Altered and Enharmonic Modulation

Total Page:16

File Type:pdf, Size:1020Kb

Altered and Enharmonic Modulation Altered andmusic Enharmonictheory for musicians and normal people Modulation by toby w. rush œ œ w b œ œ œ nœ w Altered common chord modulation & œ œ is easy: remember diatonic common F: I IV V chord modulation, where we used a C: I V I chord that was diatonic in both the old and new keys? altered common chord modulation is the same thing, only using the œ œ pivot chord as an altered chord & b œ œ œ #nw in either the old key, the new key, œ # #œ w or both. F: I IV V n œ E: bVI V I Now, in both diatonic modulation and altered modulation, we have one chord that plays two different roles, one for each key. But the chord type doesn’t change... if it was a major chord in the old key, it’s still a major chord in the new key. ...but...but whatwhat ifif thethe chordchord typetype did change? this technique is in enharmonic modulation, we respell a chord so — well, odd — that so the enharmonically chord type itself there are only is different in the old and new keys. two specific ways to do it. ever notice that the german augmented sixth chord is just like fully diminished seventh chords are a major-minor seventh chord cool for a lot of reasons, and one of with the seventh respelled them is that they are equidistant chords: enharmonically? inverting a fully diminshed seventh yields another root-position fully dimished seventh chord. # w bw beethoven b ww b w did! & b w bw bw bww b ∫w 7 b w C: Ger.6 D : V b w b w w b & w7 invert & 6 & 7 a° a°5 respell c° we can take advantage of this and use it meaning that a fully diminished as a pivot chord... where it acts like a leading tone seventh chord german augmented sixth in one key can be a pivot chord into but like a 7 (or a 7 secondary dominant) V V /x three other possible keys: in the other key! which can be # œ bœ respelled as # œ & œ œ œ #œ b œ 7 œ 7 œ b b G: I vii° vii° & b b œ œ nœ œ 6 œ œ n œ œ E: vii°5 I which can be # œ bœ respelled as œ œ & œ œ b∫œœ n bœ ? b œ nœ 7 7 b œ b b œ nœ œ G: I vii° vii° b 6 œ7 4 b n œ D : vii°3 I D b : IV V b C: Ger.6 V I which can be note that the pivot chord above is # nœ œ bœ respelled as œ b œ approached like a dominant seventh, & œ œ bœœ but resolved like an G: I vii°7 vii°7 augmented sixth chord! 4 B b : vii°2 I licensed under a creative commons BY-NC-ND license - visit tobyrush.com for more.
Recommended publications
  • An Adaptive Tuning System for MIDI Pianos
    David Løberg Code Groven.Max: School of Music Western Michigan University Kalamazoo, MI 49008 USA An Adaptive Tuning [email protected] System for MIDI Pianos Groven.Max is a real-time program for mapping a renstemningsautomat, an electronic interface be- performance on a standard keyboard instrument to tween the manual and the pipes with a kind of arti- a nonstandard dynamic tuning system. It was origi- ficial intelligence that automatically adjusts the nally conceived for use with acoustic MIDI pianos, tuning dynamically during performance. This fea- but it is applicable to any tunable instrument that ture overcomes the historic limitation of the stan- accepts MIDI input. Written as a patch in the MIDI dard piano keyboard by allowing free modulation programming environment Max (available from while still preserving just-tuned intervals in www.cycling74.com), the adaptive tuning logic is all keys. modeled after a system developed by Norwegian Keyboard tunings are compromises arising from composer Eivind Groven as part of a series of just the intersection of multiple—sometimes oppos- intonation keyboard instruments begun in the ing—influences: acoustic ideals, harmonic flexibil- 1930s (Groven 1968). The patch was first used as ity, and physical constraints (to name but three). part of the Groven Piano, a digital network of Ya- Using a standard twelve-key piano keyboard, the maha Disklavier pianos, which premiered in Oslo, historical problem has been that any fixed tuning Norway, as part of the Groven Centennial in 2001 in just intonation (i.e., with acoustically pure tri- (see Figure 1). The present version of Groven.Max ads) will be limited to essentially one key.
    [Show full text]
  • GRAMMAR of SOLRESOL Or the Universal Language of François SUDRE
    GRAMMAR OF SOLRESOL or the Universal Language of François SUDRE by BOLESLAS GAJEWSKI, Professor [M. Vincent GAJEWSKI, professor, d. Paris in 1881, is the father of the author of this Grammar. He was for thirty years the president of the Central committee for the study and advancement of Solresol, a committee founded in Paris in 1869 by Madame SUDRE, widow of the Inventor.] [This edition from taken from: Copyright © 1997, Stephen L. Rice, Last update: Nov. 19, 1997 URL: http://www2.polarnet.com/~srice/solresol/sorsoeng.htm Edits in [brackets], as well as chapter headings and formatting by Doug Bigham, 2005, for LIN 312.] I. Introduction II. General concepts of solresol III. Words of one [and two] syllable[s] IV. Suppression of synonyms V. Reversed meanings VI. Important note VII. Word groups VIII. Classification of ideas: 1º simple notes IX. Classification of ideas: 2º repeated notes X. Genders XI. Numbers XII. Parts of speech XIII. Number of words XIV. Separation of homonyms XV. Verbs XVI. Subjunctive XVII. Passive verbs XVIII. Reflexive verbs XIX. Impersonal verbs XX. Interrogation and negation XXI. Syntax XXII. Fasi, sifa XXIII. Partitive XXIV. Different kinds of writing XXV. Different ways of communicating XXVI. Brief extract from the dictionary I. Introduction In all the business of life, people must understand one another. But how is it possible to understand foreigners, when there are around three thousand different languages spoken on earth? For everyone's sake, to facilitate travel and international relations, and to promote the progress of beneficial science, a language is needed that is easy, shared by all peoples, and capable of serving as a means of interpretation in all countries.
    [Show full text]
  • 10 - Pathways to Harmony, Chapter 1
    Pathways to Harmony, Chapter 1. The Keyboard and Treble Clef Chapter 2. Bass Clef In this chapter you will: 1.Write bass clefs 2. Write some low notes 3. Match low notes on the keyboard with notes on the staff 4. Write eighth notes 5. Identify notes on ledger lines 6. Identify sharps and flats on the keyboard 7.Write sharps and flats on the staff 8. Write enharmonic equivalents date: 2.1 Write bass clefs • The symbol at the beginning of the above staff, , is an F or bass clef. • The F or bass clef says that the fourth line of the staff is the F below the piano’s middle C. This clef is used to write low notes. DRAW five bass clefs. After each clef, which itself includes two dots, put another dot on the F line. © Gilbert DeBenedetti - 10 - www.gmajormusictheory.org Pathways to Harmony, Chapter 1. The Keyboard and Treble Clef 2.2 Write some low notes •The notes on the spaces of a staff with bass clef starting from the bottom space are: A, C, E and G as in All Cows Eat Grass. •The notes on the lines of a staff with bass clef starting from the bottom line are: G, B, D, F and A as in Good Boys Do Fine Always. 1. IDENTIFY the notes in the song “This Old Man.” PLAY it. 2. WRITE the notes and bass clefs for the song, “Go Tell Aunt Rhodie” Q = quarter note H = half note W = whole note © Gilbert DeBenedetti - 11 - www.gmajormusictheory.org Pathways to Harmony, Chapter 1.
    [Show full text]
  • MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
    Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions.
    [Show full text]
  • Intervals and Transposition
    CHAPTER 3 Intervals and Transposition Interval Augmented and Simple Intervals TOPICS Octave Diminished Intervals Tuning Systems Unison Enharmonic Intervals Melodic Intervals Perfect, Major, and Minor Tritone Harmonic Intervals Intervals Inversion of Intervals Transposition Consonance and Dissonance Compound Intervals IMPORTANT Tone combinations are classifi ed in music with names that identify the pitch relationships. CONCEPTS Learning to recognize these combinations by both eye and ear is a skill fundamental to basic musicianship. Although many different tone combinations occur in music, the most basic pairing of pitches is the interval. An interval is the relationship in pitch between two tones. Intervals are named by the Intervals number of diatonic notes (notes with different letter names) that can be contained within them. For example, the whole step G to A contains only two diatonic notes (G and A) and is called a second. Figure 3.1 & ww w w Second 1 – 2 The following fi gure shows all the numbers within an octave used to identify intervals: Figure 3.2 w w & w w w w 1ww w2w w3 w4 w5 w6 w7 w8 Notice that the interval numbers shown in Figure 3.2 correspond to the scale degree numbers for the major scale. 55 3711_ben01877_Ch03pp55-72.indd 55 4/10/08 3:57:29 PM The term octave refers to the number 8, its interval number. Figure 3.3 w œ œ w & œ œ œ œ Octavew =2345678=œ1 œ w8 The interval numbered “1” (two notes of the same pitch) is called a unison. Figure 3.4 & 1 =w Unisonw The intervals that include the tonic (keynote) and the fourth and fi fth scale degrees of a Perfect, Major, and major scale are called perfect.
    [Show full text]
  • The Devil's Interval by Jerry Tachoir
    Sound Enhanced Hear the music example in the Members Only section of the PAS Web site at www.pas.org The Devil’s Interval BY JERRY TACHOIR he natural progression from consonance to dissonance and ii7 chords. In other words, Dm7 to G7 can now be A-flat m7 to resolution helps make music interesting and satisfying. G7, and both can resolve to either a C or a G-flat. Using the TMusic would be extremely bland without the use of disso- other dominant chord, D-flat (with the basic ii7 to V7 of A-flat nance. Imagine a world of parallel thirds and sixths and no dis- m7 to D-flat 7), we can substitute the other relative ii7 chord, sonance/resolution. creating the progression Dm7 to D-flat 7 which, again, can re- The prime interval requiring resolution is the tritone—an solve to either a C or a G-flat. augmented 4th or diminished 5th. Known in the early church Here are all the possibilities (Note: enharmonic spellings as the “Devil’s interval,” tritones were actually prohibited in of- were used to simplify the spelling of some chords—e.g., B in- ficial church music. Imagine Bach’s struggle to take music stead of C-flat): through its normal progression of tonic, subdominant, domi- nant, and back to tonic without the use of this interval. Dm7 G7 C Dm7 G7 Gb The tritone is the characteristic interval of all dominant bw chords, created by the “guide tones,” or the 3rd and 7th. The 4 ˙ ˙ w ˙ ˙ tritone interval can be resolved in two types of contrary motion: &4˙ ˙ w ˙ ˙ bbw one in which both notes move in by half steps, and one in which ˙ ˙ w ˙ ˙ b w both notes move out by half steps.
    [Show full text]
  • Major and Minor Scales Half and Whole Steps
    Dr. Barbara Murphy University of Tennessee School of Music MAJOR AND MINOR SCALES HALF AND WHOLE STEPS: half-step - two keys (and therefore notes/pitches) that are adjacent on the piano keyboard whole-step - two keys (and therefore notes/pitches) that have another key in between chromatic half-step -- a half step written as two of the same note with different accidentals (e.g., F-F#) diatonic half-step -- a half step that uses two different note names (e.g., F#-G) chromatic half step diatonic half step SCALES: A scale is a stepwise arrangement of notes/pitches contained within an octave. Major and minor scales contain seven notes or scale degrees. A scale degree is designated by an Arabic numeral with a cap (^) which indicate the position of the note within the scale. Each scale degree has a name and solfege syllable: SCALE DEGREE NAME SOLFEGE 1 tonic do 2 supertonic re 3 mediant mi 4 subdominant fa 5 dominant sol 6 submediant la 7 leading tone ti MAJOR SCALES: A major scale is a scale that has half steps (H) between scale degrees 3-4 and 7-8 and whole steps between all other pairs of notes. 1 2 3 4 5 6 7 8 W W H W W W H TETRACHORDS: A tetrachord is a group of four notes in a scale. There are two tetrachords in the major scale, each with the same order half- and whole-steps (W-W-H). Therefore, a tetrachord consisting of W-W-H can be the top tetrachord or the bottom tetrachord of a major scale.
    [Show full text]
  • Tools-For-Tosafos-Selections.Pdf
    wffiffiLs FOR w &F F$af,m Per$mutter T.AR G UI\,{,/F.E LD }-{ ts N N4 $sltroducttost Whot trs Tosef'os? Tosafos is a collection of the interpretations and explana- tions of the Gemara by the group of sages known as "baalei haTosdos," i.e., the Tosafos masters. Tt:re baalei haTosafos (also known as "Tosafists") were sages of theJewish communities in France and Germany (with a few in other European countries) in the twelfth and thirteenth centuries. Some of them offici- ated as the halachic leaders of the community and functioned as representatives to the gentile authorities. Some ranyeshivos, where disciples would devote all their time to studying Torah. ThebaaleihaTosafoslived in a time that is regarded inJewish history as the period of the Rishonim. "Rishonirn" (literally "first") is the collective term given to the sages who lived in Europe and North Africa after the time of the Geonim (who lived in Babylon). This period extended until the Tur or R' Yosef Karo (who compiled the Shulchan Aruch), after which the period of the Acharonim began. Not all the sages who lived in these areas during this time period are called Tosafists, however. The term "Tosafist" applies to those who learned the Gemara in a certain way. The way th,e baalei haTosafos learned is, in effect, the focus of this work. 1Z Tools for Tosafos Introrttacn-ion 13 a sage who constantly compated At this poin! we can say that Sirece then, mrost prlntirags of the Taknud have contained differences in the Talmudic text, -W?t-{sa'l'{ and attempted to consolidate Tcsafcs's c*lrlmentar)'.
    [Show full text]
  • Chromatic Fingering Chart for Euphonium T.C
    Chromatic Fingering Chart for Euphonium T.C. Note: Only the most commonly used fingerings are listed here, in order of preference. The overtone chart available on this website provides comprehensive information about available alternate fingerings. The differing fingerings for certain lower-register notes on compensating versus non-compensating instruments are clearly indicated. All sounding pitches are a major ninth lower than written. G-Sharp or A-Flat A-Sharp or B-Flat G (Concert F) A (Concert G) B (Concert A) C (Concert B-Flat) (Concert F-Sharp or G-Flat) (Concert G-Sharp or A-Flat) & w #w bw w #w bw w w Ÿ ◊ 1 (false tone) 2 (false tone) 2-4 (false tone) 4 (false tone) 2-3 (false tone) 1-2 (false tone) 1-2-3 (false tone) 1-3 (false tone) C-Sharp or D-Flat D-Sharp or E-Flat F-Sharp or G-Flat (Concert B or C-Flat) D (Concert C) (Concert C-Sharp or D-Flat) E (Concert D) F (Concert E-Flat) (Concert E or F-Flat) & #w bw w #w bw w w #w bw “C‘ompensating: Compensating: Compensating: Compensating: Compensating: 2-4 1-2-3-4 1-3-4 2-3-4 1-2-4 1-4 1-2-3 Non-Compensating: Non-Compensating: Non-Compensating: Non-Compensating: Non-Compensating: 1-2-3-4 (false tone) 1-2-3-4 1-3-4 2-3-4 1-2-4 1-4 G-Sharp or A-Flat A-Sharp or B-Flat G (Concert F) A (Concert G) B (Concert A) C (Concert B-Flat) (Concert F-Sharp or G-Flat) (Concert G-Sharp or A-Flat) & w #w bw w #w bw w w “4‘ 2-3 1-2 1 2 0 1-3 3 C-Sharp or D-Flat D-Sharp or E-Flat F-Sharp or G-Flat (Concert B or C-Flat) D (Concert C) (Concert C-Sharp or D-Flat) E (Concert D) F (Concert E-Flat) (Concert E or F-Flat) & bw #w bw w #w bw w w #w2-4 Compensating: Compensating: Compensating: Compensating: Compensating: 1-2-3 1-2-3-4 1-3-4 2-3-4 1-2-4 1-4 Non-Compensating: Non-Compensating: Non-Compensating: Non-Compensating: Non-Compensating: 1-2-3-4 (false tone) 1-2-3-4 1-3-4 2-3-4 1-2-4 1-4 G-Sharp or A-Flat A-Sharp or B-Flat G (Concert F) A (Concert G) B (Concert A) C (Concert B-Flat) (Concert F-Sharp or G-Flat) (Concert G-Sharp or A-Flat) & bw w w w4 #w2-3 bw w1-2 #w1 2 0 1-3 3 1-4 2 Chromatic Fingering Chart for Euphonium T.C.
    [Show full text]
  • Secondary Dominant Chords.Mus
    Secondary Dominants Chromaticism - defined by the use of pitches outside of a diatonic key * nonessential chromaticism describes the use of chromatic non-chord tones * essential chromaticism describes the use of chromatic chord tones creating altered chords Secondary Function Chords - also referred to as applied chords * most common chromatically altered chords * function to tonicize (make sound like tonic) a chord other than tonic * applied to a chord other than tonic and typically function like a dominant or leading-tone chord - secondary function chords can also be used in 2nd inversion as passing and neighbor chords - since only major or minor triads can function as tonic, only major or minor triads may be tonicized - Secondary function chords are labeled with two Roman numerals separated by a slash (/) * the first Roman numeral labels the function of the chord (i.e. V, V7, viiº, or viiº7) * the second Roman numeral labels the chord it is applied to - the tonicized chord * secondary function labels are read as V of __, or viiº of __, etc. Secondary Dominant Chords - most common type of secondardy function chords * always spelled as a major triad or Mm7 chord * used to tonicize a chord whose root is a 5th below (or 4th above) * can create stronger harmonic progressions or emphasize chords other than tonic Spelling Secondary Dominant Chords - there are three steps in spelling a secondary dominant chord * find the root of the chord to be tonicized * determine the pitch a P5 above (or P4 below) * using that pitch as the root, spell a
    [Show full text]
  • Cubase Pro Plug-In Reference 10.5.20
    Plug-in Reference Cristina Bachmann, Heiko Bischoff, Lillie Harris, Christina Kaboth, Insa Mingers, Matthias Obrecht, Sabine Pfeifer, Benjamin Schütte, Marita Sladek This PDF provides improved access for vision-impaired users. Please note that due to the complexity and number of images in this document, it is not possible to include text descriptions of images. The information in this document is subject to change without notice and does not represent a commitment on the part of Steinberg Media Technologies GmbH. The software described by this document is subject to a License Agreement and may not be copied to other media except as specifically allowed in the License Agreement. No part of this publication may be copied, reproduced, or otherwise transmitted or recorded, for any purpose, without prior written permission by Steinberg Media Technologies GmbH. Registered licensees of the product described herein may print one copy of this document for their personal use. All product and company names are ™ or ® trademarks of their respective owners. For more information, please visit www.steinberg.net/trademarks. © Steinberg Media Technologies GmbH, 2020. All rights reserved. Cubase Pro_10.5.20_en-US_2020-05-26 Table of Contents 4 Included Effect Plug-ins 4 Ambisonics Plug-ins 5 Delay Plug-ins 22 Distortion Plug-ins 46 Dynamics Plug-ins 70 EQ Plug-ins 79 Filter Plug-ins 85 Mastering Plug-ins 85 Modulation Plug-ins 100 Network Plug-ins 101 Other Plug-ins 103 Pitch Shift Plug-ins 106 Reverb Plug-ins 121 Spatial + Panner Plug-ins 123 Surround
    [Show full text]
  • Secondary Dominants (Applied Dominants)
    Dr. Barbara Murphy University of Tennessee School of Music SECONDARY DOMINANTS (APPLIED DOMINANTS) DEFINITION: A secondary dominant is an altered chord having a dominant or leading tone relationship to a chord in the key other than the tonic. An altered chord is a chord containing at least one tone that is foreign to the key. Using secondary dominants results in the tonicization of the chord of resolution. Tonicization is the process of emphasizing a chord by making it seem like the tonic for a relatively short period of time. Usually this is accomplished by embellishing the chord with a chord that has a dominant or leading tone relationship to it (a secondary dominant). ANALYSIS: Secondary dominants are analyzed as 'x/y' where: x is one of : V, V7, viio, viio/ 7, viio7 y is a major or minor triad in the key. y can be one of: Major key: ii, iii, IV, V, vi minor key: iv, V, VI y can not be a diminished or augmented triad since diminished and augmented triads do not act as tonic triads. RESOLUTION: 1. Normal resolution: x/y resolves normally to y. 2. Irregular resolution: x/y may resolve to a chord that is a substitution (primary or secondary) for y. 3. Deceptive resolution: x/y may resolve to the chord whose root is a third below the root of the y chord. PART-WRITING: The part-writing of a secondary dominant is essentially the same as for the diatonic dominant or leading tone chords: For V and V7: 1. root resolves down a fifth to the root of the next chord (normal resolution).
    [Show full text]