Shifting Exercises with Double Stops to Test Intonation

Total Page:16

File Type:pdf, Size:1020Kb

Shifting Exercises with Double Stops to Test Intonation VERY ROUGH AND PRELIMINARY DRAFT!!! Shifting Exercises with Double Stops to Test Intonation These exercises were inspired by lessons I had from 1968 to 1970 with David Smiley of the San Francisco Symphony. I don’t have the book he used, but I believe it was one those written by Dounis on the scientific or artist's technique of violin playing. The exercises were difficult and frustrating, and involved shifting and double stops. Smiley also emphasized routine testing notes against other strings, and I also found some of his tasks frustrating because I couldn’t hear intervals that apparently seemed so familiar to a professional musician. When I found myself giving violin lessons in 2011, I had a mathematical understanding of why it was so difficult to hear certain musical intervals, and decided not to focus on them in my teaching. By then I had also developed some exercises to develop my own intonation. These exercises focus entirely on what is called the just scale. Pianos use the equal tempered scale, which is the predominate choice of intonation in orchestras and symphonies (I NEED VERIFICATION THAT THIS IS TRUE). It takes many years and many types of exercises and activities to become a good violinist. But I contend that everyone should start by mastering the following double stops in “just” intonation: 1. Practice the intervals shown above for all possible pairs of strings on your violin or viola. Learn the first two first, then add one interval at a time. They get harder to hear as you go down the list for reasons having to do with the fractions: 1/2, 2/3, 3/4, 3/5, 4/5, 5/6. Perfect fifth (open strings) Take your bow off the string and listen for the beats. Perfect octaves Open lower string and third finger on upper string Perfect fourths First finger on lower string and open upper string. Perfect sixth Open lower string and first finger on upper Major third Second finger close to first on lower string and open upper Minor third Second finger close to third finger on lower string open upper. Listen to these intervals on a piano and see if you can hear the difference between the “just” scale you earr prefers, and the piano’s “tempered” intonation. 2. These intervals can be used to do scales in a number of different variations. Practice the scale on all strings and in all possible variations: Play them slowly until the intonation is perfect. Then practice them fast and with different bowings and rhythms. 3. Introduction to harmonics and “third position”. The following exercise teaches you to shift, teaches your fingers to be relaxed and in the right position, and above all, will not tire your hands. You can do it when your left hand is too tired for actual playing. a) Place your fourth finger very lightly on the G string EXACTLY at the halfway point on the string. Your hand will be closer to the bridge in what we call fourth position. No other fingers (or anything else) should touch the string. The whistling sound you hear when this is bowed is called a harmonic. The note should be a G. b) Other harmonics are available in first position, which is the not only the beginners position, but also probably the most often used in routine playing by experts. These “first position” harmonics of the G string are: o Fourth finger D o Third finger G o Second finger in “sharp” position B o Second finger in “natural” position D c) On a viola, you might want to use the C string. The “first position” harmonics of the C string are: o Fourth finger G o Third finger C o Second finger in “sharp” position E o Second finger in “natural” position G d) Practice these harmonics and see if you can make a little riff (ostinato) from the movie “Close Encounters of the Third Kind”. .
Recommended publications
  • The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
    The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely.
    [Show full text]
  • 3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
    3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch.
    [Show full text]
  • Download the Just Intonation Primer
    THE JUST INTONATION PPRIRIMMEERR An introduction to the theory and practice of Just Intonation by David B. Doty Uncommon Practice — a CD of original music in Just Intonation by David B. Doty This CD contains seven compositions in Just Intonation in diverse styles — ranging from short “fractured pop tunes” to extended orchestral movements — realized by means of MIDI technology. My principal objectives in creating this music were twofold: to explore some of the novel possibilities offered by Just Intonation and to make emotionally and intellectually satisfying music. I believe I have achieved both of these goals to a significant degree. ——David B. Doty The selections on this CD pro­­cess—about synthesis, decisions. This is definitely detected in certain struc- were composed between sampling, and MIDI, about not experimental music, in tures and styles of elabora- approximately 1984 and Just Intonation, and about the Cageian sense—I am tion. More prominent are 1995 and recorded in 1998. what compositional styles more interested in result styles of polyphony from the All of them use some form and techniques are suited (aesthetic response) than Western European Middle of Just Intonation. This to various just tunings. process. Ages and Renaissance, method of tuning is com- Taken collectively, there It is tonal music (with a garage rock from the 1960s, mendable for its inherent is no conventional name lowercase t), music in which Balkan instrumental dance beauty, its variety, and its for the music that resulted hierarchic relations of tones music, the ancient Japanese long history (it is as old from this process, other are important and in which court music gagaku, Greek as civilization).
    [Show full text]
  • Harmonic Dualism and the Origin of the Minor Triad
    45 Harmonic Dualism and the Origin of the Minor Triad JOHN L. SNYDER "Harmonic Dualism" may be defined as a school of musical theoretical thought which holds that the minor triad has a natural origin different from that of the major triad, but of equal validity. Specifically, the term is associated with a group of nineteenth and early twentieth century theo­ rists, nearly all Germans, who believed that the minor harmony is constructed in a downward ("negative") fashion, while the major is an upward ("positive") construction. Al­ though some of these writers extended the dualistic approach to great lengths, applying it even to functional harmony, this article will be concerned primarily with the problem of the minor sonority, examining not only the premises and con­ clusions of the principal dualists, but also those of their followers and their critics. Prior to the rise of Romanticism, the minor triad had al­ ready been the subject of some theoretical speculation. Zarlino first considered the major and minor triads as en­ tities, finding them to be the result of harmonic and arith­ metic division of the fifth, respectively. Later, Giuseppe Tartini advanced his own novel explanation: he found that if one located a series of fundamentals such that a given pitch would appear successively as first, second, third •.• and sixth partial, the fundamentals of these harmonic series would outline a minor triad. l Tartini's discussion of combination tones is interesting in that, to put a root un­ der his minor triad outline, he proceeds as far as the 7:6 ratio, for the musical notation of which he had to invent a new accidental, the three-quarter-tone flat: IG.
    [Show full text]
  • Playing Music in Just Intonation: a Dynamically Adaptive Tuning Scheme
    Karolin Stange,∗ Christoph Wick,† Playing Music in Just and Haye Hinrichsen∗∗ ∗Hochschule fur¨ Musik, Intonation: A Dynamically Hofstallstraße 6-8, 97070 Wurzburg,¨ Germany Adaptive Tuning Scheme †Fakultat¨ fur¨ Mathematik und Informatik ∗∗Fakultat¨ fur¨ Physik und Astronomie †∗∗Universitat¨ Wurzburg¨ Am Hubland, Campus Sud,¨ 97074 Wurzburg,¨ Germany Web: www.just-intonation.org [email protected] [email protected] [email protected] Abstract: We investigate a dynamically adaptive tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, our tuning scheme continually solves a system of linear equations, rather than relying on sequences of conditional if-then clauses. In complex situations, where not all intervals of a chord can be tuned according to the frequency ratios of just intonation, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided to demonstrate the feasibility of the tuning method. The first attempts to mathematically characterize is particularly pronounced if m and n are small. musical intervals date back to Pythagoras, who Examples include the perfect octave (m:n = 2:1), noted that the consonance of two tones played on the perfect fifth (3:2), and the perfect fourth (4:3). a monochord can be related to simple fractions Larger values of mand n tend to correspond to more of the corresponding string lengths (for a general dissonant intervals. If a normally consonant interval introduction see, e.g., Geller 1997; White and White is sufficiently detuned from just intonation (i.e., the 2014).
    [Show full text]
  • A Study of Microtones in Pop Music
    University of Huddersfield Repository Chadwin, Daniel James Applying microtonality to pop songwriting: A study of microtones in pop music Original Citation Chadwin, Daniel James (2019) Applying microtonality to pop songwriting: A study of microtones in pop music. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/34977/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Applying microtonality to pop songwriting A study of microtones in pop music Daniel James Chadwin Student number: 1568815 A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Master of Arts University of Huddersfield May 2019 1 Abstract While temperament and expanded tunings have not been widely adopted by pop and rock musicians historically speaking, there has recently been an increased interest in microtones from modern artists and in online discussion.
    [Show full text]
  • Hexatonic Cycles
    CHAPTER Two H e x a t o n i c C y c l e s Chapter 1 proposed that triads could be related by voice leading, independently of roots, diatonic collections, and other central premises of classical theory. Th is chapter pursues that proposal, considering two triads to be closely related if they share two common tones and their remaining tones are separated by semitone. Motion between them thus involves a single unit of work. Positioning each triad beside its closest relations produces a preliminary map of the triadic universe. Th e map serves some analytical purposes, which are explored in this chapter. Because it is not fully connected, it will be supplemented with other relations developed in chapters 4 and 5. Th e simplicity of the model is a pedagogical advantage, as it presents a circum- scribed environment in which to develop some central concepts, terms, and modes of representation that are used throughout the book. Th e model highlights the central role of what is traditionally called the chromatic major-third relation, although that relation is theorized here without reference to harmonic roots. It draws attention to the contrary-motion property that is inherent in and exclusive to triadic pairs in that relation. Th at property, I argue, underlies the association of chromatic major-third relations with supernatural phenomena and altered states of consciousness in the early nineteenth century. Finally, the model is suffi cient to provide preliminary support for the central theoretical claim of this study: that the capacity for minimal voice leading between chords of a single type is a special property of consonant triads, resulting from their status as minimal perturbations of perfectly even augmented triads.
    [Show full text]
  • Interval Cycles and the Emergence of Major-Minor Tonality
    Empirical Musicology Review Vol. 5, No. 3, 2010 Modes on the Move: Interval Cycles and the Emergence of Major-Minor Tonality MATTHEW WOOLHOUSE Centre for Music and Science, Faculty of Music, University of Cambridge, United Kingdom ABSTRACT: The issue of the emergence of major-minor tonality is addressed by recourse to a novel pitch grouping process, referred to as interval cycle proximity (ICP). An interval cycle is the minimum number of (additive) iterations of an interval that are required for octave-related pitches to be re-stated, a property conjectured to be responsible for tonal attraction. It is hypothesised that the actuation of ICP in cognition, possibly in the latter part of the sixteenth century, led to a hierarchy of tonal attraction which favoured certain pitches over others, ostensibly the tonics of the modern major and minor system. An ICP model is described that calculates the level of tonal attraction between adjacent musical elements. The predictions of the model are shown to be consistent with music-theoretic accounts of common practice period tonality, including Piston’s Table of Usual Root Progressions. The development of tonality is illustrated with the historical quotations of commentators from the sixteenth to the eighteenth centuries, and can be characterised as follows. At the beginning of the seventeenth century multiple ‘finals’ were possible, each associated with a different interval configuration (mode). By the end of the seventeenth century, however, only two interval configurations were in regular use: those pertaining to the modern major- minor key system. The implications of this development are discussed with respect interval cycles and their hypothesised effect within music.
    [Show full text]
  • Musical Techniques
    Musical Techniques Musical Techniques Frequencies and Harmony Dominique Paret Serge Sibony First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Dominique Paret and Serge Sibony to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016960997 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-058-4 Contents Preface ........................................... xiii Introduction ........................................ xv Part 1. Laying the Foundations ............................ 1 Introduction to Part 1 .................................. 3 Chapter 1. Sounds, Creation and Generation of Notes ................................... 5 1.1. Physical and physiological notions of a sound .................. 5 1.1.1. Auditory apparatus ............................... 5 1.1.2. Physical concepts of a sound .......................... 7 1.1.3.
    [Show full text]
  • Chords Employed in Twentieth Century Composition
    Ouachita Baptist University Scholarly Commons @ Ouachita Honors Theses Carl Goodson Honors Program 1967 Chords Employed in Twentieth Century Composition Camille Bishop Ouachita Baptist University Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses Part of the Composition Commons, and the Music Theory Commons Recommended Citation Bishop, Camille, "Chords Employed in Twentieth Century Composition" (1967). Honors Theses. 456. https://scholarlycommons.obu.edu/honors_theses/456 This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact [email protected]. Chords Formed By I nterval s Of A Third The traditional tr i ~d of t he eigh te8nth aDd n i neteenth centuries t ends to s~ un 1 trite i n t he su r roundin~s of twen­ tieth century d i ss onance. The c o ~poser f aces the nroble~ of i magi native us e of th e trla1 s o as t o a d d f reshness to a comnosition. In mod ern c Dmn:;sition , rna i or 8.nd minor triads are usually u s ed a s ooints of r e l axation b e f ore a nd a fter sections o f tension. Progressions of the eighte enth and n inete enth c en t u r i es we re built around t he I, IV, and V chords. All other c hords we re considered as incidenta l, serving to provide vari e t y .
    [Show full text]
  • The Perception of Pure and Mistuned Musical Fifths and Major Thirds: Thresholds for Discrimination, Beats, and Identification
    Perception & Psychophysics 1982,32 (4),297-313 The perception ofpure and mistuned musical fifths and major thirds: Thresholds for discrimination, beats, and identification JOOS VOS Institute/or Perception TNO, Soesterberg, TheNetherlands In Experiment 1, the discriminability of pure and mistuned musical intervals consisting of si­ multaneously presented complex tones was investigated. Because of the interference of nearby harmonics, two features of beats were varied independently: (1) beat frequency, and (2) the depth of the level variation. Discrimination thresholds (DTs) were expressed as differences in level (AL) between the two tones. DTs were determined for musical fifths and major thirds, at tone durations of 250, 500, and 1,000 msec, and for beat frequencies within a range of .5 to 32 Hz. The results showed that DTs were higher (smaller values of AL) for major thirds than for fifths, were highest for the lowest beat frequencies, and decreased with increasing tone duration. Interaction of tone duration and beat frequency showed that DTs were higher for short tones than for sustained tones only when the mistuning was not too large. It was concluded that, at higher beat frequencies, DTs could be based more on the perception of interval width than on the perception of beats or roughness. Experiments 2 and 3 were designed to ascertain to what extent this was true. In Experiment 2, beat thresholds (BTs)for a large number of different beat frequencies were determined. In Experiment 3, DTs, BTs, and thresholds for the identifica­ tion of the direction of mistuning (ITs) were determined. For mistuned fifths and major thirds, sensitivity to beats was about the same.
    [Show full text]
  • The Consecutive-Semitone Constraint on Scalar Structure: a Link Between Impressionism and Jazz1
    The Consecutive-Semitone Constraint on Scalar Structure: A Link Between Impressionism and Jazz1 Dmitri Tymoczko The diatonic scale, considered as a subset of the twelve chromatic pitch classes, possesses some remarkable mathematical properties. It is, for example, a "deep scale," containing each of the six diatonic intervals a unique number of times; it represents a "maximally even" division of the octave into seven nearly-equal parts; it is capable of participating in a "maximally smooth" cycle of transpositions that differ only by the shift of a single pitch by a single semitone; and it has "Myhill's property," in the sense that every distinct two-note diatonic interval (e.g., a third) comes in exactly two distinct chromatic varieties (e.g., major and minor). Many theorists have used these properties to describe and even explain the role of the diatonic scale in traditional tonal music.2 Tonal music, however, is not exclusively diatonic, and the two nondiatonic minor scales possess none of the properties mentioned above. Thus, to the extent that we emphasize the mathematical uniqueness of the diatonic scale, we must downplay the musical significance of the other scales, for example by treating the melodic and harmonic minor scales merely as modifications of the natural minor. The difficulty is compounded when we consider the music of the late-nineteenth and twentieth centuries, in which composers expanded their musical vocabularies to include new scales (for instance, the whole-tone and the octatonic) which again shared few of the diatonic scale's interesting characteristics. This suggests that many of the features *I would like to thank David Lewin, John Thow, and Robert Wason for their assistance in preparing this article.
    [Show full text]