations are classifi ed in music with names that identify the pitch relationships. CONCEPTS Learning to recognize these combinations by both eye and ear is a skill fundamental to basic musicianship. Although many different tone combinations occur in music, the most basic pairing of pitches is the interval. An interval is the relationship in pitch between two tones. Intervals are named by the Intervals number of diatonic notes (notes with different letter names) that can be contained within them. For example, the whole step G to A contains only two diatonic notes (G and A) and is called a second. Figure 3.1 & ww w w Second 1 – 2 The following fi gure shows all the numbers within an octave used to identify intervals: Figure 3.2 w w & w w w w 1ww w2w w3 w4 w5 w6 w7 w8 Notice that the interval numbers shown in Figure 3.2 correspond to the scale degree numbers for the major scale. 55 3711_ben01877_Ch03pp55-72.indd 55 4/10/08 3:57:29 PM The term octave refers to the number 8, its interval number. Figure 3.3 w œ œ w & œ œ œ œ Octavew =2345678=œ1 œ w8 The interval numbered “1” (two notes of the same pitch) is called a unison. Figure 3.4 & 1 =w Unisonw The intervals that include the tonic (keynote) and the fourth and fi fth scale degrees of a Perfect, Major, and major scale are called perfect.
    [Show full text]
  • Pitch-Class Set Theory: an Overture
    Chapter One Pitch-Class Set Theory: An Overture A Tale of Two Continents In the late afternoon of October 24, 1999, about one hundred people were gathered in a large rehearsal room of the Rotterdam Conservatory. They were listening to a discussion between representatives of nine European countries about the teaching of music theory and music analysis. It was the third day of the Fourth European Music Analysis Conference.1 Most participants in the conference (which included a number of music theorists from Canada and the United States) had been looking forward to this session: meetings about the various analytical traditions and pedagogical practices in Europe were rare, and a broad survey of teaching methods was lacking. Most felt a need for information from beyond their country’s borders. This need was reinforced by the mobility of music students and the resulting hodgepodge of nationalities at renowned conservatories and music schools. Moreover, the European systems of higher education were on the threshold of a harmoni- zation operation. Earlier that year, on June 19, the governments of 29 coun- tries had ratifi ed the “Bologna Declaration,” a document that envisaged a unifi ed European area for higher education. Its enforcement added to the urgency of the meeting in Rotterdam. However, this meeting would not be remembered for the unusually broad rep- resentation of nationalities or for its political timeliness. What would be remem- bered was an incident which took place shortly after the audience had been invited to join in the discussion. Somebody had raised a question about classroom analysis of twentieth-century music, a recurring topic among music theory teach- ers: whereas the music of the eighteenth and nineteenth centuries lent itself to general analytical methodologies, the extremely diverse repertoire of the twen- tieth century seemed only to invite ad hoc approaches; how could the analysis of 1.
    [Show full text]
  • The Devil's Interval by Jerry Tachoir
    Sound Enhanced Hear the music example in the Members Only section of the PAS Web site at www.pas.org The Devil’s Interval BY JERRY TACHOIR he natural progression from consonance to dissonance and ii7 chords. In other words, Dm7 to G7 can now be A-flat m7 to resolution helps make music interesting and satisfying. G7, and both can resolve to either a C or a G-flat. Using the TMusic would be extremely bland without the use of disso- other dominant chord, D-flat (with the basic ii7 to V7 of A-flat nance. Imagine a world of parallel thirds and sixths and no dis- m7 to D-flat 7), we can substitute the other relative ii7 chord, sonance/resolution. creating the progression Dm7 to D-flat 7 which, again, can re- The prime interval requiring resolution is the tritone—an solve to either a C or a G-flat. augmented 4th or diminished 5th. Known in the early church Here are all the possibilities (Note: enharmonic spellings as the “Devil’s interval,” tritones were actually prohibited in of- were used to simplify the spelling of some chords—e.g., B in- ficial church music. Imagine Bach’s struggle to take music stead of C-flat): through its normal progression of tonic, subdominant, domi- nant, and back to tonic without the use of this interval. Dm7 G7 C Dm7 G7 Gb The tritone is the characteristic interval of all dominant bw chords, created by the “guide tones,” or the 3rd and 7th. The 4 ˙ ˙ w ˙ ˙ tritone interval can be resolved in two types of contrary motion: &4˙ ˙ w ˙ ˙ bbw one in which both notes move in by half steps, and one in which ˙ ˙ w ˙ ˙ b w both notes move out by half steps.
    [Show full text]
  • Memory and Production of Standard Frequencies in College-Level Musicians Sarah E
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 Memory and Production of Standard Frequencies in College-Level Musicians Sarah E. Weber University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Cognition and Perception Commons, Fine Arts Commons, Music Education Commons, and the Music Theory Commons Weber, Sarah E., "Memory and Production of Standard Frequencies in College-Level Musicians" (2013). Masters Theses 1911 - February 2014. 1162. Retrieved from https://scholarworks.umass.edu/theses/1162 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF MUSIC September 2013 Music Theory © Copyright by Sarah E. Weber 2013 All Rights Reserved Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER _____________________________ Gary S. Karpinski, Chair _____________________________ Andrew Cohen, Member _____________________________ Brent Auerbach, Member _____________________________ Jeff Cox, Department Head Department of Music and Dance DEDICATION For my parents and Grandma. ACKNOWLEDGEMENTS I would like to thank Kristen Wallentinsen for her help with experimental logistics, Renée Morgan for giving me her speakers, and Nathaniel Liberty for his unwavering support, problem-solving skills, and voice-over help.
    [Show full text]
  • Proceedings of the Australasian Computer
    !"##$%&!'(#!$%)*+$,-#.! ! ! ! ! ! (#)/$%&!'(#!$%0$1$,-# !"#$%%&'()*+#,+-.%+/0*-"121*'1(+3#450-%"+60*'$+3#(,%"%($%+789: 1'2&3$%4-%5)3%67#%83,9:;%<'=3;%6>)'',%'?%@+27>%A%@';:2)%B;7C3#27&-D !"#$%&'%!(&)%*+,-%%!./0 Proceedings of the Australasian Computer Music Conference 2019, Melbourne, Victoria Australasian Computer Music Conference Paper Jury: Roger Alsop, Ted Apel, Leah Barclay, Andrea Dancer, Robert Davidson , Louise Devenish, Richard Dudas, Ioanna Etmektsoglou, Toby Gifford, Talisha Goh, Natalie Grant, Susan Frykberg, Erik Griswold, David Hirst, Cat Hope, Alexander Hunter, Stuart James, Bridget Johnson, Jordan Lacey, Charles Martin, Sage Pbbbt, Mark Pedersen, Tracey Redhead, Elise Reitze-Swensen, Robert Sazdov, Diana Siwiak, Ryan Smith, Andrew Sorensen, Paul Tanner, Vanessa Tomlinson, Lindsay Vickery and Robert Vincs. Australasian Computer Music Conference Music Jury: Daryl Buckley, Louise Devenish, Natalie Grant, Erik Griswold, Cat Hope, Stuart James, Ryan Ross Smith, Vanessa Tomlinson, Lindsay Vickery and Ian Whalley. Organising Committee: Lindsay Vickery (chair), Natalie Grant, Cat Hope, Stuart James, SKoT McDonald and Ryan Ross Smith. Concert / Technical Support Karl Willebrant and Chris Cody. With special thanks to: The Sir Zelman Cowen School of Music at Monash University, Published by The Australasian Computer Music Association. http://computermusic.org.au December 2019 ISSN 1448-7780 All copyright remains with the authors. Proceedings edited by Lindsay Vickery. All correspondence with authors should be sent directly to the authors. General correspondence for ACMA should be sent to [email protected] The paper refereeing process is conducted according to the specifications of the Australian Government for the collection of Higher Education research data, and fully refereed papers therefore meet Australian Government requirements for fully-refereed research papers.
    [Show full text]
  • Playing Music in Just Intonation: a Dynamically Adaptive Tuning Scheme
    Karolin Stange,∗ Christoph Wick,† Playing Music in Just and Haye Hinrichsen∗∗ ∗Hochschule fur¨ Musik, Intonation: A Dynamically Hofstallstraße 6-8, 97070 Wurzburg,¨ Germany Adaptive Tuning Scheme †Fakultat¨ fur¨ Mathematik und Informatik ∗∗Fakultat¨ fur¨ Physik und Astronomie †∗∗Universitat¨ Wurzburg¨ Am Hubland, Campus Sud,¨ 97074 Wurzburg,¨ Germany Web: www.just-intonation.org [email protected] [email protected] [email protected] Abstract: We investigate a dynamically adaptive tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, our tuning scheme continually solves a system of linear equations, rather than relying on sequences of conditional if-then clauses. In complex situations, where not all intervals of a chord can be tuned according to the frequency ratios of just intonation, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided to demonstrate the feasibility of the tuning method. The first attempts to mathematically characterize is particularly pronounced if m and n are small. musical intervals date back to Pythagoras, who Examples include the perfect octave (m:n = 2:1), noted that the consonance of two tones played on the perfect fifth (3:2), and the perfect fourth (4:3). a monochord can be related to simple fractions Larger values of mand n tend to correspond to more of the corresponding string lengths (for a general dissonant intervals. If a normally consonant interval introduction see, e.g., Geller 1997; White and White is sufficiently detuned from just intonation (i.e., the 2014).
    [Show full text]
  • Mto.95.1.4.Cuciurean
    Volume 1, Number 4, July 1995 Copyright © 1995 Society for Music Theory John D. Cuciurean KEYWORDS: scale, interval, equal temperament, mean-tone temperament, Pythagorean tuning, group theory, diatonic scale, music cognition ABSTRACT: In Mathematical Models of Musical Scales, Mark Lindley and Ronald Turner-Smith attempt to model scales by rejecting traditional Pythagorean ideas and applying modern algebraic techniques of group theory. In a recent MTO collaboration, the same authors summarize their work with less emphasis on the mathematical apparatus. This review complements that article, discussing sections of the book the article ignores and examining unique aspects of their models. [1] From the earliest known music-theoretical writings of the ancient Greeks, mathematics has played a crucial role in the development of our understanding of the mechanics of music. Mathematics not only proves useful as a tool for defining the physical characteristics of sound, but abstractly underlies many of the current methods of analysis. Following Pythagorean models, theorists from the middle ages to the present day who are concerned with intonation and tuning use proportions and ratios as the primary language in their music-theoretic discourse. However, few theorists in dealing with scales have incorporated abstract algebraic concepts in as systematic a manner as the recent collaboration between music scholar Mark Lindley and mathematician Ronald Turner-Smith.(1) In their new treatise, Mathematical Models of Musical Scales: A New Approach, the authors “reject the ancient Pythagorean idea that music somehow &lsquois’ number, and . show how to design mathematical models for musical scales and systems according to some more modern principles” (7).
    [Show full text]
  • Cubase Pro Plug-In Reference 10.5.20
    Plug-in Reference Cristina Bachmann, Heiko Bischoff, Lillie Harris, Christina Kaboth, Insa Mingers, Matthias Obrecht, Sabine Pfeifer, Benjamin Schütte, Marita Sladek This PDF provides improved access for vision-impaired users. Please note that due to the complexity and number of images in this document, it is not possible to include text descriptions of images. The information in this document is subject to change without notice and does not represent a commitment on the part of Steinberg Media Technologies GmbH. The software described by this document is subject to a License Agreement and may not be copied to other media except as specifically allowed in the License Agreement. No part of this publication may be copied, reproduced, or otherwise transmitted or recorded, for any purpose, without prior written permission by Steinberg Media Technologies GmbH. Registered licensees of the product described herein may print one copy of this document for their personal use. All product and company names are ™ or ® trademarks of their respective owners. For more information, please visit www.steinberg.net/trademarks. © Steinberg Media Technologies GmbH, 2020. All rights reserved. Cubase Pro_10.5.20_en-US_2020-05-26 Table of Contents 4 Included Effect Plug-ins 4 Ambisonics Plug-ins 5 Delay Plug-ins 22 Distortion Plug-ins 46 Dynamics Plug-ins 70 EQ Plug-ins 79 Filter Plug-ins 85 Mastering Plug-ins 85 Modulation Plug-ins 100 Network Plug-ins 101 Other Plug-ins 103 Pitch Shift Plug-ins 106 Reverb Plug-ins 121 Spatial + Panner Plug-ins 123 Surround
    [Show full text]