MTO 22.4: Gotham, Pitch Properties of the Pedal Harp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PCC Cat 20-21 Jan Changes-Without Highlights
PENSACOLA CHRISTIAN COLLEGER 2020 – 2021 CATA LO G PENSACOLA CHRISTIAN COLLEGE PENSACOLA 1 UNDERGRADUATE 2 – EMPOWERING CHRISTIAN LEADERS R TO INFLUENCE THE WORLD 20 CATALOG 37426101-2/20 AS Sophomores, Juniors, and Seniors, Come Experience PCC for Yourself at College Days! Nov. 18–20, 2020 • Mar. 24–26, 2021 • Apr. 7–9, 2021 Yes, you can come any time, but no other time is quite like College Days. You’ll get a glimpse of college academics as you visit classrooms and labs. You’ll find out what students are like as you stay in a resi- dence hall. You can go to special activities planned just for you. But that’s not all. Beyond that, you’ll experience chapel in the Crowne Centre, go to meals in the Four Winds or Varsity, and head to the Sports Center for rock climbing and more. That’s just a start of what you can do during College Days. When you’re done looking through these pages, you’ll know a good bit about PCC. But it’s not the same as being here! See for yourself what PCC is really like. Ask questions in person. And get a better idea if this is the next step God has for you. Find out more today at pcci.edu/CollegeDays or call 1-800-PCC-INFO, ext. 4, to reserve your spot. pcci.edu • [email protected] 1-800-PCC-INFO (722-4636) for new student admissions (850) 478-8496 for all other info. @ConnectPCC Pensacola Christian College @ConnectPCC PensacolaChristianCollege catalog available online at pcci.edu/Catalog PENSACOLA CHRISTIAN COLLEGER 1 UNDERGRADUATE 2 – 20 CATALOG CONTENTS General Information ............................... -
First Progress Report of the ICEL Music Committee
MUSIC FOR THE ENGLISH LANGUAGE ROMAN MISSAL AN INTRODUCTION For the forthcoming English language Roman Missal (sometimes called the Sacramentary), the International Commission on English in the Liturgy will offer to the Conferences of Bishops of the English‐speaking world chants for everything that is set to music in the Missale Romanum, editio typica tertia (2002): • The dialogues between the celebrant (or in the case of the Dismissal, the deacon) and the assembly such as the Sign of the Cross (“In the name of the Father, and of the Son, and of the Holy Spirit”) and the Dismissal (“Go forth, the Mass is ended”); • Tones for singing the presidential prayers (Collect, Prayer over the Offerings, Prayer after Communion) with all prayer texts pointed for singing; • The chants before and after the readings such as “A reading from the book of…” and “The Gospel of the Lord”; • Separate tones for singing the First Reading, Second Reading, and Gospel; • The Universal Prayer or Prayer of the Faithful; • The Preface Dialogue and Prefaces, including a musical setting of every Preface; • Full musical settings of Eucharistic Prayers I, II, III and IV, and the concluding Doxology; • Other elements such as the Kyrie, Gloria, Creed, Sanctus, Agnus Dei, and Lord’s Prayer; • Chants for particular days and feasts such as “Hosanna to the Son of David” on Palm Sunday, the Universal Prayer and “Behold the wood of the Cross” on Good Friday, the Exsultet (Paschal Proclamation) at the Easter Vigil, antiphons for the Feast of the Presentation of the Lord on February 2nd, and the Proclamation of Easter and Moveable Feasts for Epiphany. -
An Adaptive Tuning System for MIDI Pianos
David Løberg Code Groven.Max: School of Music Western Michigan University Kalamazoo, MI 49008 USA An Adaptive Tuning [email protected] System for MIDI Pianos Groven.Max is a real-time program for mapping a renstemningsautomat, an electronic interface be- performance on a standard keyboard instrument to tween the manual and the pipes with a kind of arti- a nonstandard dynamic tuning system. It was origi- ficial intelligence that automatically adjusts the nally conceived for use with acoustic MIDI pianos, tuning dynamically during performance. This fea- but it is applicable to any tunable instrument that ture overcomes the historic limitation of the stan- accepts MIDI input. Written as a patch in the MIDI dard piano keyboard by allowing free modulation programming environment Max (available from while still preserving just-tuned intervals in www.cycling74.com), the adaptive tuning logic is all keys. modeled after a system developed by Norwegian Keyboard tunings are compromises arising from composer Eivind Groven as part of a series of just the intersection of multiple—sometimes oppos- intonation keyboard instruments begun in the ing—influences: acoustic ideals, harmonic flexibil- 1930s (Groven 1968). The patch was first used as ity, and physical constraints (to name but three). part of the Groven Piano, a digital network of Ya- Using a standard twelve-key piano keyboard, the maha Disklavier pianos, which premiered in Oslo, historical problem has been that any fixed tuning Norway, as part of the Groven Centennial in 2001 in just intonation (i.e., with acoustically pure tri- (see Figure 1). The present version of Groven.Max ads) will be limited to essentially one key. -
The Group-Theoretic Description of Musical Pitch Systems
The Group-theoretic Description of Musical Pitch Systems Marcus Pearce [email protected] 1 Introduction Balzano (1980, 1982, 1986a,b) addresses the question of finding an appropriate level for describing the resources of a pitch system (e.g., the 12-fold or some microtonal division of the octave). His motivation for doing so is twofold: “On the one hand, I am interested as a psychologist who is not overly impressed with the progress we have made since Helmholtz in understanding music perception. On the other hand, I am interested as a computer musician who is trying to find ways of using our pow- erful computational tools to extend the musical [domain] of pitch . ” (Balzano, 1986b, p. 297) Since the resources of a pitch system ultimately depend on the pairwise relations between pitches, the question is one of how to conceive of pitch intervals. In contrast to the prevailing approach which de- scribes intervals in terms of frequency ratios, Balzano presents a description of pitch sets as mathematical groups and describes how the resources of any pitch system may be assessed using this description. Thus he is concerned with presenting an algebraic description of pitch systems as a competitive alternative to the existing acoustic description. In these notes, I shall first give a brief description of the ratio based approach (§2) followed by an equally brief exposition of some necessary concepts from the theory of groups (§3). The following three sections concern the description of the 12-fold division of the octave as a group: §4 presents the nature of the group C12; §5 describes three perceptually relevant properties of pitch-sets in C12; and §6 describes three musically relevant isomorphic representations of C12. -
Unified Music Theories for General Equal-Temperament Systems
Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories. -
Sequence Distance Embeddings
Sequence Distance Embeddings by Graham Cormode Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Computer Science January 2003 Contents List of Figures vi Acknowledgments viii Declarations ix Abstract xi Abbreviations xii Chapter 1 Starting 1 1.1 Sequence Distances . ....................................... 2 1.1.1 Metrics ............................................ 3 1.1.2 Editing Distances ...................................... 3 1.1.3 Embeddings . ....................................... 3 1.2 Sets and Vectors ........................................... 4 1.2.1 Set Difference and Set Union . .............................. 4 1.2.2 Symmetric Difference . .................................. 5 1.2.3 Intersection Size ...................................... 5 1.2.4 Vector Norms . ....................................... 5 1.3 Permutations ............................................ 6 1.3.1 Reversal Distance ...................................... 7 1.3.2 Transposition Distance . .................................. 7 1.3.3 Swap Distance ....................................... 8 1.3.4 Permutation Edit Distance . .............................. 8 1.3.5 Reversals, Indels, Transpositions, Edits (RITE) . .................... 9 1.4 Strings ................................................ 9 1.4.1 Hamming Distance . .................................. 10 1.4.2 Edit Distance . ....................................... 10 1.4.3 Block Edit Distances . .................................. 11 1.5 Sequence Distance Problems . ................................. -
Mto.99.5.2.Soderberg
Volume 5, Number 2, March 1999 Copyright © 1999 Society for Music Theory Stephen Soderberg REFERENCE: MTO Vol. 4, No. 3 KEYWORDS: John Clough, Jack Douthett, David Lewin, maximally even set, microtonal music, hyperdiatonic system, Riemann system ABSTRACT: This article is a continuation of White Note Fantasy, Part I, published in MTO Vol. 4, No. 3 (May 1998). Part II combines some of the work done by others on three fundamental aspects of diatonic systems: underlying scale structure, harmonic structure, and basic voice leading. This synthesis allows the recognition of select hyperdiatonic systems which, while lacking some of the simple and direct character of the usual (“historical”) diatonic system, possess a richness and complexity which have yet to be fully exploited. II. A Few Hypertonal Variations 5. Necklaces 6. The usual diatonic as a model for an abstract diatonic system 7. An abstract diatonic system 8. Riemann non-diatonic systems 9. Extension of David Lewin’s Riemann systems References 5. Necklaces [5.1] Consider a symmetric interval string of cardinality n = c+d which contains c interval i’s and d interval j’s. If the i’s and j’s in such a string are additionally spaced as evenly apart from one another as possible, we will call this string a “necklace.” If s is a string in Cn and p is an element of Cn, then the structure ps is a “necklace set.” Thus <iijiij>, <ijijij>, and <ijjijjjijjj> are necklaces, but <iijjii>, <jiijiij>, and <iijj>, while symmetric, are not necklaces. i and j may also be equal, so strings of the 1 of 18 form <iii...> are valid necklaces. -
Applied Psychological Measurement
Applied Psychological Measurement http://apm.sagepub.com/ Applications of Multidimensional Scaling in Cognitive Psychology Edward J. Shoben Applied Psychological Measurement 1983 7: 473 DOI: 10.1177/014662168300700406 The online version of this article can be found at: http://apm.sagepub.com/content/7/4/473 Published by: http://www.sagepublications.com Additional services and information for Applied Psychological Measurement can be found at: Email Alerts: http://apm.sagepub.com/cgi/alerts Subscriptions: http://apm.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://apm.sagepub.com/content/7/4/473.refs.html >> Version of Record - Sep 1, 1983 What is This? Downloaded from apm.sagepub.com at UNIV OF ILLINOIS URBANA on September 3, 2012 Applications of Multidimensional Scaling in Cognitive Psychology Edward J. Shoben , University of Illinois Cognitive psychology has used multidimensional view is intended to be illustrative rather than ex- scaling (and related procedures) in a wide variety of haustive. Moreover, it should be admitted at the ways. This paper examines some straightforward ap- outset that the proportion of applications in com- plications, and also some applications where the ex- and exceeds the planation of the cognitive process is derived rather di- prehension memory considerably rectly from the solution obtained through multidimen- proportion of such examples from perception and sional scaling. Other applications examined include psychophysics. Although a conscious effort has been and the use of MDS to assess cognitive development, made to draw on more recent work, older studies as a function of context. Also examined is change have been included when deemed appropriate. -
Singing the Prostopinije Samohlasen Tones in English: a Tutorial
Singing the Prostopinije Samohlasen Tones in English: A Tutorial Metropolitan Cantor Institute Byzantine Catholic Metropolia of Pittsburgh 2006 The Prostopinije Samohlasen Melodies in English For many years, congregational singing at Vespers, Matins and the Divine Liturgy has been an important element in the Eastern Catholic and Orthodox churches of Southwestern Ukraine and the Carpathian mountain region. These notes describes one of the sets of melodies used in this singing, and how it is adapted for use in English- language parishes of the Byzantine Catholic Church in the United States. I. Responsorial Psalmody In the liturgy of the Byzantine Rite, certain psalms are sung “straight through” – that is, the verses of the psalm(s) are sung in sequence, with each psalm or group of psalms followed by a doxology (“Glory to the Father, and to the Son…”). For these psalms, the prostopinije chant uses simple recitative melodies called psalm tones. These melodies are easily applied to any text, allowing the congregation to sing the psalms from books containing only the psalm texts themselves. At certain points in the services, psalms or parts of psalms are sung with a response after each verse. These responses add variety to the service, provide a Christian “pointing” to the psalms, and allow those parts of the service to be adapted to the particular hour, day or feast being celebrated. The responses can be either fixed (one refrain used for all verses) or variable (changing from one verse to the next). Psalms with Fixed Responses An example of a psalm with a fixed response is the singing of Psalm 134 at Matins (a portion of the hymn called the Polyeleos): V. -
Program and Abstracts for 2005 Meeting
Music Theory Society of New York State Annual Meeting Baruch College, CUNY New York, NY 9–10 April 2005 PROGRAM Saturday, 9 April 8:30–9:00 am Registration — Fifth floor, near Room 5150 9:00–10:30 am The Legacy of John Clough: A Panel Discussion 9:00–10:30 am TextMusic Relations in Wolf 10:30–12:00 pm The Legacy of John Clough: New Research Directions, Part I 10:30am–12:00 Scriabin pm 12:00–1:45 pm Lunch 1:45–3:15 pm Set Theory 1:45–3:15 pm The Legacy of John Clough: New Research Directions, Part II 3:20–;4:50 pm Revisiting Established Harmonic and Formal Models 3:20–4:50 pm Harmony and Sound Play 4:55 pm Business Meeting & Reception Sunday, 10 April 8:30–9:00 am Registration 9:00–12:00 pm Rhythm and Meter in Brahms 9:00–12:00 pm Music After 1950 12:00–1:30 pm Lunch 1:30–3:00 pm Chromaticism Program Committee: Steven Laitz (Eastman School of Music), chair; Poundie Burstein (ex officio), Martha Hyde (University of Buffalo, SUNY) Eric McKee (Pennsylvania State University); Rebecca Jemian (Ithaca College), and Alexandra Vojcic (Juilliard). MTSNYS Home Page | Conference Information Saturday, 9:00–10:30 am The Legacy of John Clough: A Panel Discussion Chair: Norman Carey (Eastman School of Music) Jack Douthett (University at Buffalo, SUNY) Nora Engebretsen (Bowling Green State University) Jonathan Kochavi (Swarthmore, PA) Norman Carey (Eastman School of Music) John Clough was a pioneer in the field of scale theory. -
A Distance Model for Rhythms
A Distance Model for Rhythms Jean-Fran¸cois Paiement [email protected] Yves Grandvalet [email protected] IDIAP Research Institute, Case Postale 592, CH-1920 Martigny, Switzerland Samy Bengio [email protected] Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA Douglas Eck [email protected] Universit´ede Montr´eal, Department of Computer Science, CP 6128, Succ. Centre-Ville, Montr´eal, Qu´ebec H3C 3J7, Canada Abstract nested periodic components. Such a hierarchy is im- Modeling long-term dependencies in time se- plied in western music notation, where different levels ries has proved very difficult to achieve with are indicated by kinds of notes (whole notes, half notes, traditional machine learning methods. This quarter notes, etc.) and where bars establish measures problem occurs when considering music data. of an equal number of beats. Meter and rhythm pro- In this paper, we introduce a model for vide a framework for developing musical melody. For rhythms based on the distributions of dis- example, a long melody is often composed by repeating tances between subsequences. A specific im- with variation shorter sequences that fit into the met- plementation of the model when consider- rical hierarchy (e.g. sequences of 4, 8 or 16 measures). ing Hamming distances over a simple rhythm It is well know in music theory that distance patterns representation is described. The proposed are more important than the actual choice of notes in model consistently outperforms a standard order to create coherent music (Handel, 1993). In this Hidden Markov Model in terms of conditional work, distance patterns refer to distances between sub- prediction accuracy on two different music sequences of equal length in particular positions. -
Goodchild & Mcadams 1 Perceptual Processes in Orchestration To
Goodchild & McAdams 1 Perceptual Processes in Orchestration to appear in The Oxford Handbook of Timbre, eds. Emily I. Dolan and Alexander Rehding Meghan Goodchild & Stephen McAdams, Schulich School of Music of McGill University Abstract The study of timbre and orchestration in music research is underdeveloped, with few theories to explain instrumental combinations and orchestral shaping. This chapter will outline connections between orchestration practices of the 19th and early 20th centuries and perceptual principles based on recent research in auditory scene analysis and timbre perception. Analyses of orchestration treatises and musical scores reveal an implicit understanding of auditory grouping principles by which many orchestral effects and techniques function. We will explore how concurrent grouping cues result in blended combinations of instruments, how sequential grouping into segregated melodies or stratified (foreground and background) layers is influenced by timbral (dis)similarities, and how segmental grouping cues create formal boundaries and expressive gestural shaping through changes in instrumental textures. This exploration will be framed within an examination of historical and contemporary discussion of orchestral effects and techniques. Goodchild & McAdams 2 Introduction Orchestration and timbre are poorly understood and have been historically relegated to a secondary role in music scholarship, victims of the assumption that music’s essential identity resides in its pitches and rhythms (Sandell 1995; Boulez 1987; Schoenberg 1994; Slawson 1985). Understanding of orchestration practices has been limited to a speculative, master-apprentice model of knowledge transmission lacking systematic research. Orchestration treatises and manuals mainly cover what is traditionally considered as “instrumentation,” including practical considerations of instrument ranges, articulations, abilities and limitations, tone qualities, and other technical details.