Memory and Production of Standard Frequencies in College-Level Musicians Sarah E

Total Page:16

File Type:pdf, Size:1020Kb

Memory and Production of Standard Frequencies in College-Level Musicians Sarah E University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 Memory and Production of Standard Frequencies in College-Level Musicians Sarah E. Weber University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Cognition and Perception Commons, Fine Arts Commons, Music Education Commons, and the Music Theory Commons Weber, Sarah E., "Memory and Production of Standard Frequencies in College-Level Musicians" (2013). Masters Theses 1911 - February 2014. 1162. Retrieved from https://scholarworks.umass.edu/theses/1162 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF MUSIC September 2013 Music Theory © Copyright by Sarah E. Weber 2013 All Rights Reserved Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER _____________________________ Gary S. Karpinski, Chair _____________________________ Andrew Cohen, Member _____________________________ Brent Auerbach, Member _____________________________ Jeff Cox, Department Head Department of Music and Dance DEDICATION For my parents and Grandma. ACKNOWLEDGEMENTS I would like to thank Kristen Wallentinsen for her help with experimental logistics, Renée Morgan for giving me her speakers, and Nathaniel Liberty for his unwavering support, problem-solving skills, and voice-over help. This project would have been impossible without guidance from Dr. Andrew Cohen, who introduced me to statistical analysis and helped with the interpretation of my experimental results. I would also like to thank my professors at Ithaca College who modeled great teaching and thinking. v ABSTRACT ! WITHIN-SEMITONE ACCURACY OF THE LONG-TERM MEMORY OF ABSOLUTE PITCH IN NON-ABSOLUTE PITCH POSSESSORS SEPTEMBER 2013 !SARAH ELIZABETH WEBER, B.M., ITHACA COLLEGE M.M., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Dr. Gary S. Karpinski This thesis examines the nature of long-term absolute pitch memory—an ability traditionally assumed to belong only to absolute pitch (AP) possessors—by testing for evidence of this memory for “standard” frequencies in musicians without AP. Standard frequencies, those based on the equally tempered system with A = 440 Hz, are common in the sonic environment of the Western college musical education, and thus could have the opportunity to penetrate listeners’ long-term memories. Through four experimental tasks, this thesis examines musicians’ ability to recognize and produce frequencies from the set of equally tempered frequencies based on A = 440 Hz, without regard to those musicians’ pitch- labeling abilities. The experimental tasks also compare freshmen with seniors to test if exposure to standard frequencies during a college musical education engrains standard frequencies in long-term memory. The results suggest that musicians without AP cannot distinguish between standard and nonstandard frequencies during listening tasks, but they may be able to recall them without prompting when singing familiar folk songs. However, musical training during the college years does not seem to improve these abilities. Further experimentation is needed to corroborate the results, including modifications to the current tasks and methodology, as well as a larger subject size. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS.......................................................................................................v ABSTRACT ............................................................................................................................. vi LIST OF TABLES ................................................................................................................... ix LIST OF FIGURES .................................................................................................................. x CHAPTER 1: INTRODUCTION ................................................................................................................ 1 A. Background and Related Work ........................................................................................ 1 B. Thesis Statement ............................................................................................................ 10 2: THE PRESENT STUDY .................................................................................................... 13 A. Experimental Tasks ........................................................................................................ 13 B. Subjects .......................................................................................................................... 14 3: RATING TASK .................................................................................................................. 16 A. Method ........................................................................................................................... 16 B. Data Interpretation .......................................................................................................... 17 C. Results ............................................................................................................................ 19 4: JND TASK .......................................................................................................................... 23 A. Method ........................................................................................................................... 23 B. Data Interpretation .......................................................................................................... 25 C. Results ............................................................................................................................ 26 5: FOLK-SONG TASK .......................................................................................................... 29 vii A. Method ........................................................................................................................... 29 B. Data Interpretation .......................................................................................................... 29 C. Results ............................................................................................................................ 30 6: ADJUSTMENT TASK ....................................................................................................... 33 A. Method ........................................................................................................................... 33 B. Data Interpretation .......................................................................................................... 35 C. Results ............................................................................................................................ 36 7: DISCUSSION, LIMITATIONS OF THE EXPERIMENT, AND AVENUES FOR FURTHER RESEARCH ........................................................................................................ 39 A. Discussion ...................................................................................................................... 39 B. Limitations of the Experiment ........................................................................................ 43 1. Experimental Design ................................................................................................... 43 2. Methodology ............................................................................................................... 46 C. Avenues for Further Research ........................................................................................ 49 D. Conclusion ..................................................................................................................... 56 APPENDICES A: INFORMATION PROVIDED BY SUBJECTS ON THEIR MUSICAL BACKGROUND ................................................................................................. 57 B: FOLK SONG LIST WITH SYLLABLES USED BY SUBJECTS ................................... 58 C: DISCOGRAPHY FOR ADJUSTMENT TASK ................................................................ 59 D: ADJUSTMENT TASK RECORDING ORDERS ............................................................. 60 BIBLIOGRAPHY ................................................................................................................... 61 viii LIST OF TABLES Table Page 1: JNDs by subject: overall JND, and JND for standard and nonstandard tones.....................26 2: Summary of the adjustment data.........................................................................................36 3: Reproduction of the data from Table 2, JND for AP subjects.............................................42 ix LIST OF FIGURES Figure Page 1a: zROCs for seniors..............................................................................................................20 1b: zROCs for freshmen..........................................................................................................21 2: AZ scores for standard and nonstandard tones, freshmen and seniors compared................22
Recommended publications
  • An Adaptive Tuning System for MIDI Pianos
    David Løberg Code Groven.Max: School of Music Western Michigan University Kalamazoo, MI 49008 USA An Adaptive Tuning [email protected] System for MIDI Pianos Groven.Max is a real-time program for mapping a renstemningsautomat, an electronic interface be- performance on a standard keyboard instrument to tween the manual and the pipes with a kind of arti- a nonstandard dynamic tuning system. It was origi- ficial intelligence that automatically adjusts the nally conceived for use with acoustic MIDI pianos, tuning dynamically during performance. This fea- but it is applicable to any tunable instrument that ture overcomes the historic limitation of the stan- accepts MIDI input. Written as a patch in the MIDI dard piano keyboard by allowing free modulation programming environment Max (available from while still preserving just-tuned intervals in www.cycling74.com), the adaptive tuning logic is all keys. modeled after a system developed by Norwegian Keyboard tunings are compromises arising from composer Eivind Groven as part of a series of just the intersection of multiple—sometimes oppos- intonation keyboard instruments begun in the ing—influences: acoustic ideals, harmonic flexibil- 1930s (Groven 1968). The patch was first used as ity, and physical constraints (to name but three). part of the Groven Piano, a digital network of Ya- Using a standard twelve-key piano keyboard, the maha Disklavier pianos, which premiered in Oslo, historical problem has been that any fixed tuning Norway, as part of the Groven Centennial in 2001 in just intonation (i.e., with acoustically pure tri- (see Figure 1). The present version of Groven.Max ads) will be limited to essentially one key.
    [Show full text]
  • The Group-Theoretic Description of Musical Pitch Systems
    The Group-theoretic Description of Musical Pitch Systems Marcus Pearce [email protected] 1 Introduction Balzano (1980, 1982, 1986a,b) addresses the question of finding an appropriate level for describing the resources of a pitch system (e.g., the 12-fold or some microtonal division of the octave). His motivation for doing so is twofold: “On the one hand, I am interested as a psychologist who is not overly impressed with the progress we have made since Helmholtz in understanding music perception. On the other hand, I am interested as a computer musician who is trying to find ways of using our pow- erful computational tools to extend the musical [domain] of pitch . ” (Balzano, 1986b, p. 297) Since the resources of a pitch system ultimately depend on the pairwise relations between pitches, the question is one of how to conceive of pitch intervals. In contrast to the prevailing approach which de- scribes intervals in terms of frequency ratios, Balzano presents a description of pitch sets as mathematical groups and describes how the resources of any pitch system may be assessed using this description. Thus he is concerned with presenting an algebraic description of pitch systems as a competitive alternative to the existing acoustic description. In these notes, I shall first give a brief description of the ratio based approach (§2) followed by an equally brief exposition of some necessary concepts from the theory of groups (§3). The following three sections concern the description of the 12-fold division of the octave as a group: §4 presents the nature of the group C12; §5 describes three perceptually relevant properties of pitch-sets in C12; and §6 describes three musically relevant isomorphic representations of C12.
    [Show full text]
  • Music to Your Ears
    baffies them as much as Beethoven's ONWAI\D A ND UPWAI\D WITH THE AI\T5 Ninth. They match at music as we snatched at movies, filli ng our heads with plural images. A friend with whom MUSIC TO YOUR EARS I was brooding over the way recorded sound supplies a soundtrack for modem The questfor 3-D recording and other mysteries ifsound life said that I ought to seek out Edgar Choueiri, a rocket scientist- really, a BY ADAM GOPNIK rocket scientist!- who has spent a good part of his life worrying about such things. C houeiri, my friend said, had broken the code of something funda­ mental about the reproduction ofsou nd, and so I went to Princeton, where he has two laboratories, to seek him out. Those of us who have no laboratory at all might regard what Choueiri mod­ estly calls his "other'' laboratory as the only laboratory that anyone would ever need. It is the size of a small airplane hangar, and it is filled with plasma rocket engines that run on electricity: instead of a wasteful explosion of liquid fuel, a judicious leak of ions pushes the craft forward through a vacuum. If we ever start commuting to Mars, it will likely be a Choueiri-style engine that gets us there and back. The president of the Electric Rocket Propulsion Society, Choueiri is also the president of the Lebanese Academy of Sciences, and is very much, in spirit and appearance, a man of the old Levant. There's the elegant classical nose, the high, anxious brows, and the worried ex­ pression.
    [Show full text]
  • Unified Music Theories for General Equal-Temperament Systems
    Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories.
    [Show full text]
  • Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors
    Models of Octatonic and Whole-Tone Interaction: George Crumb and His Predecessors Richard Bass Journal of Music Theory, Vol. 38, No. 2. (Autumn, 1994), pp. 155-186. Stable URL: http://links.jstor.org/sici?sici=0022-2909%28199423%2938%3A2%3C155%3AMOOAWI%3E2.0.CO%3B2-X Journal of Music Theory is currently published by Yale University Department of Music. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/yudm.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon Jul 30 09:19:06 2007 MODELS OF OCTATONIC AND WHOLE-TONE INTERACTION: GEORGE CRUMB AND HIS PREDECESSORS Richard Bass A bifurcated view of pitch structure in early twentieth-century music has become more explicit in recent analytic writings.
    [Show full text]
  • Absolute Pitch (AP)
    Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors
    [Show full text]
  • Classical Net Review
    The Internet's Premier Classical Music Source BOOK REVIEW The Psychology of Music Diana Deutsch, editor Academic Press, Third Edition, 2013, pp xvii + 765 ISBN-10: 012381460X ISBN-13: 978-0123814609 The psychology of music was first explored in detail in modern times in a book of that name by Carl E. Seashore… Psychology Of Music was published in 1919. Dover's paperback edition of almost 450 pages (ISBN- 10: 0486218511; ISBN-13: 978-0486218519) is still in print from half a century later (1967) and remains a good starting point for those wishing to understand the relationship between our minds and music, chiefly as a series of physical processes. From the last quarter of the twentieth century onwards much research and many theories have changed the models we have of the mind when listening to or playing music. Changes in music itself, of course, have dictated that the nature of human interaction with it has grown. Unsurprisingly, books covering the subject have proliferated too. These range from examinations of how memory affects our experience of music through various forms of mental disabilities, therapies and deviations from "standard" auditory reception, to attempts to explain music appreciation psychologically. Donald Hodges' and David Conrad Sebald's Music in the Human Experience: An Introduction to Music Psychology (ISBN-10: 0415881862; ISBN-13: 978- 0415881869) makes a good introduction to the subject; while Aniruddh Patel's Music, Language, and the Brain (ISBN-10: 0199755302; ISBN-13: 978-0199755301) is a good (and now classic/reference) overview. Oliver Sacks' Musicophilia: Tales of Music and the Brain (ISBN-10: 1400033535; ISBN-13: 978-1400033539) examines specific areas from a clinical perspective.
    [Show full text]
  • Pitch-Class Set Theory: an Overture
    Chapter One Pitch-Class Set Theory: An Overture A Tale of Two Continents In the late afternoon of October 24, 1999, about one hundred people were gathered in a large rehearsal room of the Rotterdam Conservatory. They were listening to a discussion between representatives of nine European countries about the teaching of music theory and music analysis. It was the third day of the Fourth European Music Analysis Conference.1 Most participants in the conference (which included a number of music theorists from Canada and the United States) had been looking forward to this session: meetings about the various analytical traditions and pedagogical practices in Europe were rare, and a broad survey of teaching methods was lacking. Most felt a need for information from beyond their country’s borders. This need was reinforced by the mobility of music students and the resulting hodgepodge of nationalities at renowned conservatories and music schools. Moreover, the European systems of higher education were on the threshold of a harmoni- zation operation. Earlier that year, on June 19, the governments of 29 coun- tries had ratifi ed the “Bologna Declaration,” a document that envisaged a unifi ed European area for higher education. Its enforcement added to the urgency of the meeting in Rotterdam. However, this meeting would not be remembered for the unusually broad rep- resentation of nationalities or for its political timeliness. What would be remem- bered was an incident which took place shortly after the audience had been invited to join in the discussion. Somebody had raised a question about classroom analysis of twentieth-century music, a recurring topic among music theory teach- ers: whereas the music of the eighteenth and nineteenth centuries lent itself to general analytical methodologies, the extremely diverse repertoire of the twen- tieth century seemed only to invite ad hoc approaches; how could the analysis of 1.
    [Show full text]
  • Convergent Evolution in a Large Cross-Cultural Database of Musical Scales
    Convergent evolution in a large cross-cultural database of musical scales John M. McBride1,* and Tsvi Tlusty1,2,* 1Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea 2Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea *[email protected], [email protected] August 3, 2021 Abstract We begin by clarifying some key terms and ideas. We first define a scale as a sequence of notes (Figure 1A). Scales, sets of discrete pitches used to generate Notes are pitch categories described by a single pitch, melodies, are thought to be one of the most uni- although in practice pitch is variable so a better descrip- versal features of music. Despite this, we know tion is that notes are regions of semi-stable pitch centered relatively little about how cross-cultural diversity, around a representative (e.g., mean, meadian) frequency or how scales have evolved. We remedy this, in [10]. Thus, a scale can also be thought of as a sequence of part, we assemble a cross-cultural database of em- mean frequencies of pitch categories. However, humans pirical scale data, collected over the past century process relative frequency much better than absolute fre- by various ethnomusicologists. We provide sta- quency, such that a scale is better described by the fre- tistical analyses to highlight that certain intervals quency of notes relative to some standard; this is typically (e.g., the octave) are used frequently across cul- taken to be the first note of the scale, which is called the tures.
    [Show full text]
  • Major Heading
    THE APPLICATION OF ILLUSIONS AND PSYCHOACOUSTICS TO SMALL LOUDSPEAKER CONFIGURATIONS RONALD M. AARTS Philips Research Europe, HTC 36 (WO 02) Eindhoven, The Netherlands An overview of some auditory illusions is given, two of which will be considered in more detail for the application of small loudspeaker configurations. The requirements for a good sound reproduction system generally conflict with those of consumer products regarding both size and price. A possible solution lies in enhancing listener perception and reproduction of sound by exploiting a combination of psychoacoustics, loudspeaker configurations and digital signal processing. The first example is based on the missing fundamental concept, the second on the combination of frequency mapping and a special driver. INTRODUCTION applications of even smaller size this lower limit can A brief overview of some auditory illusions is given easily be as high as several hundred hertz. The bass which serves merely as a ‘catalogue’, rather than a portion of an audio signal contributes significantly to lengthy discussion. A related topic to auditory illusions the sound ‘impact’, and depending on the bass quality, is the interaction between different sensory modalities, the overall sound quality will shift up or down. e.g. sound and vision, a famous example is the Therefore a good low-frequency reproduction is McGurk effect (‘Hearing lips and seeing voices’) [1]. essential. An auditory-visual overview is given in [2], a more general multisensory product perception in [3], and on ILLUSIONS spatial orientation in [4]. The influence of video quality An illusion is a distortion of a sensory perception, on perceived audio quality is discussed in [5].
    [Show full text]
  • Walt Whitman, John Muir, and the Song of the Cosmos Jason Balserait Rollins College, [email protected]
    Rollins College Rollins Scholarship Online Master of Liberal Studies Theses Spring 2014 The niU versal Roar: Walt Whitman, John Muir, and the Song of the Cosmos Jason Balserait Rollins College, [email protected] Follow this and additional works at: http://scholarship.rollins.edu/mls Part of the American Studies Commons Recommended Citation Balserait, Jason, "The nivU ersal Roar: Walt Whitman, John Muir, and the Song of the Cosmos" (2014). Master of Liberal Studies Theses. 54. http://scholarship.rollins.edu/mls/54 This Open Access is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Master of Liberal Studies Theses by an authorized administrator of Rollins Scholarship Online. For more information, please contact [email protected]. The Universal Roar: Walt Whitman, John Muir, and the Song of the Cosmos A Project Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Liberal Studies by Jason A. Balserait May, 2014 Mentor: Dr. Steve Phelan Reader: Dr. Joseph V. Siry Rollins College Hamilton Holt School Master of Liberal Studies Program Winter Park, Florida Acknowledgements There are a number of people who I would like to thank for making this dream possible. Steve Phelan, thank you for setting me on this path of self-discovery. Your infectious love for wild things and Whitman has changed my life. Joe Siry, thank you for support and invaluable guidance throughout this entire process. Melissa, my wife, thank you for your endless love and understanding. I cannot forget my two furry children, Willis and Aida Mae.
    [Show full text]
  • Effects of Emergent-Level Structure on Melodic Processing Difficulty
    96 Frank A. Russo, William Forde Thompson, & Lola L. Cuddy EFFECTS OF EMERGENT-LEVEL STRUCTURE ON MELODIC PROCESSING DIFFICULTY FRANK A. RUSSO words, does ease of processing depend in some manner Ryerson University, Toronto, Canada on emergent-level structure defined by theory? The current study investigates whether melodic processing WILLIAM FORDE THOMPSON difficulty varies with respect to music-theoretic descrip- Macquarie University, Sydney, Australia tions of emergent-level structure derived from the Implication-Realization (I-R) model (Narmour, 1990, LOLA L. CUDDY 1992). Queen’s University, Kingston, Canada Two leading cognitive approaches to understanding melodic complexity include information-theoretic and FOUR EXPERIMENTS ASSESSED THE INFLUENCE dynamic attending models. Information-theoretic mod- of emergent-level structure on melodic processing dif- els have focused on the development of coding systems ficulty. Emergent-level structure was manipulated (Cuddy, Cohen, & Mewhort, 1981; Deutsch, 1980; Leeu- across experiments and defined with reference to the wenberg, 1969; Restle, 1970; Simon, 1972). A hierarchi- Implication-Realization model of melodic expectancy cal melody with surface- and emergent-level structure (Narmour, 1990, 1992, 2000). Two measures of melodic can be described economically using nested codes that processing difficulty were used to assess the influence of exploit redundancies. The codes are assumed to capture emergent-level structure: serial-reconstruction and important aspects of mental representation, and
    [Show full text]