Major Heading

Total Page:16

File Type:pdf, Size:1020Kb

Major Heading THE APPLICATION OF ILLUSIONS AND PSYCHOACOUSTICS TO SMALL LOUDSPEAKER CONFIGURATIONS RONALD M. AARTS Philips Research Europe, HTC 36 (WO 02) Eindhoven, The Netherlands An overview of some auditory illusions is given, two of which will be considered in more detail for the application of small loudspeaker configurations. The requirements for a good sound reproduction system generally conflict with those of consumer products regarding both size and price. A possible solution lies in enhancing listener perception and reproduction of sound by exploiting a combination of psychoacoustics, loudspeaker configurations and digital signal processing. The first example is based on the missing fundamental concept, the second on the combination of frequency mapping and a special driver. INTRODUCTION applications of even smaller size this lower limit can A brief overview of some auditory illusions is given easily be as high as several hundred hertz. The bass which serves merely as a ‘catalogue’, rather than a portion of an audio signal contributes significantly to lengthy discussion. A related topic to auditory illusions the sound ‘impact’, and depending on the bass quality, is the interaction between different sensory modalities, the overall sound quality will shift up or down. e.g. sound and vision, a famous example is the Therefore a good low-frequency reproduction is McGurk effect (‘Hearing lips and seeing voices’) [1]. essential. An auditory-visual overview is given in [2], a more general multisensory product perception in [3], and on ILLUSIONS spatial orientation in [4]. The influence of video quality An illusion is a distortion of a sensory perception, on perceived audio quality is discussed in [5]. revealing how the brain normally organizes and Two illusion based applications will be considered in interprets sensory stimulation. While illusions distort more detail, in particular for the application of small reality, they are generally shared by most people [7]. loudspeaker configurations. Illusions can occur with each of the human senses, but visual illusions are the most well known and In many sound reproduction applications it is not understood. However, we will focus on auditory possible to use large loudspeakers, due to size and/or illusions. First some overview is given on auditory cost constraints. Typical applications are portable illusions and then we will discuss how to utilize them. audio, multimedia, TV and public address systems, to Two examples will be given; both have to do with bass name just a few, see [6]. Hence the devices are often reproduction. The first exploits the virtual pitch small in size, and therefore the transducers are phenomenon the second the inaccuracy of human pitch inherently small as well. Needless to say, the detection at low frequencies. competitive market also dictates these products achieve the highest possible audio quality. The most well- A special issue of the J. Audio Eng. Soc. on auditory known characteristic of small loudspeakers is a poor illusions is in [8]. Another overview or specific low-frequency (bass) response. In practice this means examples are given in [9,10]. Many auditory that a significant portion of the audio signal may not be demonstrations including some illusions are on a CD reproduced (sufficiently) by the loudspeaker. For [11] and a special CD on musical illusions and loudspeakers used in such applications reproduction paradoxes is [12]. On the Internet one can find the below 100 Hz is usually negligible, whereas in some most well-known demos [wl1-wl6]. ILLUSIONS IN SOUND – AES 22ND UK CONFERENCE 2007 7-1 AUTHOR Headphones vs. loudspeakers Shepard's of pitch circularity It might seem trivial, but an important difference One of the most widely used auditory illusions is between headphones and loudspeaker listening is that Shepard’s [25,26] demonstration of pitch circularity, the left channel sound radiated by a single left which has come to be known as the ‘Shepard Scale’ loudspeaker enters both ears, while with headphones demonstration. The demonstration uses a cyclic set of listening, this sound reaches the left ear only. This has complex tones, each composed of 10 partials separated many consequences for sound localization; this is well by octave intervals. The frequencies of the partials are treated in [13]. Another important difference is that shifted upward in steps corresponding to a musical with loudspeaker listening, room acoustics plays an semitone (≈ 6 %). This creates the auditory illusion of important role, including the change of phase relations a tone that continually ascends or descends in pitch, yet between the left and right signals or the phase between which ultimately seems to get no higher or lower. components within one signal. Jean-Claude Risset subsequently created a version of Spatial illusions the scale where the steps between each tone are Ordinary stereo reproduction is an example of a spatial continuous, and it is appropriately called the illusion. Between and sometimes outside the continuous Risset scale or Shepard-Risset glissando loudspeakers, sources are audible, while there are no [wl6]. When done correctly, the tone appears to rise (or ‘real’ sources present, this is also covered in [13]. descend) continuously in pitch, yet return to its starting note. Risset has also created a similar effect with 3D sound, rhythm in which tempo seems to increase or decrease See ‘Spatial illusions’ above, and [14]. endlessly. (Stereo) Base widening The glissando illusion Many schemes exist to give a virtual widening to The glissando illusion was first reported and loudspeaker base, see [15]. demonstrated by Diana Deutsch [27]. The auditory illusion is created when a sound with a fixed pitch, Elevation such as a synthesized oboe tone, is played together The impression that the source is perceived to be with a sine wave gliding up and down in pitch, and located above the plane in which it is actually radiating they are both switched back and forth between stereo is called elevation, see [16]. loudspeakers. The effect is that the oboe is heard as switching between loudspeakers while the sine wave is Missing fundamental heard as joined together seamlessly, and as moving There is a vast amount of literature on this topic see around in space in accordance with its pitch motion. e.g. [17]. If there are higher harmonics but the Right-handers often hear the glissando as travelling fundamental frequency is missing, we will still from left to right as its pitch glides from low to high, perceive the pitch of that missing fundamental, which and then back from right to left as its pitch glides from in this case is also called virtual pitch. An application high to low. Lefthanders often obtain different is the low frequency percept by small loudspeakers, see illusions. below in the section ‘Virtual Pitch’ and in [18, 19]. Continuity Doppler illusion The illusory continuity of tones [28, 29] is the auditory The Doppler illusion occurs if the sound source is illusion caused when a tone is interrupted for a short moving with respect to the listener; see [20,21]. Strictly time (approximately 50 ms or less), during which a speaking this is not an illusion but a physical effect; narrow band of noise is played. Whether the tone is of nevertheless it is usually mentioned as an illusion. constant, rising or decreasing pitch, the ear perceives the tone as continuous if the 50 ms (or less) Octave illusion discontinuity is masked by noise. The octave illusion discovered by Diana Deutsch in 1973 [22, wl3] is an auditory illusion produced by McGurk effect simultaneously playing two sequences of two notes The McGurk effect [1] is a perceptual phenomenon that are spaced an octave apart, high to low, and low to which demonstrates an interaction between hearing and high, in separate stereo channels over headphones. vision in speech perception. It suggests that speech People who are right-handed tend to hear the higher perception is multimodal, that is, it involves pitch as being in their right ear while the results are information from more than one sensory modality. This mixed for left-handed people, see also [23, 24]. effect may be experienced when a video of one phoneme's production is dubbed with a sound- 7-2 ILLUSIONS IN SOUND – AES 22ND UK CONFERENCE 2007 PAPER TITLE recording of a different phoneme being spoken. Often, Sound-induced illusory flashing the perceived phoneme is a third, intermediate This is a sound induced visual illusion. The illusion is: phoneme. For example, a visual /ga/ combined with an when a single flash is accompanied with two beeps, the audible /ba/ is often heard as /da/. Further research has single flash is perceived as two flashes. The illusion is shown that it can exist throughout whole sentences. strongest when the flash is in the periphery but it also The effect is very robust; that is, knowledge about it works in the fovea. This illusion was discovered by seems to have little effect on one's perception of it. Ladan Shams, Yukiyasu Kamitani, and Shinsuke This is different from certain optical illusions, which Shimojo [wl1]. break down once one ‘sees through’ them. APPLICATIONS Precedence effect Virtual Pitch This effect states that it is the first acoustic information Pitch is a subjective, psychophysical quantity. that arrives at a listener that determines the location of According to the American Standards Association a sound [13]. pitch is ''that attribute of an auditory sensation in terms of which sounds may be ordered on a musical scale''. Clifton effect For a pure tone, where the fundamental frequency The effect, named after Rachael Clifton [30], corresponds to the frequency of the tone, the pitch is introduces a change to the classical precedence unambiguous and-if we neglect the influence of sound demonstration. Half way into the click train, the source level on pitch-one can identify pitch with the frequency and echo clicks are reversed.
Recommended publications
  • Neural Correlates of Audiovisual Speech Perception in Aphasia and Healthy Aging
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2013 NEURAL CORRELATES OF AUDIOVISUAL SPEECH PERCEPTION IN APHASIA AND HEALTHY AGING Sarah H. Baum Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Behavioral Neurobiology Commons, Medicine and Health Sciences Commons, and the Systems Neuroscience Commons Recommended Citation Baum, Sarah H., "NEURAL CORRELATES OF AUDIOVISUAL SPEECH PERCEPTION IN APHASIA AND HEALTHY AGING" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 420. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/420 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. NEURAL CORRELATES OF AUDIOVISUAL SPEECH PERCEPTION IN APHASIA AND HEALTHY AGING by Sarah Haller Baum, B.S. APPROVED: ______________________________
    [Show full text]
  • Absolute Pitch (AP)
    Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors
    [Show full text]
  • Classical Net Review
    The Internet's Premier Classical Music Source BOOK REVIEW The Psychology of Music Diana Deutsch, editor Academic Press, Third Edition, 2013, pp xvii + 765 ISBN-10: 012381460X ISBN-13: 978-0123814609 The psychology of music was first explored in detail in modern times in a book of that name by Carl E. Seashore… Psychology Of Music was published in 1919. Dover's paperback edition of almost 450 pages (ISBN- 10: 0486218511; ISBN-13: 978-0486218519) is still in print from half a century later (1967) and remains a good starting point for those wishing to understand the relationship between our minds and music, chiefly as a series of physical processes. From the last quarter of the twentieth century onwards much research and many theories have changed the models we have of the mind when listening to or playing music. Changes in music itself, of course, have dictated that the nature of human interaction with it has grown. Unsurprisingly, books covering the subject have proliferated too. These range from examinations of how memory affects our experience of music through various forms of mental disabilities, therapies and deviations from "standard" auditory reception, to attempts to explain music appreciation psychologically. Donald Hodges' and David Conrad Sebald's Music in the Human Experience: An Introduction to Music Psychology (ISBN-10: 0415881862; ISBN-13: 978- 0415881869) makes a good introduction to the subject; while Aniruddh Patel's Music, Language, and the Brain (ISBN-10: 0199755302; ISBN-13: 978-0199755301) is a good (and now classic/reference) overview. Oliver Sacks' Musicophilia: Tales of Music and the Brain (ISBN-10: 1400033535; ISBN-13: 978-1400033539) examines specific areas from a clinical perspective.
    [Show full text]
  • Convergent Evolution in a Large Cross-Cultural Database of Musical Scales
    Convergent evolution in a large cross-cultural database of musical scales John M. McBride1,* and Tsvi Tlusty1,2,* 1Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea 2Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea *[email protected], [email protected] August 3, 2021 Abstract We begin by clarifying some key terms and ideas. We first define a scale as a sequence of notes (Figure 1A). Scales, sets of discrete pitches used to generate Notes are pitch categories described by a single pitch, melodies, are thought to be one of the most uni- although in practice pitch is variable so a better descrip- versal features of music. Despite this, we know tion is that notes are regions of semi-stable pitch centered relatively little about how cross-cultural diversity, around a representative (e.g., mean, meadian) frequency or how scales have evolved. We remedy this, in [10]. Thus, a scale can also be thought of as a sequence of part, we assemble a cross-cultural database of em- mean frequencies of pitch categories. However, humans pirical scale data, collected over the past century process relative frequency much better than absolute fre- by various ethnomusicologists. We provide sta- quency, such that a scale is better described by the fre- tistical analyses to highlight that certain intervals quency of notes relative to some standard; this is typically (e.g., the octave) are used frequently across cul- taken to be the first note of the scale, which is called the tures.
    [Show full text]
  • Beyond Laurel/Yanny
    Beyond Laurel/Yanny: An Autoencoder-Enabled Search for Polyperceivable Audio Kartik Chandra Chuma Kabaghe Stanford University Stanford University [email protected] [email protected] Gregory Valiant Stanford University [email protected] Abstract How common is this phenomenon? Specifically, what fraction of spoken language is “polyperceiv- The famous “laurel/yanny” phenomenon refer- able” in the sense of evoking a multimodal re- ences an audio clip that elicits dramatically dif- ferent responses from different listeners. For sponse in a population of listeners? In this work, the original clip, roughly half the popula- we provide initial results suggesting a significant tion hears the word “laurel,” while the other density of spoken words that, like the original “lau- half hears “yanny.” How common are such rel/yanny” clip, lie close to unexpected decision “polyperceivable” audio clips? In this paper boundaries between seemingly unrelated pairs of we apply ML techniques to study the preva- words or sounds, such that individual listeners can lence of polyperceivability in spoken language. switch between perceptual modes via a slight per- We devise a metric that correlates with polyper- ceivability of audio clips, use it to efficiently turbation. find new “laurel/yanny”-type examples, and validate these results with human experiments. The clips we consider consist of audio signals Our results suggest that polyperceivable ex- amples are surprisingly prevalent, existing for synthesized by the Amazon Polly speech synthe- >2% of
    [Show full text]
  • The Composition and Performance of Spatial Music
    The Composition and Performance of Spatial Music A dissertation submitted to the University of Dublin for the degree of Doctor of Philosophy Enda Bates Trinity College Dublin, August 2009. Department of Music & Department of Electronic and Electrical Engineering Trinity College Dublin Declaration I hereby declare that this thesis has not been submitted as an exercise for a degree at this or any other University and that it is entirely my own work. I agree that the Library may lend or copy this thesis upon request. Signed, ___________________ Enda Bates ii Summary The use of space as a musical parameter is a complex issue which involves a number of different, yet interrelated factors. The technical means of performance, the sonic material, and the overall musical aesthetic must all work in tandem to produce a spatial impression in the listener which is in some way musically significant. Performances of spatial music typically involve a distributed audience and often take place in an acoustically reverberant space. This situation is quite different from the case of a single listener at home, or the composer in the studio. As a result, spatial strategies which are effective in this context may not be perceived correctly when transferred to a performance venue. This thesis examines these complex issues in terms of both the technical means of spatialization, and the compositional approach to the use of space as a musical parameter. Particular attention will be paid to the effectiveness of different spatialization techniques in a performance context, and what this implies for compositional strategies which use space as a musical parameter.
    [Show full text]
  • Memory and Production of Standard Frequencies in College-Level Musicians Sarah E
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 Memory and Production of Standard Frequencies in College-Level Musicians Sarah E. Weber University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Cognition and Perception Commons, Fine Arts Commons, Music Education Commons, and the Music Theory Commons Weber, Sarah E., "Memory and Production of Standard Frequencies in College-Level Musicians" (2013). Masters Theses 1911 - February 2014. 1162. Retrieved from https://scholarworks.umass.edu/theses/1162 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF MUSIC September 2013 Music Theory © Copyright by Sarah E. Weber 2013 All Rights Reserved Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER _____________________________ Gary S. Karpinski, Chair _____________________________ Andrew Cohen, Member _____________________________ Brent Auerbach, Member _____________________________ Jeff Cox, Department Head Department of Music and Dance DEDICATION For my parents and Grandma. ACKNOWLEDGEMENTS I would like to thank Kristen Wallentinsen for her help with experimental logistics, Renée Morgan for giving me her speakers, and Nathaniel Liberty for his unwavering support, problem-solving skills, and voice-over help.
    [Show full text]
  • Low Frequency Spatialization in Electro-Acoustic Music and Tel (02) 9528 4362 Performance: Composition Meets Perception Fax (02) 9589 0547 Roger T
    not ROCKET SCIENCE but REAL SCIENCE Pyrotek Noise Control recognises that the effective specification of a product needs reliable data. As such we are working with some of the world’s leading testing and certification organisations to help support our materials with clear unbiased test data giving a specifier the facts about our products’ performance. With an ongoing research and testing budget we have some interesting data to share. To keep up to date with all the additions to testing we are making, simply contact us for a personal visit or review our website www.pyroteknc.com and sign up for our ‘PRODUCT UPDATE’ emails and we will keep you up to date with our developments. you can hear a pin drop www.pyroteknc.com manufacturing quietness testing_april2014.indd 1 19/03/2014 3:02:43 PM Acoustics Australia EDITORIAL COMMITTEE: Vol. 42, No. 2 August 2014 Marion Burgess, From the Guest Editor.....................................................75 Truda King, Tracy Gowen From the President . .77 From the Chief Editor .....................................................78 PAPERS Acoustics Australia All Editorial Matters Special Issue: AUDITORY PERCEPTION (articles, reports, news, book reviews, new products, etc) Native and Non-Native Speech Perception The Editor, Acoustics Australia Daniel Williams and Paola Escudero. .........................................79 c/o Marion Burgess In Thrall to the Vocabulary [email protected] www.acoustics.asn.au Anne Cutler. ............................................................84 Active Listening: Speech Intelligibility in Noisy Environments General Business Simon Carlile . ...........................................................90 (subscriptions, extra copies, back issues, advertising, etc.) Auditory Grammar Mrs Leigh Wallbank Yoshitaka Nakajima, Takayuki Sasaki, Kazuo Ueda and Gerard B. Remijn. 97 P O Box 70 OYSTER BAY NSW 2225 Low Frequency Spatialization in Electro-Acoustic Music and Tel (02) 9528 4362 Performance: Composition Meets Perception Fax (02) 9589 0547 Roger T.
    [Show full text]
  • The Behavioral and Neural Effects of Audiovisual Affective Processing
    University of South Carolina Scholar Commons Theses and Dissertations Summer 2020 The Behavioral and Neural Effects of Audiovisual Affective Processing Chuanji Gao Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Experimental Analysis of Behavior Commons Recommended Citation Gao, C.(2020). The Behavioral and Neural Effects of Audiovisual Affective Processing. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5989 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE BEHAVIORAL AND NEURAL EFFECTS OF AUDIOVISUAL AFFECTIVE PROCESSING by Chuanji Gao Bachelor of Arts Heilongjiang University, 2011 Master of Science Capital Normal University, 2015 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Experimental Psychology College of Arts and Sciences University of South Carolina 2020 Accepted by: Svetlana V. Shinkareva, Major Professor Douglas H. Wedell, Committee Member Rutvik H. Desai, Committee Member Roozbeh Behroozmand, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Chuanji Gao, 2020 All Rights Reserved. ii DEDICATION To my family iii ACKNOWLEDGEMENTS I have been incredibly lucky to have my advisor, Svetlana Shinkareva. She is an exceptional mentor who guides me through the course of my doctoral research and provides continuous support. I thank Doug Wedell for his guidance and collaborations over the years, I have learned a lot. I am also grateful to other members of my dissertation committee, Rutvik Desai and Roozbeh Behroozmand for their invaluable feedback and help.
    [Show full text]
  • HARRY Mcgurk and the Mcgurk EFFECT Denis Burnham
    AuditoryĆVisual Speech Processing ISCA Archive (AVSP'98) http://www.iscaĆspeech.org/archive Terrigal - Sydney, Australia December 4Ć6, 1998 HARRY McGURK AND THE McGURK EFFECT Denis Burnham A significant part of the history of auditory-visual Rosenbloom took their results to show that spatial speech processing is the discovery of the way in perception in infancy occurs within a common which auditory and visual speech components, when auditory-visual space. in conflict, can give rise to an emergent percept. Not many of the present-day young auditory-visual These results fit in nicely with the Gibsonian and speech researchers know about the history of this neo-Gibsonian (Bowerian) view of the initial unity finding. Early this year the organisers of AVSP’98 of the senses, but not so nicely with McGurk’s view contacted the Australian Institute of Family Studies that unity of the senses, especially in speech, is a in Melbourne, Australia, to ask its Director, Harry product of experience. In 1974 Harry McGurk at McGurk, to talk at AVSP’98. Unfortunately Harry Surrey and Michael Lewis at Princeton, published a died in April this year and so was unable to meet rejoinder experiment in Science [4]. They tested 1-, and talk to the band of researchers now working in 4-, and 7-month-old infants in similar (though not the area of auditory-visual speech processing. identical) conditions to those in the original However, we still wanted to inform people about experiment. Their results failed to confirm Aronson the origins of this effect, and so with the kind and Rosenbloom’s earlier findings, and thus did not assistance of his daughter, Rhona McGurk, we provide support for the initial unity of the senses publish here for the first time Harry’s inaugural notion.
    [Show full text]
  • Speaking in Tones Music and Language Are Partners in the Brain
    Speaking in Tones Music and language are partners in the brain. Our sense of song helps us learn to talk, read and even make friends By Diana Deutsch 36 SCIENTIFIC AMERICAN MIND July/August 2010 © 2010 Scientific American ne afternoon in the summer of opera resembling sung ordinary speech), the cries 1995, a curious incident occurred. of street vendors and some rap music. I was fi ne-tuning my spoken com- And yet for decades the experience of musicians mentary on a CD I was preparing and the casual observer has clashed with scientifi c ) about music and the brain. To de- opinion, which has held that separate areas of the music tect glitches in the recording, I was looping phrases brain govern speech and music. Psychologists, lin- O so that I could hear them over and over. At one point, guists and neuroscientists have recently changed their sheet ( when I was alone in the room, I put one of the phras- tune, however, as sophisticated neuroimaging tech- es, “sometimes behave so strangely,” on a loop, be- niques have helped amass evidence that the brain ar- gan working on something else and forgot about it. eas governing music and language overlap. The latest iStockphoto Suddenly it seemed to me that a strange woman was data show that the two are in fact so intertwined that singing! After glancing around and fi nding nobody an awareness of music is critical to a baby’s language there, I realized that I was hearing my own voice re- development and even helps to cement the bond be- petitively producing this phrase—but now, instead tween infant and mother.
    [Show full text]
  • Schizophrenia, Dopamine and the Mcgurk Effect
    King’s Research Portal DOI: 10.3389/fnhum.2014.00565 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): White, T. P., Wigton, R. L., Joyce, D. W., Collier, T., Ferragamo, C., Wasim, N., Lisk, S., & Shergill, S. S. (2014). Eluding the illusion? Schizophrenia, dopamine and the McGurk effect. Frontiers In Human Neuroscience, 8, [565]. https://doi.org/10.3389/fnhum.2014.00565 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]