Exploration of an Adaptable Just Intonation System Jeff Snyder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Construct Modes
How to Construct Modes Modes can be derived from a major scale. The true application of a mode is one in which the notes and harmony are derived primarily from a mode. Modal scales are used, however, over the chord of the moment in a non-modal tune, although it would not be a modal melody in the strictest definition. There are seven basic modes and you may derive them utilizing a major scale as reference. The names of the 7 modes are: Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, and Locrian Each scale or mode has distinctive note relationships which give it its unique sound. The simplest way to construct modes is to construct a seven note scale starting from each successive note in a major scale. By referencing the diatonic notes in the original major scale (ionian mode), all seven modes can be created from each of the major scale notes. • Ionian is scale degree l to l (one octave higher or lower) • Dorian is 2 to 2 • Phrygian is 3 to 3 • Lydian is 4 to 4 • Mixolydian is 5 to 5 • Aeolian is 6 to 6 • Locrian is 7 to 7 However, there is a better way to construct any mode: To construct any mode, think of the scale degree it is associated with. For example, dorian can be associated with the second degree of a major scale. As we have seen, modes may be constructed by building a diatonic 7 note scale beginning on each successive major scale degree. But you need to be able to construct on any note any of the seven modes without first building a major scale. -
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
An Adaptive Tuning System for MIDI Pianos
David Løberg Code Groven.Max: School of Music Western Michigan University Kalamazoo, MI 49008 USA An Adaptive Tuning [email protected] System for MIDI Pianos Groven.Max is a real-time program for mapping a renstemningsautomat, an electronic interface be- performance on a standard keyboard instrument to tween the manual and the pipes with a kind of arti- a nonstandard dynamic tuning system. It was origi- ficial intelligence that automatically adjusts the nally conceived for use with acoustic MIDI pianos, tuning dynamically during performance. This fea- but it is applicable to any tunable instrument that ture overcomes the historic limitation of the stan- accepts MIDI input. Written as a patch in the MIDI dard piano keyboard by allowing free modulation programming environment Max (available from while still preserving just-tuned intervals in www.cycling74.com), the adaptive tuning logic is all keys. modeled after a system developed by Norwegian Keyboard tunings are compromises arising from composer Eivind Groven as part of a series of just the intersection of multiple—sometimes oppos- intonation keyboard instruments begun in the ing—influences: acoustic ideals, harmonic flexibil- 1930s (Groven 1968). The patch was first used as ity, and physical constraints (to name but three). part of the Groven Piano, a digital network of Ya- Using a standard twelve-key piano keyboard, the maha Disklavier pianos, which premiered in Oslo, historical problem has been that any fixed tuning Norway, as part of the Groven Centennial in 2001 in just intonation (i.e., with acoustically pure tri- (see Figure 1). The present version of Groven.Max ads) will be limited to essentially one key. -
Kūnqǔ in Practice: a Case Study
KŪNQǓ IN PRACTICE: A CASE STUDY A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THEATRE OCTOBER 2019 By Ju-Hua Wei Dissertation Committee: Elizabeth A. Wichmann-Walczak, Chairperson Lurana Donnels O’Malley Kirstin A. Pauka Cathryn H. Clayton Shana J. Brown Keywords: kunqu, kunju, opera, performance, text, music, creation, practice, Wei Liangfu © 2019, Ju-Hua Wei ii ACKNOWLEDGEMENTS I wish to express my gratitude to the individuals who helped me in completion of my dissertation and on my journey of exploring the world of theatre and music: Shén Fúqìng 沈福庆 (1933-2013), for being a thoughtful teacher and a father figure. He taught me the spirit of jīngjù and demonstrated the ultimate fine art of jīngjù music and singing. He was an inspiration to all of us who learned from him. And to his spouse, Zhāng Qìnglán 张庆兰, for her motherly love during my jīngjù research in Nánjīng 南京. Sūn Jiàn’ān 孙建安, for being a great mentor to me, bringing me along on all occasions, introducing me to the production team which initiated the project for my dissertation, attending the kūnqǔ performances in which he was involved, meeting his kūnqǔ expert friends, listening to his music lessons, and more; anything which he thought might benefit my understanding of all aspects of kūnqǔ. I am grateful for all his support and his profound knowledge of kūnqǔ music composition. Wichmann-Walczak, Elizabeth, for her years of endeavor producing jīngjù productions in the US. -
MTO 0.7: Alphonce, Dissonance and Schumann's Reckless Counterpoint
Volume 0, Number 7, March 1994 Copyright © 1994 Society for Music Theory Bo H. Alphonce KEYWORDS: Schumann, piano music, counterpoint, dissonance, rhythmic shift ABSTRACT: Work in progress about linearity in early romantic music. The essay discusses non-traditional dissonance treatment in some contrapuntal passages from Schumann’s Kreisleriana, opus 16, and his Grande Sonate F minor, opus 14, in particular some that involve a wedge-shaped linear motion or a rhythmic shift of one line relative to the harmonic progression. [1] The present paper is the first result of a planned project on linearity and other features of person- and period-style in early romantic music.(1) It is limited to Schumann's piano music from the eighteen-thirties and refers to score excerpts drawn exclusively from opus 14 and 16, the Grande Sonate in F minor and the Kreisleriana—the Finale of the former and the first two pieces of the latter. It deals with dissonance in foreground terms only and without reference to expressive connotations. Also, Eusebius, Florestan, E.T.A. Hoffmann, and Herr Kapellmeister Kreisler are kept gently off stage. [2] Schumann favours friction dissonances, especially the minor ninth and the major seventh, and he likes them raw: with little preparation and scant resolution. The sforzato clash of C and D in measures 131 and 261 of the Finale of the G minor Sonata, opus 22, offers a brilliant example, a peculiarly compressed dominant arrival just before the return of the main theme in G minor. The minor ninth often occurs exposed at the beginning of a phrase as in the second piece of the Davidsbuendler, opus 6: the opening chord is a V with an appoggiatura 6; as 6 goes to 5, the minor ninth enters together with the fundamental in, respectively, high and low peak registers. -
The New Dictionary of Music and Musicians
The New GROVE Dictionary of Music and Musicians EDITED BY Stanley Sadie 12 Meares - M utis London, 1980 376 Moda Harold Powers Mode (from Lat. modus: 'measure', 'standard'; 'manner', 'way'). A term in Western music theory with three main applications, all connected with the above meanings of modus: the relationship between the note values longa and brevis in late medieval notation; interval, in early medieval theory; most significantly, a concept involving scale type and melody type. The term 'mode' has always been used to designate classes of melodies, and in this century to designate certain kinds of norm or model for composition or improvisation as well. Certain pheno mena in folksong and in non-Western music are related to this last meaning, and are discussed below in §§IV and V. The word is also used in acoustical parlance to denote a particular pattern of vibrations in which a system can oscillate in a stable way; see SOUND, §5. I. The term. II. Medieval modal theory. III. Modal theo ries and polyphonic music. IV. Modal scales and folk song melodies. V. Mode as a musicological concept. I. The term I. Mensural notation. 2. Interval. 3. Scale or melody type. I. MENSURAL NOTATION. In this context the term 'mode' has two applications. First, it refers in general to the proportional durational relationship between brevis and /onga: the modus is perfectus (sometimes major) when the relationship is 3: l, imperfectus (sometimes minor) when it is 2 : I. (The attributives major and minor are more properly used with modus to distinguish the rela tion of /onga to maxima from the relation of brevis to longa, respectively.) In the earliest stages of mensural notation, the so called Franconian notation, 'modus' designated one of five to seven fixed arrangements of longs and breves in particular rhythms, called by scholars rhythmic modes. -
3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch. -
Written and Recorded Preparation Guides: Selected Repertoire from the University Interscholastic League Prescribed List for Flute and Piano
Written and Recorded Preparation Guides: Selected Repertoire from the University Interscholastic League Prescribed List for Flute and Piano by Maria Payan, M.M., B.M. A Thesis In Music Performance Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Doctor of Musical Arts Approved Dr. Lisa Garner Santa Chair of Committee Dr. Keith Dye Dr. David Shea Dominick Casadonte Interim Dean of the Graduate School May 2013 Copyright 2013, Maria Payan Texas Tech University, Maria Payan, May 2013 ACKNOWLEDGEMENTS This project could not have started without the extraordinary help and encouragement of Dr. Lisa Garner Santa. The education, time, and support she gave me during my studies at Texas Tech University convey her devotion to her job. I have no words to express my gratitude towards her. In addition, this project could not have been finished without the immense help and patience of Dr. Keith Dye. For his generosity in helping me organize and edit this project, I thank him greatly. Finally, I would like to give my dearest gratitude to Donna Hogan. Without her endless advice and editing, this project would not have been at the level it is today. ii Texas Tech University, Maria Payan, May 2013 TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................. ii LIST OF FIGURES .............................................................................................. v 1. INTRODUCTION ............................................................................................ -
Electrophonic Musical Instruments
G10H CPC COOPERATIVE PATENT CLASSIFICATION G PHYSICS (NOTES omitted) INSTRUMENTS G10 MUSICAL INSTRUMENTS; ACOUSTICS (NOTES omitted) G10H ELECTROPHONIC MUSICAL INSTRUMENTS (electronic circuits in general H03) NOTE This subclass covers musical instruments in which individual notes are constituted as electric oscillations under the control of a performer and the oscillations are converted to sound-vibrations by a loud-speaker or equivalent instrument. WARNING In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. 1/00 Details of electrophonic musical instruments 1/053 . during execution only {(voice controlled (keyboards applicable also to other musical instruments G10H 5/005)} instruments G10B, G10C; arrangements for producing 1/0535 . {by switches incorporating a mechanical a reverberation or echo sound G10K 15/08) vibrator, the envelope of the mechanical 1/0008 . {Associated control or indicating means (teaching vibration being used as modulating signal} of music per se G09B 15/00)} 1/055 . by switches with variable impedance 1/0016 . {Means for indicating which keys, frets or strings elements are to be actuated, e.g. using lights or leds} 1/0551 . {using variable capacitors} 1/0025 . {Automatic or semi-automatic music 1/0553 . {using optical or light-responsive means} composition, e.g. producing random music, 1/0555 . {using magnetic or electromagnetic applying rules from music theory or modifying a means} musical piece (automatically producing a series of 1/0556 . {using piezo-electric means} tones G10H 1/26)} 1/0558 . {using variable resistors} 1/0033 . {Recording/reproducing or transmission of 1/057 . by envelope-forming circuits music for electrophonic musical instruments (of 1/0575 . -
Unit 10.2 the Physics of Music Objectives Notes on a Piano
Unit 10.2 The Physics of Music Teacher: Dr. Van Der Sluys Objectives • The Physics of Music – Strings – Brass and Woodwinds • Tuning - Beats Notes on a Piano Key Note Frquency (Hz) Wavelength (m) 52 C 524 0.637 51 B 494 0.676 50 A# or Bb 466 0.717 49 A 440 0.759 48 G# or Ab 415 0.805 47 G 392 0.852 46 F# or Gb 370 0.903 45 F 349 0.957 44 E 330 1.01 43 D# or Eb 311 1.07 42 D 294 1.14 41 C# or Db 277 1.21 40 C (middle) 262 1.27 http://en.wikipedia.org/wiki/Piano_key_frequencies 1 Vibrating Strings - Fundamental and Overtones A vibration in a string can L = 1/2 λ1 produce a standing wave. L = λ Usually a vibrating string 2 produces a sound whose L = 3/2 λ3 frequency in most cases is constant. Therefore, since L = 2 λ4 frequency characterizes the pitch, the sound produced L = 5/2 λ5 is a constant note. Vibrating L = 3 λ strings are the basis of any 6 string instrument like guitar, L = 7/2 λ7 cello, or piano. For the fundamental, λ = 2 L where Vibration, standing waves in a string, L is the length of the string. The fundamental and the first 6 overtones which form a harmonic series http://en.wikipedia.org/wiki/Vibrating_string Length of Piano Strings The highest key on a piano corresponds to a frequency about 150 times that of the lowest key. If the string for the highest note is 5.0 cm long, how long would the string for the lowest note have to be if it had the same mass per unit length and the same tension? If v = fλ, how are the frequencies and length of strings related? Other String Instruments • All string instruments produce sound from one or more vibrating strings, transferred to the air by the body of the instrument (or by a pickup in the case of electronically- amplified instruments). -
Download the Just Intonation Primer
THE JUST INTONATION PPRIRIMMEERR An introduction to the theory and practice of Just Intonation by David B. Doty Uncommon Practice — a CD of original music in Just Intonation by David B. Doty This CD contains seven compositions in Just Intonation in diverse styles — ranging from short “fractured pop tunes” to extended orchestral movements — realized by means of MIDI technology. My principal objectives in creating this music were twofold: to explore some of the novel possibilities offered by Just Intonation and to make emotionally and intellectually satisfying music. I believe I have achieved both of these goals to a significant degree. ——David B. Doty The selections on this CD process—about synthesis, decisions. This is definitely detected in certain struc- were composed between sampling, and MIDI, about not experimental music, in tures and styles of elabora- approximately 1984 and Just Intonation, and about the Cageian sense—I am tion. More prominent are 1995 and recorded in 1998. what compositional styles more interested in result styles of polyphony from the All of them use some form and techniques are suited (aesthetic response) than Western European Middle of Just Intonation. This to various just tunings. process. Ages and Renaissance, method of tuning is com- Taken collectively, there It is tonal music (with a garage rock from the 1960s, mendable for its inherent is no conventional name lowercase t), music in which Balkan instrumental dance beauty, its variety, and its for the music that resulted hierarchic relations of tones music, the ancient Japanese long history (it is as old from this process, other are important and in which court music gagaku, Greek as civilization). -
Andrián Pertout
Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure