Download the Just Intonation Primer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch. -
Shifting Exercises with Double Stops to Test Intonation
VERY ROUGH AND PRELIMINARY DRAFT!!! Shifting Exercises with Double Stops to Test Intonation These exercises were inspired by lessons I had from 1968 to 1970 with David Smiley of the San Francisco Symphony. I don’t have the book he used, but I believe it was one those written by Dounis on the scientific or artist's technique of violin playing. The exercises were difficult and frustrating, and involved shifting and double stops. Smiley also emphasized routine testing notes against other strings, and I also found some of his tasks frustrating because I couldn’t hear intervals that apparently seemed so familiar to a professional musician. When I found myself giving violin lessons in 2011, I had a mathematical understanding of why it was so difficult to hear certain musical intervals, and decided not to focus on them in my teaching. By then I had also developed some exercises to develop my own intonation. These exercises focus entirely on what is called the just scale. Pianos use the equal tempered scale, which is the predominate choice of intonation in orchestras and symphonies (I NEED VERIFICATION THAT THIS IS TRUE). It takes many years and many types of exercises and activities to become a good violinist. But I contend that everyone should start by mastering the following double stops in “just” intonation: 1. Practice the intervals shown above for all possible pairs of strings on your violin or viola. Learn the first two first, then add one interval at a time. They get harder to hear as you go down the list for reasons having to do with the fractions: 1/2, 2/3, 3/4, 3/5, 4/5, 5/6. -
HSK 6 Vocabulary List
HSK 6 Vocabulary List No Chinese Pinyin English HSK 1 呵 ā to scold in a loud voice; to yawn HSK6 to suffer from; to endure; to tide over (a 2 挨 āi HSK6 difficult period); to delay to love sth too much to part with it (idiom); 3 爱不释手 àibùshìshǒu HSK6 to fondle admiringly 4 爱戴 àidài to love and respect; love and respect HSK6 5 暧昧 àimèi vague; ambiguous; equivocal; dubious HSK6 hey; ow; ouch; interjection of pain or 6 哎哟 āiyō HSK6 surprise 7 癌症 áizhèng cancer HSK6 8 昂贵 ángguì expensive; costly HSK6 law case; legal case; judicial case; 9 案件 ànjiàn HSK6 CL:宗[zong1],樁|桩[zhuang1],起[qi3] 10 安居乐业 ānjūlèyè live in peace and work happily (idiom) HSK6 11 案例 ànlì case (law); CL:個|个[ge4] HSK6 12 按摩 ànmó massage HSK6 13 安宁 ānníng peaceful; tranquil; calm; composed HSK6 14 暗示 ànshì to hint; to suggest; suggestion; a hint HSK6 15 安详 ānxiáng serene HSK6 find a place for; help settle down; arrange 16 安置 ānzhì HSK6 for; to get into bed; placement (of cooking) to boil for a long time; to 17 熬 áo HSK6 endure; to suffer 18 奥秘 àomì profound; deep; a mystery HSK6 bumpy; uneven; slotted and tabbed joint; 19 凹凸 āotú HSK6 crenelation to hold on to; to cling to; to dig up; to rake; 20 扒 bā to push aside; to climb; to pull out; to strip HSK6 off 21 疤 bā scar HSK6 to be eager for; to long for; to look forward 22 巴不得 bābudé HSK6 to the Way of the Hegemon, abbr. -
Andrián Pertout
Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure -
Playing Music in Just Intonation: a Dynamically Adaptive Tuning Scheme
Karolin Stange,∗ Christoph Wick,† Playing Music in Just and Haye Hinrichsen∗∗ ∗Hochschule fur¨ Musik, Intonation: A Dynamically Hofstallstraße 6-8, 97070 Wurzburg,¨ Germany Adaptive Tuning Scheme †Fakultat¨ fur¨ Mathematik und Informatik ∗∗Fakultat¨ fur¨ Physik und Astronomie †∗∗Universitat¨ Wurzburg¨ Am Hubland, Campus Sud,¨ 97074 Wurzburg,¨ Germany Web: www.just-intonation.org [email protected] [email protected] [email protected] Abstract: We investigate a dynamically adaptive tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, our tuning scheme continually solves a system of linear equations, rather than relying on sequences of conditional if-then clauses. In complex situations, where not all intervals of a chord can be tuned according to the frequency ratios of just intonation, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided to demonstrate the feasibility of the tuning method. The first attempts to mathematically characterize is particularly pronounced if m and n are small. musical intervals date back to Pythagoras, who Examples include the perfect octave (m:n = 2:1), noted that the consonance of two tones played on the perfect fifth (3:2), and the perfect fourth (4:3). a monochord can be related to simple fractions Larger values of mand n tend to correspond to more of the corresponding string lengths (for a general dissonant intervals. If a normally consonant interval introduction see, e.g., Geller 1997; White and White is sufficiently detuned from just intonation (i.e., the 2014). -
Partch 43 Tone Scale © Copyright Juhan Puhm 2016 Puhm Juhan Copyright © Scale Tone 43 Partch N Our Door with Our Common Scales
! "#$!%&'()#! *+!",-$!.)&/$! ! ! ! 01#&-!%1#2 !!! "#$!%&'()#!*+!",-$!.)&/$"#$!%&'()#!*+!",-$!.)&/$!!!! One can only imagine the years Harry Partch spent formulating his 43 tone scale and then the lifetime spent realizing it. A pinnacle of Just Intonation, a fair bit of time can be spent unraveling the intricacies of the 43 tone scale and coming to terms with the choices Partch made. What are some of the features of this scale? For starters the scale is a pure Just Intonation scale, no tempering of any intervals whatsoever. All pitches are given exact ratios and so all intervals are exact as well. For the most part all the music we listen to is constructed of up to 5 limit ratios. Partch expanded our common tonality to include 7 and 11 limit ratios. It can be argued that 2, 3 and 5 limit ratios are the language of harmony and any higher limit ratios are not harmonic in the least bit, regardless of what people would like to pretend. Possibly some 7 limit ratios can be said to push the bounds of what can be considered harmonic. Since our current 12 note scale and instruments do not even remotely support or approximate any 7 or 11 limit ratios, 7 and 11 limit ratios are completely outside the realm of our listening and composing experience. The equal tempered tritone and minor seventh intervals do not approximate 7 limit ratios. It would be incorrect to think of the minor seventh approximating the 7 limit ratio of 7/4, which is almost one-third of a semitone lower (969 cents). Our tempered minor seventh (1000 cents) is firmly in the realm of two perfect fourths (4/3 * 4/3 = 16/9, (996 cents)) or further removed, a minor third above the dominant (3/2 * 6/5 = 9/5 (1018 cents)). -
A Study of Microtones in Pop Music
University of Huddersfield Repository Chadwin, Daniel James Applying microtonality to pop songwriting: A study of microtones in pop music Original Citation Chadwin, Daniel James (2019) Applying microtonality to pop songwriting: A study of microtones in pop music. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/34977/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Applying microtonality to pop songwriting A study of microtones in pop music Daniel James Chadwin Student number: 1568815 A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Master of Arts University of Huddersfield May 2019 1 Abstract While temperament and expanded tunings have not been widely adopted by pop and rock musicians historically speaking, there has recently been an increased interest in microtones from modern artists and in online discussion. -
Mto.95.1.4.Cuciurean
Volume 1, Number 4, July 1995 Copyright © 1995 Society for Music Theory John D. Cuciurean KEYWORDS: scale, interval, equal temperament, mean-tone temperament, Pythagorean tuning, group theory, diatonic scale, music cognition ABSTRACT: In Mathematical Models of Musical Scales, Mark Lindley and Ronald Turner-Smith attempt to model scales by rejecting traditional Pythagorean ideas and applying modern algebraic techniques of group theory. In a recent MTO collaboration, the same authors summarize their work with less emphasis on the mathematical apparatus. This review complements that article, discussing sections of the book the article ignores and examining unique aspects of their models. [1] From the earliest known music-theoretical writings of the ancient Greeks, mathematics has played a crucial role in the development of our understanding of the mechanics of music. Mathematics not only proves useful as a tool for defining the physical characteristics of sound, but abstractly underlies many of the current methods of analysis. Following Pythagorean models, theorists from the middle ages to the present day who are concerned with intonation and tuning use proportions and ratios as the primary language in their music-theoretic discourse. However, few theorists in dealing with scales have incorporated abstract algebraic concepts in as systematic a manner as the recent collaboration between music scholar Mark Lindley and mathematician Ronald Turner-Smith.(1) In their new treatise, Mathematical Models of Musical Scales: A New Approach, the authors “reject the ancient Pythagorean idea that music somehow &lsquois’ number, and . show how to design mathematical models for musical scales and systems according to some more modern principles” (7). -
MTO 25.1 Examples: Willis, Comprehensibility and Ben Johnston’S String Quartet No
MTO 25.1 Examples: Willis, Comprehensibility and Ben Johnston’s String Quartet No. 9 (Note: audio, video, and other interactive examples are only available online) http://mtosmt.org/issues/mto.19.25.1/mto.19.25.1.willis.html Example 1. Partch’s 5-limit tonality diamond, after Partch (1974, 110) also given with pitch names and cent deviations from twelve-tone equal temperament Example 2. Partch’s 11-limit tonality diamond, after Partch (1974, 159) Example 3. The just-intoned diatonic shown in ratios, cents, and on a Tonnetz Example 4. Johnston’s accidentals, the 5-limit ration they inflect, the target ratio they bring about, their ratio and cent value. As an example of how this table works, take row 11. If we multiply 4:3 by 33:32 it sums to 11:8. This is equivalent to raising a perfect fourth by Johnston’s 11 chroma. Example 5. The overtone and undertone series of C notated using Johnston’s method Example 6. A Tonnetz with the syntonic diatonic highlighted in grey. The solid lines connect the two 5-limit pitches that may be inflected to produce a tonal or tonal seventh against the C. This makes clear why the tonal seventh of C is notated as lowered by a syntonic comma in addition to an inverse 7 sign. It is because the pitch is tuned relative to the D- (10:9), which is a syntonic comma lower than the D that appears in the diatonic gamut. Example 7. Johnston, String Quartet No. 9/I, m. 109. A comma pump progression shown with Roman Numerals and a Tonnetz. -
Temperaments Visualized
Temperaments Visualized About Temperaments • Pythagorean • Meantone • Modified Meantone • Well • Victorian Well • Quasi-Equal • Equal • Modern Well • EBVT • Return to rollingball home About Temperaments Historical Overview This section contains a brief graphic overview of types of temperaments in the context of classical composers. The bottom half of the graphic has live hotspots, but the upper half (with the names of composers) is sadly lacking in interactivity. If you click on a miniature and get the full-size chart, you can press backspace to return to the current History image. Homage to Jorgensen Reading the Charts About "Key Color" Temperamental links - other websites sites of interest will appear in the frame to the right, and you can explore while remaining at rollingball.com... Click on a type of temperament (meantone, modified meantone, well, victorian well, quasi-equal, or equal). The temperament dates and detailed temperament information are drawn primarily from Jorgensen's tome, Tuning. The composer dates were quickly abstracted from Classical Net's Timeline of Composers. Consider two aspects of this: (1) What temperament would the composers have heard when they were children? (2) What temperament would they have had their keyboards tuned to? http://www.rollingball.com/TemperamentsFrames.htm10/2/2006 4:13:04 PM About Temperaments About Temperaments Historical Overview This section contains a brief graphic overview of types of temperaments in the context of classical composers. The bottom half of the graphic has live hotspots, but the upper half (with the names of composers) is sadly lacking in interactivity. If you click on a miniature and get the full-size chart, you can press backspace to return to the current History image. -
European Philosophy and the Triumph of Equal Temperament/ Noel David Hudson University of Massachusetts Amherst
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2007 Abandoning nature :: European philosophy and the triumph of equal temperament/ Noel David Hudson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Hudson, Noel David, "Abandoning nature :: European philosophy and the triumph of equal temperament/" (2007). Masters Theses 1911 - February 2014. 1628. Retrieved from https://scholarworks.umass.edu/theses/1628 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. ABANDONING NATURE: EUROPEAN PHILOSOPHY AND THE TRIUMPH OF EQUAL TEMPERAMENT A Thesis Presented by NOEL DAVID HUDSON Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF ARTS February 2007 UMASS/Five College Graduate Program in History © Copyright by Noel David Hudson 2006 All Rights Reserved ABANDONING NATURE: EUROPEAN PHILOSOPHY AND THE TRIUMPH OF EQUAL TEMPERAMENT A Thesis Presented by NOEL DAVID HUDSON Approved as to style and content by: Daniel Gordon, th^ir Bruce Laurie, Member Brian Ogilvie, Member Audrey Altstadt, Department Head Department of History CONTKNTS ( HAPTER Page 1. [NTR0D1 f< i ion 2. what is TEMPERAMENT? 3. THE CLASSICAL LEGACY 4. THE ENGLISH, MUSICAL INSTRUMENTS, AND OTHER PROBLEMS 5. A TROUBLING SOLUTION (>. ANCIEN1 HABITS OF MUSICAL THOUGHT IN THE "NEW PHILOSOPHY" 7. FROM THEORY TO PRACTICE X. A THEORETICAL INTERLUDE 9.