A Biological Rationale for Musical Consonance Daniel L

Total Page:16

File Type:pdf, Size:1020Kb

A Biological Rationale for Musical Consonance Daniel L PERSPECTIVE PERSPECTIVE A biological rationale for musical consonance Daniel L. Bowlinga,1 and Dale Purvesb,1 aDepartment of Cognitive Biology, University of Vienna, 1090 Vienna, Austria; and bDuke Institute for Brain Sciences, Duke University, Durham, NC 27708 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved June 25, 2015 (received for review March 25, 2015) The basis of musical consonance has been debated for centuries without resolution. Three interpretations have been considered: (i) that consonance derives from the mathematical simplicity of small integer ratios; (ii) that consonance derives from the physical absence of interference between harmonic spectra; and (iii) that consonance derives from the advantages of recognizing biological vocalization and human vocalization in particular. Whereas the mathematical and physical explanations are at odds with the evidence that has now accumu- lated, biology provides a plausible explanation for this central issue in music and audition. consonance | biology | music | audition | vocalization Why we humans hear some tone combina- perfect fifth (3:2), and the perfect fourth revolution in the 17th century, which in- tions as relatively attractive (consonance) (4:3), ratios that all had spiritual and cos- troduced a physical understanding of musi- and others as less attractive (dissonance) has mological significance in Pythagorean phi- cal tones. The science of sound attracted been debated for over 2,000 years (1–4). losophy (9, 10). many scholars of that era, including Vincenzo These perceptual differences form the basis The mathematical range of Pythagorean and Galileo Galilei, Renee Descartes, and of melody when tones are played sequen- consonance was extended in the Renaissance later Daniel Bernoulli and Leonard Euler. tially and harmony when tones are played by the Italian music theorist and composer Vincenzo Galilei, who had studied under simultaneously. Geoseffo Zarlino. Zarlino expanded the Py- Zarlino, undermined theories based on Musicians and theorists have long consid- thagorean “tetrakys” to include the numbers mathematical simplicity by demonstrating ered consonance and dissonance to depend 5 and 6, thus accommodating the major third the presence of more complex ratios in on the fundamental frequency ratio between (5:4), minor third (6:5), and major sixth (5:3), numerologically “pure” scales (e.g., 32:27 tones (regularly repeating sound signals that which had become increasingly popular in between the second and fourth tones of we perceive as having pitch). A number of thepolyphonicmusicoftheLateMiddle Zarlino’s justly tuned major scale). He also studies have asked listeners to rank the Ages (2). Echoing the Pythagoreans, Zarlino’s showed that simple ratios do not account for relative consonance of a standard set of two- rationale was based on the numerological consonance when their terms express the tone chords whose fundamental frequency significance of 6, which is the first integer that relative weights of hammers or volumes ratios range from 1:1 to 2:1 (Fig. 1A)(5–8). equalsthesumofallofthenumbersofwhich enclosed in bells, as proponents of mathe- The results show broad agreement about it is a multiple (1 + 2 + 3 = 1 × 2x3= matical theories had assumed. Galileo con- which chords are more consonant and which 6). Additional reasons included the natural firmed his father’s work, and went on to less (Fig. 1B). But why two-tone combina- world as it was then understood (six “planets” show that, properly conceived, the terms of tions with different frequency ratios are dif- in the sky), and Christian theology (the world consonant ratios express the frequencies at ferently appealing to listeners has never was created in 6 days) (11). According to one which objects vibrate (10). been settled. music historian, Zarlino sought to create “a At about the same time, interest grew in Inwhatfollows,wediscussthemajorways divinely ordained natural sphere within the sounds produced by vibrating objects that that mathematicians, physicists, musicians, which the musician could operate freely” do not correspond to the pitch of the fun- psychologists, and philosophers have sought (ref. 10, p. 103). damental frequency. Among the early con- to rationalize consonance and dissonance, Although Pythagorean beliefs have long tributors to this further issue was the French concluding that the most promising frame- been derided as numerological mysticism, the theologian and music theorist Marin work for understanding consonance is evo- coincidence of numerical simplicity and Mersenne, who correctly concluded that the lutionary biology. pleasing perceptual effect continues to in- pitches of these “overtones” corresponded to fluence music theory and concepts of con- specific musical intervals above the funda- Consonance Based on Mathematical sonance even today (12, 13). The idea that mental (10). A physical basis for overtones Simplicity tone combinations are pleasing because they was provided shortly thereafter by the Most accounts of consonance begin with the are simple, however, begs the question of French mathematician and physicist Joseph interpretation of Greek mathematician and why simple is pleasing. And theories of Sauveur, who showed that the overtones of a philosopher Pythagoras in the sixth century consonance based on mathematical simplic- BCE. According to legend, Pythagoras showed ity have no better answer today than did Author contributions: D.L.B. and D.P. analyzed data; and D.L.B. and that tones generated by plucked strings Pythagoras. D.P. wrote the paper. whose lengths were related by small integer The authors declare no conflict of interest. ratios were pleasing. In light of this observa- Consonance Based on Physics This article is a PNAS Direct Submission. tion, the Pythagoreans limited permissible Enthusiasm for mathematical explanations 1To whom correspondence may be addressed. Email: purves@ tone combinations to the octave (2:1), the of consonance waned during the scientific neuro.duke.edu or [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1505768112 PNAS | September 8, 2015 | vol. 112 | no. 36 | 11155–11160 Downloaded by guest on September 29, 2021 of two-tone chords and showed that the combinations perceived as relatively consonant indeed exhibited little or no roughness, whereas those perceived as dissonant had relatively more. Helmholtz concluded that auditory roughness is the “true and suffi- cient cause of consonance and dissonance in music” (ref. 16, p. 227). Studies based on more definitive physio- logical and psychophysical data in the 20th century generally supported Helmholtz’s interpretation. Georg von Békésy’smap- ping of physical vibrations along the basilar membrane in response to sine tones made it possible to compare responses of the inner Fig. 1. The relative consonance of musical intervals. (A) The equal tempered chromatic scale used in modern ear with the results of psychoacoustical Western and much other music around the world. Each interval is defined by the ratio between a tone’s fundamental studies (17, 18). This comparison gave rise frequency and that of the lowest (tonic) tone in the scale. In equal temperament, small adjustments to these ratios to the idea of “critical bands,” regions ∼1mm ensure that every pair of adjacent tones is separated by 100 cents (a logarithmic measure of frequency). (B) The in length along the basilar membrane within relative consonance assigned by listeners to each of the 12 chromatic intervals played as two-tone chords. The filled black circles and dashed line show the median rank for each interval; colored circles represent data from ref. 5; open which the inner ear integrates frequency in- circles from ref. 6; crosses from ref. 7; open squares from ref. 8. These data were collected between 1898 and 2012, in formation (19–21). Greenwood (18) related Germany, Austria, the United Kingdom, the United States, Japan, and Singapore. critical bands to auditory roughness by comparing estimates of their bandwidth to the psychophysics of roughness perception plucked string arise from different vibrational that “in nature we find not only beauty but (22). The result suggested that tones falling modes and that their frequencies are neces- ugliness... proof that anything is natural within the same critical band are per- sarily integer multiples of the fundamental ” doesnotsufficetojustifyitesthetically (ref. ceived as rough whereas tones falling in dif- (Fig. 2). By the early 19th century, further 16, p. 232). He proposed instead that con- ferent critical bands are not (see also ref. 23). contributions from Bernoulli, Euler, Jean le “ ” sonance arises from the absence of jarring A link was thus forged between Helmholtz’s Rond d’Alembert, and Joseph Fourier had amplitude fluctuations that can be heard in conception of dissonance and modern provided a complete description of this some tone combinations but not others. The sensory physiology, and the phrase “sensory “harmonic series,” which arises not only from “ ” basis for this auditory roughness is the dissonance” was coined to describe this strings, but also from air columns and other physical interaction of sound waves with synthesis (24–26). The fact that perceived physical systems (14). similar frequencies, whose combination gives roughness tracked physical interactions on The ratios among harmonic overtones also rise to alternating periods of constructive and the basilar membrane was taken as support drew the
Recommended publications
  • Modeling of the Head-Related Transfer Functions for Reduced Computation and Storage Charles Duncan Lueck Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Modeling of the head-related transfer functions for reduced computation and storage Charles Duncan Lueck Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Lueck, Charles Duncan, "Modeling of the head-related transfer functions for reduced computation and storage " (1995). Retrospective Theses and Dissertations. 10929. https://lib.dr.iastate.edu/rtd/10929 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This mamiscr^t has been reproduced fFom the microfilin master. UMI films the text directly from the origmal or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from ai^ type of con^ter printer. Hie qnallQr of this repfodnction is dqiendent opon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthroug^ substandard marginc^ and in^^rqper alignment can adverse^ affect rq)roduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyri^t material had to be removed, a note will indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced sectioning the original, beginning at the upper left-hand comer and continuing from left to light in equal sections with small overk^ Each original is also photogrs^hed in one exposure and is included in reduced form at the bade of the book.
    [Show full text]
  • The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
    The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely.
    [Show full text]
  • Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings
    Fakult¨at fur¨ Elektrotechnik und Informationstechnik Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings Christof Weiß geboren am 16.07.1986 in Regensburg Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) Angefertigt im: Fachgebiet Elektronische Medientechnik Institut fur¨ Medientechnik Fakult¨at fur¨ Elektrotechnik und Informationstechnik Gutachter: Prof. Dr.-Ing. Dr. rer. nat. h. c. mult. Karlheinz Brandenburg Prof. Dr. rer. nat. Meinard Muller¨ Prof. Dr. phil. Wolfgang Auhagen Tag der Einreichung: 25.11.2016 Tag der wissenschaftlichen Aussprache: 03.04.2017 urn:nbn:de:gbv:ilm1-2017000293 iii Acknowledgements This thesis could not exist without the help of many people. I am very grateful to everybody who supported me during the work on my PhD. First of all, I want to thank Prof. Karlheinz Brandenburg for supervising my thesis but also, for the opportunity to work within a great team and a nice working enviroment at Fraunhofer IDMT in Ilmenau. I also want to mention my colleagues of the Metadata department for having such a friendly atmosphere including motivating scientific discussions, musical activity, and more. In particular, I want to thank all members of the Semantic Music Technologies group for the nice group climate and for helping with many things in research and beyond. Especially|thank you Alex, Ronny, Christian, Uwe, Estefan´ıa, Patrick, Daniel, Ania, Christian, Anna, Sascha, and Jakob for not only having a prolific working time in Ilmenau but also making friends there. Furthermore, I want to thank several students at TU Ilmenau who worked with me on my topic. Special thanks go to Prof.
    [Show full text]
  • An Assessment of Sound Annoyance As a Function of Consonance
    An Assessment of Sound Annoyance as a Function of Consonance Song Hui Chon CCRMA / Electrical Engineering Stanford University Stanford, CA 94305 [email protected] Abstract In this paper I study the annoyance generated by synthetic auditory stimuli as a function of consonance. The concept of consonance is one of the building blocks for Western music theory, and recently tonal consonance (to distinguish from musical consonance) is getting attention from the psychoacoustics community as a perception parameter. This paper presents an analysis of the experimental result from a previous study, using tonal consonance as a factor. The result shows that there is a direct correlation between annoyance and consonance and that perceptual annoyance, for the given manner of stimulus presentation, increases as a stimulus becomes more consonant at a given loudness level. 1 Introduction 1.1 Addressing Annoyance Annoyance is one of the most common feelings people experience everyday in this modern society. It is a highly subjective sensation; however this paper presumes that there is a commonality behind each person's annoyance perception. It is generally understood that one aspect of annoyance is a direct correlation with spectral power [1], although the degree of correlation is under investigation [2][3]. Previous studies have assumed that noise level is a strict gauge for determining annoyance [4], but it is reasonable to suggest that the influence of sound level might be more subtle; annoyance is, after all, a subjective and highly personal characteristic. One study reveals that subjects perceive annoyance differently based on their ability to influence it [5]. Another demonstrates that age plays a significant role in annoyance judgments [6], though conflicting results indicate more complex issues.
    [Show full text]
  • Shepard, 1982
    Psychological Review VOLUME 89 NUMBER 4 JULY 1 9 8 2 Geometrical Approximations to the Structure of Musical Pitch Roger N. Shepard Stanford University ' Rectilinear scales of pitch can account for the similarity of tones close together in frequency but not for the heightened relations at special intervals, such as the octave or perfect fifth, that arise when the tones are interpreted musically. In- creasingly adequate a c c o u n t s of musical pitch are provided by increasingly gen- eralized, geometrically regular helical structures: a simple helix, a double helix, and a double helix wound around a torus in four dimensions or around a higher order helical cylinder in five dimensions. A two-dimensional "melodic map" o f these double-helical structures provides for optimally compact representations of musical scales and melodies. A two-dimensional "harmonic map," obtained by an affine transformation of the melodic map, provides for optimally compact representations of chords and harmonic relations; moreover, it is isomorphic to the toroidal structure that Krumhansl and Kessler (1982) show to represent the • psychological relations among musical keys. A piece of music, just as any other acous- the musical experience. Because the ear is tic stimulus, can be physically described in responsive to frequencies up to 20 kHz or terms of two time-varying pressure waves, more, at a sampling rate of two pressure one incident at each ear. This level of anal- values per cycle per ear, the physical spec- ysis has, however, little correspondence to ification of a half-hour symphony requires well in excess of a hundred million numbers.
    [Show full text]
  • Unified Music Theories for General Equal-Temperament Systems
    Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories.
    [Show full text]
  • Virtual Pitch and Pitch Shifts in Church Bells
    Open Journal of Acoustics, 2017, 7, 52-68 http://www.scirp.org/journal/oja ISSN Online: 2162-5794 ISSN Print: 2162-5786 Virtual Pitch and Pitch Shifts in Church Bells William A. Hibbert, Shahram Taherzadeh, David B. Sharp School of Engineering and Innovation, Open University, Milton Keynes, UK How to cite this paper: Hibbert, W.A., Abstract Taherzadeh, S. and Sharp, D.B. (2017) Virtual Pitch and Pitch Shifts in Church It is well established that musical sounds comprising multiple partials with Bells. Open Journal of Acoustics, 7, 52-68. frequencies approximately in the ratio of small integers give rise to a strong https://doi.org/10.4236/oja.2017.73006 sensation of pitch even if the lowest or fundamental partial is missing—the so-called virtual pitch effect. Experiments on thirty test subjects demonstrate Received: August 3, 2017 Accepted: September 5, 2017 that this virtual pitch is shifted significantly by changes in the spacing of the Published: September 8, 2017 constituent partials. The experiments measured pitch by comparison of sounds of similar timbre and were automated so that they could be performed Copyright © 2017 by authors and remotely across the Internet. Analysis of the test sounds used shows that the Scientific Research Publishing Inc. This work is licensed under the Creative pitch shifts are not predicted by Terhardt’s classic model of virtual pitch. The Commons Attribution International test sounds used were modelled on the sounds of church bells, but a further License (CC BY 4.0). experiment on seventeen test subjects showed that changes in partial ampli- http://creativecommons.org/licenses/by/4.0/ tude only had a minor effect on the pitch shifts observed, and that a pitch shift Open Access was still observed when two of the lowest frequency partials were removed, so that the effects reported are of general interest.
    [Show full text]
  • Psychoacoustics Perception of Normal and Impaired Hearing with Audiology Applications Editor-In-Chief for Audiology Brad A
    PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Editor-in-Chief for Audiology Brad A. Stach, PhD PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Jennifer J. Lentz, PhD 5521 Ruffin Road San Diego, CA 92123 e-mail: [email protected] Website: http://www.pluralpublishing.com Copyright © 2020 by Plural Publishing, Inc. Typeset in 11/13 Adobe Garamond by Flanagan’s Publishing Services, Inc. Printed in the United States of America by McNaughton & Gunn, Inc. All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher. For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: [email protected] Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity. Library of Congress Cataloging-in-Publication Data Names: Lentz, Jennifer J., author. Title: Psychoacoustics : perception of normal and impaired hearing with audiology applications / Jennifer J. Lentz. Description: San Diego, CA : Plural Publishing,
    [Show full text]
  • Reconsidering Pitch Centricity Stanley V
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: School of Music Music, School of 2011 Reconsidering Pitch Centricity Stanley V. Kleppinger University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/musicfacpub Part of the Music Commons Kleppinger, Stanley V., "Reconsidering Pitch Centricity" (2011). Faculty Publications: School of Music. 63. http://digitalcommons.unl.edu/musicfacpub/63 This Article is brought to you for free and open access by the Music, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: School of Music by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reconsidering Pitch Centricity STANLEY V. KLEPPINGER Analysts commonly describe the musical focus upon a particular pitch class above all others as pitch centricity. But this seemingly simple concept is complicated by a range of factors. First, pitch centricity can be understood variously as a compositional feature, a perceptual effect arising from specific analytical or listening strategies, or some complex combination thereof. Second, the relation of pitch centricity to the theoretical construct of tonality (in any of its myriad conceptions) is often not consistently or robustly theorized. Finally, various musical contexts manifest or evoke pitch centricity in seemingly countless ways and to differing degrees. This essay examines a range of compositions by Ligeti, Carter, Copland, Bartok, and others to arrive at a more nuanced perspective of pitch centricity - one that takes fuller account of its perceptual foundations, recognizes its many forms and intensities, and addresses its significance to global tonal structure in a given composition.
    [Show full text]
  • Shifting Exercises with Double Stops to Test Intonation
    VERY ROUGH AND PRELIMINARY DRAFT!!! Shifting Exercises with Double Stops to Test Intonation These exercises were inspired by lessons I had from 1968 to 1970 with David Smiley of the San Francisco Symphony. I don’t have the book he used, but I believe it was one those written by Dounis on the scientific or artist's technique of violin playing. The exercises were difficult and frustrating, and involved shifting and double stops. Smiley also emphasized routine testing notes against other strings, and I also found some of his tasks frustrating because I couldn’t hear intervals that apparently seemed so familiar to a professional musician. When I found myself giving violin lessons in 2011, I had a mathematical understanding of why it was so difficult to hear certain musical intervals, and decided not to focus on them in my teaching. By then I had also developed some exercises to develop my own intonation. These exercises focus entirely on what is called the just scale. Pianos use the equal tempered scale, which is the predominate choice of intonation in orchestras and symphonies (I NEED VERIFICATION THAT THIS IS TRUE). It takes many years and many types of exercises and activities to become a good violinist. But I contend that everyone should start by mastering the following double stops in “just” intonation: 1. Practice the intervals shown above for all possible pairs of strings on your violin or viola. Learn the first two first, then add one interval at a time. They get harder to hear as you go down the list for reasons having to do with the fractions: 1/2, 2/3, 3/4, 3/5, 4/5, 5/6.
    [Show full text]
  • Web-Based Psychoacoustics: Hearing Screening, Infrastructure, And
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443520; this version posted May 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Web-based Psychoacoustics: Hearing Screening, Infrastructure, and Validation Brittany A. Moka, Vibha Viswanathanb, Agudemu Borjiginb, Ravinderjit Singhb, Homeira Kafib, and ∗Hari M. Bharadwaja,b aDepartment of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States bWeldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States Abstract Anonymous web-based experiments are increasingly and successfully used in many domains of behavioral research. However, online studies of auditory perception, especially of psychoacoustic phe- nomena pertaining to low-level sensory processing, are challenging because of limited available control of the acoustics, and the unknown hearing status of participants. Here, we outline our approach to mitigate these challenges and validate our procedures by comparing web-based measurements to lab- based data on a range of classic psychoacoustic tasks. Individual tasks were created using jsPsych, an open-source javascript front-end library. Dynamic sequences of psychoacoustic tasks were imple- mented using Django, an open-source library for web applications, and combined with consent pages, questionnaires, and debriefing pages. Subjects were recruited via Prolific, a web-based human-subject marketplace. Guided by a meta-analysis of normative data, we developed and validated a screening pro- cedure to select participants for (putative) normal-hearing status; this procedure combined thresholding of scores in a suprathreshold cocktail-party task with filtering based on survey responses.
    [Show full text]
  • Psychoacoustics and Its Benefit for the Soundscape
    ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 92 (2006) 1 – 1 Psychoacoustics and its Benefit for the Soundscape Approach Klaus Genuit, André Fiebig HEAD acoustics GmbH, Ebertstr. 30a, 52134 Herzogenrath, Germany. [klaus.genuit][andre.fiebig]@head- acoustics.de Summary The increase of complaints about environmental noise shows the unchanged necessity of researching this subject. By only relying on sound pressure levels averaged over long time periods and by suppressing all aspects of quality, the specific acoustic properties of environmental noise situations cannot be identified. Because annoyance caused by environmental noise has a broader linkage with various acoustical properties such as frequency spectrum, duration, impulsive, tonal and low-frequency components, etc. than only with SPL [1]. In many cases these acoustical properties affect the quality of life. The human cognitive signal processing pays attention to further factors than only to the averaged intensity of the acoustical stimulus. Therefore, it appears inevitable to use further hearing-related parameters to improve the description and evaluation of environmental noise. A first step regarding the adequate description of environmental noise would be the extended application of existing measurement tools, as for example level meter with variable integration time and third octave analyzer, which offer valuable clues to disturbing patterns. Moreover, the use of psychoacoustics will allow the improved capturing of soundscape qualities. PACS no. 43.50.Qp, 43.50.Sr, 43.50.Rq 1. Introduction disturbances and unpleasantness of environmental noise, a negative feeling evoked by sound. However, annoyance is The meaning of soundscape is constantly transformed and sensitive to subjectivity, thus the social and cultural back- modified.
    [Show full text]