<<

BatteryAgingandCharacterizationofNickelHydrideandLeadAcid Batteries

AThesis

PresentedinPartialFulfillmentfor

AMechanicalEngineeringHonorsUndergraduateResearchProgramRequirementfor

GraduationwithDistinctioninMechanicalEngineering

InConjunctionwithaBachelorofScienceDegreeinMechanicalEngineering

atTheOhioStateUniversity

By

NickPicciano

TheOhioStateUniversity

2007

Advisor

Dr.GiorgioRizzoni

ABSTRACT

ThisthesisdiscussestheresearchdoneonbatteryagingcharacteristicsforbothNickel

MetalHydrideandLeadAcidbatteries.InanefforttorelaterealdutycyclesofHybrid

ElectricVehiclesandtheireffectsonbatteryaging,asetofbasiscurrentprofileswere created.ThebasiscurrentwaveformscaneffectivelymakeupanydutycycleaHybrid

ElectricVehicleencounters.Thesebasisprofilescanthenbecharacterizedfortheir effectonbatteryaging.Oncetheireffectonagingisdetermined,acomprehensiveaging modelcanbecreatedinordertodetermineabattery’sageandpredictitsfutureaging.

LeadAcidbatterieswerestudiedfortheirtwocommonfailuremodes:lossofcapacity andlossofpower.Developingdifferentcurrentprofilesthroughwhichthebatterywill beagedisexpectedtoprovideinsightintohowrealworldactivitiesaffectthebattery differently.Thesedifferenceswillhelpprovidefurtherinsightintothedevelopmentofa similarcomprehensiveagingmodelforLeadAcidbatteries.

TheeffectsofStateofCharge(SOC)oninternalbatteryresistancewereexaminedand showedthatastheSOCdecreases,thebatteryresistanceincreases,whichcanbejustly relatedtophysicalinteractionsinsidethebattery.EISmodelfittingshowedthatathird orderRandleModelwasneededinordertofittoanopencircuitbattery’sfrequency responsespectrum.However,aLargeSignalResponseanalysisshowedthatasecond ordermodelwassufficienttofittotheresponse.Regardlessofthediscrepancy,these modelsandparameterscanbeusedtoinvestigateandquantifyaging.Additionally,these testsprovethebatteryparameters’dependenceoncurrentlevel,whichmeansthatthe

i batteryisinherentlyanonlinearsystem.Enginecrankingtestsalsoshowedthe relationshipbetweenSOCandinternalresistance,aswellasthechangeinbattery performanceatdifferenttemperatures.

Finally,therelationshipbetweenaLeadAcidbattery’sopencircuitanditsSOC wasinvestigated.Therelationshipprovedtobenearlylinearandareasonable approximationforestablishingadesiredbatterySOCforagiventest.

ii ACKNOWLEDGEMENTS

ManythankstoDr.Rizzonifortheopportunitytoconductundergraduateresearchatthe

CenterforAutomotiveResearchandforallofhiswonderfulhelpandguidance.ToDr.

Guezennecforhisimmensesupportwiththeprojectandhelpfulanswerstoallmy questions.ToJohnNeal,BJYurkovich,andJimShively.Withouttheirknowledgeand technicalsupport,theprojectwouldhaveneverhavebeenachieved.Toallthestudentsat

CARforbroadeningmylifewiththeircultures.SpecialthankstoLorenzoSerraoand

ZakariaChehabforteachingmeaboutbatteries.ThankssomuchtoChrisSuozzoforhis modelingexpertise.AndlastbutnotleastIwouldliketothankAndreaStorti,WeiwuLi, andespeciallyWilliamPinelliforprovidingmewithanunforgettableworkexperience everyday.ThankstoallIhavemetduringthisexperience.AndthankstoallmyfriendsI avoidedwhostuckaroundwhileItriedtocompletethisthing.

iii TABLEOF CONTENTS

ABSTRACT...... I TABLE OF CONTENTS ...... IV LIST OF TABLES...... VI LIST OF EQUATIONS...... VI LIST OF FIGURES...... VI 1. INTRODUCTION ...... 1 1.1. BACKGROUND ...... 1 1.2. MOTIVATION ...... 2 1.3.GENERAL BATTERY BACKGROUND ...... 3 1.4. AUTOMOTIVE ELECTRICAL NETWORK ...... 6 1.4.1. CONVENTIONAL ...... 6 1.4.2. HYBRID ELECTRIC VEHICLES ...... 7 1.5. BATTERY OPERATION ...... 8 1.5.1. NIMH CHEMICAL REACTIONS ...... 9 1.5.2. LEAD ACID REACTIONS ...... 10 1.6. CELL CONSTRUCTION ...... 11 1.6.1. NICKEL METAL HYDRIDE CELL CONSTRUCTION ...... 11 1.6.2. LEAD ACID CELL CONSTRUCTION ...... 12 1.7. BATTERY CHARACTERISTICS ...... 15 1.8. BATTERY AGING – GENERAL PRINCIPLES ...... 16 1.9. GENERAL TEMPERATURE EFFECTS ...... 19 2. LITERATURE REVIEW ...... 20 2.1. NICKEL METAL HYDRIDE ...... 20 2.1.1. BACKGROUND INFORMATION ...... 20 2.1.2. BATTERY PERFORMANCE ...... 21 2.1.2.1. DISCHARGE PERFORMANCE ...... 22 2.1.2.2. CHARGE CHARACTERISTICS ...... 24 2.1.3. ABUSIVE OPERATION ...... 27 2.1.3.1. OVERDISCHARGE ...... 28 2.1.3.2. OVERCHARGE ...... 28 2.1.4. FAILURE MODES ...... 29 2.1.5. AGING OF NIMH ...... 33 2.1.5.1. DEPTHOF DISCHARGE ...... 34 2.1.5.2 TEMPERATURE ...... 35 2.1.5.3. DISCHARGE RATES ...... 36 2.1.5.4. CAUSESOF NORMAL AGING ...... 36 2.1.6. MOTIVATION ...... 38 2.2. LEAD -ACID ...... 39 2.2.1. BACKGROUND INFORMATION ...... 39 2.2.2. BATTERY PERFORMANCE ...... 39 2.2.2.1. DISCHARGE PERFORMANCE ...... 40 2.2.2.1.1. THE PEUKERT EFFECT ...... 43 2.2.2.1.2. COUP DE FOUET ...... 46 2.2.2.1.3. SURFACE CHARGE ...... 47 2.2.2. ABUSIVE OPERATION ...... 48 2.2.2.1. OVERCHARGE ...... 48 2.2.2.2. OVERDISCHARGE ...... 50 2.2.2.3. FLOAT VOLTAGE VARIATION ...... 50 2.2.3. FAILURE MODES ...... 51 2.2.4. AGING OF LEAD -ACID ...... 55

iv 2.2.4.1. DEPTHOF DISCHARGE ...... 56 2.2.4.2. TEMPERATURE ...... 57 2.2.4.3. DISCHARGE RATE ...... 58 2.2.4.4. CAUSESOF NORMAL AGING ...... 58 2.2.5. MOTIVATION ...... 59 2.3. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ...... 59 2.3.1 EIS BASICS ...... 60 2.3.2. BATTERY MODEL OVERVIEW ...... 63 2.3.3. BATTERY AGING WITH EIS ...... 67 3. BATTERY AGING AND PROGNOSIS APPROACH ...... 70 3.1 PROGNOSTICS BACKGROUND ...... 70 3.2 BATTERY AGING PROGNOSIS METHODOLOGY ...... 71 4. LEAD-ACID EXPERIMENTAL METHODOLOGY ...... 77 4.1 BACKGROUND REVIEW ...... 77 4.2 PROCEDURE ...... 79 4.2.1 POWER CYCLE ...... 79 4.2.2. ENERGY CYCLE ...... 80 4.2.3. AGING DIAGNOSIS TESTS ...... 82 5. INSTRUMENTATION ...... 87 5.1 TEST BENCH DESCRIPTIONS ...... 87 5.1.1 NIMH AGING TEST BENCH STRUCTURE ...... 87 5.1.2 LEAD ACID TEST BENCH STRUCTURES ...... 90 5.1.2.1 ENERGY TEST BENCH ...... 90 5.1.2.2 POWER TESTBENCH ...... 92 5.1.2.3CRANK TESTING EQUIPMENT ...... 95 5.2 SOFTWARE ...... 96 6. BASIS CYCLE GENERATION...... 100 6.1 WAVEFORM DECOMPOSITION ...... 100 6.2 BASIS CYCLE SET FOR NIMH ...... 104 6.3 BASIS CYCLE SET FOR LEAD -ACID ...... 106 7. BATTERY CHARACTERIZATION AND MODELING RESULTS ...... 107 7.1 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MODELING ...... 107 7.1.1 OPEN CIRCUIT EIS MODELING ...... 108 7.1.2 CLOSED CIRCUIT EIS MODELING ...... 112 7.2 LARGE SIGNAL RESPONSE MODELING ...... 114 7.2.1 MODIFYING ORIGINAL METHOD ...... 114 7.2.2 STAIRCASE RESPONSE ANALYSIS ...... 118 7.3 LARGE SIGNAL RESPONSE AND EIS COMPARISON ...... 122 7.4 ENGINE CRANK TESTING ...... 125 7.5 OPEN CIRCUIT VOLTAGE MAPPING ...... 128 7.6 CONCLUSIONS ...... 132 8. SUMMARY AND CONCLUSION...... 134 9. REFERENCES...... 136

v LISTOF TABLES Table1:GeneralBatteryDifferences[1]...... 4 Table2:NiMHSurfaceReactions...... 10 Table3:LeadAcidElectrodeSurfaceReactions ...... 10 Table4:OverchargeandOverdischargeCellReactions ...... 27 Table5:EstimatedDischargeTimeofa10AhLeadAcidBattery[2]...... 44 Table6:PuekertEquation[4] ...... 44 Table7:Ohm’sLaw[1]...... 61 Table8:SystemComponentsforEnergyTest...... 92 Table9:SystemComponentsforPowerTest...... 95 Table10:1 st OrderParameters...... 120 Table11:BatteryParametersfromModelFitting ...... 125 Table12:PeakCurrentResultsofCrankTesting...... 126 LISTOF EQUATIONS Equation1:PalmgrenMinerLaw...... 71 Equation2:ProfileLifeFunction Lk…………....... 74 Equation3:ResidualBatteryLife……………........ 75 Equation4:WarburgImpedance……...... 109 LISTOF FIGURES Figure1:EnergyStorageandElectricalPowerComparison[1]...... 5 Figure2:CylindricalDesignofNiMHCell[5]...... 11 Figure3:PrismaticDesignofNiMHCell[7]...... 12 Figure4:PositiveandNegativeGrids[8]...... 13 Figure5:PositiveandNegativePastedFlatPlates[8] ...... 14 Figure6:PlateAssemblyinCell[8]...... 14 Figure7:Tankwith3Sections[2]...... 17 Figure8:WaterTankswithDifferentResistancesforLossofPower[2]...... 18 Figure9:WaterTankwithSelfDischargeforLossofCapacity[2] ...... 18 Figure10:ChargeandDischargeReactionsofNiMH[9]...... 21 Figure11:DischargeofNiMH[10]...... 22 Figure12:TemperatureEffectsonDischarge[10]...... 23 Figure13:DischargeRateEffectsonDischarge[10]...... 23 Figure14:ChargingCharacteristics[5]...... 25 Figure15:TemperatureEffectsonCharging[10]...... 25 Figure16:Chargerateeffects[10] ...... 26 Figure17:ChargeandDischargeofNiMHBattery[9]...... 26 Figure18:CrystallineFormationonNickelCadmiumElectrode[2]...... 31 Figure19:CellReversalthroughAbusiveDischarging[13]...... 32 Figure20:TypicalCycleLifeofNiMHBatteries[2] ...... 33 Figure21:TypicalCycleLifeofNiMHBatteries2[14] ...... 34 Figure22:DepthofDischargeEffectonCycleLifeofNiMHBatteries[15]...... 35 Figure23:TemperatureandCycleLifeofNiMHBattery[15]...... 36 Figure24:InitialMHElectrodeSurface[12] ...... 37

vi Figure25:MHElectrodeAfter10Cycles(9.6AhDischarged)[12]...... 38 Figure26:MHElectrodeAfter100Cycles(96AhDischarged)[12]...... 38 Figure27:ChargingofLeadAcidBattery[16]...... 40 Figure28:DischargingofLeadAcidBattery[16]...... 40 Figure29:TypicalDischargeofLeadAcidBattery[17]...... 41 Figure30:Temperatureeffectsonleadacidbatterydischarge[17] ...... 42 Figure31:Temperatureeffectsonleadacidbatterydischarge2[18] ...... 42 Figure32:DischargeRateEffectonDischargePerformance[17]...... 43 Figure33:PeukertEffectonLeadAcid[2]...... 45 Figure34:PeukertEffectonNiMH(6.5Ah)[19]...... 46 Figure35:VoltageDipknownastheCoupdefouet[8]...... 47 Figure36:MultiStageChargeMethod[2] ...... 49 Figure37:ThermalRunawaySequence[8]...... 55 Figure38:IdealBatteryLife[8] ...... 56 Figure39:CycleLifeofSealedLeadAcidBattery[20]...... 57 Figure40:TemperatureEffectonExpectedLife[8]...... 58 Figure41:CurrentandVoltageasFunctionsofTime[21]...... 61 Figure42:SampleBodePlot(FirstOrderSystem)[1]...... 62 Figure43:SampleNyquistPlot(FirstOrderSystem)[1] ...... 62 Figure44:Randle’sModel[11]...... 63 Figure45:VisualizationofBatterywithRandle’sCircuit[2]...... 63 Figure46:SecondOrderModel[1]...... 64 Figure47:SecondOrderModelwithWarburg[1]...... 64 Figure48:ResultingFitonNyquistPlot[1]...... 65 Figure49:EISPredictingCCA[2]...... 66 Figure50:CCAvs.Capacity[2]...... 66 Figure51:EISPredictingCapacity[2]...... 67 Figure52:BodePlotIncreaseinImpedanceMagnitudeShowingAging[1]...... 68 Figure53:NyquistPlot–IncreaseinImpedanceShowingAging[1] ...... 68 Figure54:[12]’sSecondOrderModel ...... 69 Figure55:TypicalCurrentofNiMHinanHEV...... 72 Figure56:SquareWaveProfileinAgingModelMethodology...... 76 Figure57:AgingModelMethodology ...... 76 Figure58:BatteryasaWaterTankwithPowerLoss[2]...... 77 Figure59:BatteryasaWaterTankwithCapacityLoss[2]...... 78 Figure60:PowerCycle...... 79 Figure61:EnergyCycle ...... 81 Figure62:PreviousBatteryAgingTestBench ...... 88 Figure63:SystemwithEnvironmentalChamber...... 89 Figure64:SchematicofTestBench[1]...... 89 Figure65:PowerTestResistors...... 94 Figure66:CrankTestSetUp ...... 96 Figure67:MatLabVIforDataAcquisition...... 97 Figure68:MatlabVIforPowerCycleDischarges...... 98 Figure69:MiniCycles ...... 101 Figure70:NormalizedMiniCycles ...... 102

vii Figure71:DegreeofApproximationforEachBasisCycle ...... 103 Figure72:BasisCycleSetforNiMH ...... 104 Figure73:DegreeofApproximationforBasisCyclesofNiMH...... 104 Figure74:MiniCycleReconstructionwith4BasisCycles...... 105 Figure75:MiniCycleReconstructionwith8BasisCycles...... 105 Figure76:ImpedanceSpectrumforBatteryatOpenCircuit ...... 108 Figure77:3 rd OrderRandleModelFittoa100%SOCBattery...... 109 Figure78:WarburgImpedance...... 110 Figure79:1 st OrderRandleModelFitof100%SOCBattery...... 110 Figure80:EISandSOC...... 111 Figure81:RealAxisofNyquistPlot...... 112 Figure82:ChargeComparison ...... 113 Figure83:DischargeComparison...... 113 Figure84:StaircaseProfileforLargeSignalModeling[4]...... 115 Figure85:AdditionalStepsintheStaircase ...... 116 Figure86:MoreStepsConcentratedaround20A...... 117 Figure87:StaircaseProfileforLargeSignalAnalysis...... 118 Figure88:1 st OrderRandleModel ...... 119 Figure89:Experimentalvs.ModelResponseofStaircase...... 120 Figure90:ParameterExtractionfromVoltageResponse[4]...... 121 Figure91:DynamicStaircaseProfile ...... 123 Figure92:BatteryResponsetoDynamicProfile...... 124 Figure93:SecondOrderModelFittingtoBatteryResponse...... 124 Figure94:BatteryCurrentandVoltageDuringCranking...... 127 Figure95:EngineCrankingResultsandDescription...... 128 Figure96:V oc Map...... 129 Figure97:VoltageMappingRestPeriodsforDischarge ...... 130 Figure98:ChargeRegimeV oc Mapping ...... 131 Figure99:VoltageMappingChargingandDischarging...... 132

viii 1.INTRODUCTION Thissectionprovidessomebackgroundinformationfortheresearchincludedinthe thesis,aswellasthemotivationbehindit.

1.1. BACKGROUND TwoofthemostwidelyusedsecondarybatteriesaretheLeadAcidandNickelMetal

Hydridebatteries.Eachhasmanycommercialusesbasedontheiradvantagesand disadvantages.Thisthesisdiscussestheiruseinhybridelectricvehiclesandautomotive electricalsystemsandmorespecifically,theirdegradationduringuse.

TheNickelMetalHydride(NiMH)batteryisusedinHybridElectricalVehicles(HEV), andinordertoimprovetheadvantagesofhybridtechnology,anexplicitagingmodelis neededwhichcandescribeandpredictthebattery’slife.Theresearchcarriedoutinthis thesisonNiMHbatteriesisacontinuationofthethesisofworkdonebyZakariaChehab

[1]whoseresearchwasaimedatcharacterizingtheagingtheagingofthebattery.

FurtherresearchisneededtoimplementthesecharacterizationsforbetteruseinaHEV.

Moreover,usingrealHEVdatatopredictandtestbatteryagingthroughthe decompositionoftheHEV’scurrentprofilescanprovideamorecomprehensiveaging modelandmoreinsightintousingNiMHbatteriesmoreefficiently.Onceabasissetof currentprofilescanbecreated,anyrandomprofiledemandedbyanHEVcanbeableto beanalyzedanditseffectspredicted.

LeadAcidbatteriesaredesiredfortheirtolerancetoabuseandhighpowercapabilities.

However,asnewertechnologiesemerge,forexampleNiMHbatteries,thedisadvantages

1 oftheLeadAcidbattery,mostnotablyitslowenergydensity,becomemoreandmore evident.ThispaperdiscussesthemostprominentfailuremodesoftheLeadAcidbattery initscommonautomotiveuse:CapacityLossandPowerLoss.

Inthisthesis,theagingofthebatteryisquantifiedthroughasetofagingdiagnostictests: i)acapacitytest;ii)alargesignalresponsetest;iii)acrankingtest;andiv) electrochemicalimpedancespectroscopy(EIS).TheEIStestcanhelpdescribethestate ofhealthofthebatterywithoutdegradingthebattery,unlikestandardcapacitytests whichagethebatteryduetotheirlargedepthofdischarge.Thesebatteryrelatedterms willbeclarifiedlaterinsection1.7‘BatteryCharacteristics.’

1.2. MOTIVATION

Theimportanceofresearchingthecharacteristicsofalternativefuelsinaneffortto advancetheiruseisgrowingwiththeincreaseinpriceoffossilfuels.Oilpricescontinue toclimbmakingitmoreandmorelikelythatalternativefuelswillbecomeanintegral partinglobalindustryandeconomics.,producedbyavarietyofmeansand storedinbatteries,isanalternativefuelthathasbeenusedformanyyears;new technologiesareimprovingbatteryperformanceandtheuseofbatteriesinmany applicationsisincreasing.TheLeadAcidbattery,alsocommonlyknownasacar,or12

Vstarterbattery,hasbeenutilizedforitshighpowerandtolerancetoabusiveconditions formanyyears.Inspiteofthedecreasingcostofhigherperformancebatteries,suchas

NiMHandlithiumandlithiumpolymerbatteries,LeadAcidbatteriesstillfind almostexclusiveuseasautomotivestarterbatteriesandtoprovideanenergybufferfor

2 12Vautomotiveelectricalsystems.Today,thecost/performanceratioisstillinfavorof theLeadAcidbatterforroutineautomotiveapplications.Ontheotherhand,the emergenceofHEV’s,andthereemergenceofelectricalvehicles(EV)asviable alternativestoconventionalinternalcombustionenginebasedpropulsionsystemshas seensignificantgrowthintheuseofNiMHbatteries,andwillsoonresultinasimilar expansionofbatteriesbasedonlithiumtechnologies.Forallofthesebatterychemistries, determiningtheexactsourcesoffailureandperformancedegradationisanimportantstep towardsimprovingthetechnology,andeventofindwaystorestoretheirhealthfor longercontinueduse.

1.3.GENERAL BATTERY BACKGROUND

Thererarelyeverexistsoneproductthatcanoperateideallyforanyandallapplications.

Thesamegoesforbatteries.Therearemanydifferentbatterychemistriessinceeachcan deliverdifferentdesirablecharacteristics.Thesecharacteristicsmakeitadvantageousfor specificapplicationstousecertainbatteries.

Mostbatterydifferencesarecharacterizedbyafewqualities.Thesequalitieshelp determinewhichapplicationismostsuitable.Batteriescanbecomparedbytheirenergy density.Thisdescribestheamountofenergydeliverablewhiletakingintoaccounttheir mass.Itcanalsobecalledtheir specificenergy .Otherdesirableattributesinclude specificpower ,andthecyclelife .Thesetermsaredefinedinsection1.7‘Battery

Characteristics.’Table1summarizesthemajordifferencesofthesomeofthemost commonbatteries.

3

Table1:GeneralBatteryDifferences[1] Battery Type Advantages Disadvantages

LeadAcid Canbedesignedforhighpower PoorColdtemperaturePerformance Inexpensive ShortCalendarandCycleLife Safe Reliable NickelCadmium HighSpecificEnergy Doesnotdeliversufficientpower GoodCyclelifecomparedwithleadacid NickelMetal ReasonableSpecificEnergy HighCost Hydride ReasonableSpecificPower HeatGenerationatHigh Muchlongercyclelifethanleadacid Temperatures Safe Lowcellefficiency Abusetolerant NeedtocontrolLosses LithiumIon HighSpecificEnergy NeedsImprovementin: HighSpecificPower CalendarandCyclelife HighEnergyEfficiency AbuseTolerance GoodHightemperatureperformance AcceptableCost LowSelfDischarge HigherdegreeofBatterysafety LithiumPolymer HighSpecificEnergy Onlyviableif: Has potential in providing high specific Thecostislowerdramatically power SpecificPowerisincreased Safe GoodCycleandCalendarLife

AscanbeseenintheTable1,LeadAcidbatteriesremainverybeneficialforapplications thatneedhighpowerwithsafeandinexpensivetechnology.Theseattributesexplainwhy theLeadAcidbatterydominatestheconventionalautomobileindustry.Ifonelooksat thenewerHEVtechnology,NickelMetalHydrideisleadingthewayincurrent productionHEV’s,butmanybelievethatNiMHbatterieswillbereplacedbyLithium basedbatteriesoncethetechnologybecomesmorecosteffective.

Itisusefultocomparetheperformancecharacteristicsofdifferentenergystorage systems,soastoputbatteriesintoperspective.Figure1providesagraphicalcomparison ofsomeenergystoragedevices.

4

Figure1:EnergyStorageandElectricalPowerComparison[1]

Figure1andTable1helpunderstandwhycertainapplicationswouldleantowardsolder ornewerbatterytechnologies.Forinstance,cellphonebatteriesareusingLithiumIon batteriesmoreandmorefortheirhighenergydensity.Theyalsocontainnotoxic materialsandwillgenerallylastlongenoughtospanthenormallifeoftheproduct[2].

Anotherportablecommunicationdevicewouldbethetwowayradio.Thisdevice generallyrunsonNickelCadmiumbatteriesfortheirabilitytobeforgivingifabusedand durable.NiMHmaysoonbecomemoreusedfortwowayradiossincetheyhaveahigher energydensityandcontainnotoxicmaterials;however,testinghasshowntheyprovide shorterthanexpectedservicelifeforthisapplication[2].LithiumIonbatteriesare generallyusedinlaptopsforthesamereasonstheyareusedincellularphones.Their highenergydensityallowsforgreatserviceforportabledevices.Highpower requirementsforlaptops,however,reallydegradethebatteryperformance,sothereare

5 stillaspectsthattheLithiumIonbatteryfallsshortonforportablecomputing.For wheeledandstationaryapplications,manystilltrusttheinexpensiveanddurableLead

Acidbattery.Itsweightislessofanissuewhentheapplicationisonwheelsorstationary

[2].

1.4.AUTOMOTIVE ELECTRICAL NETWORK

1.4.1.CONVENTIONAL

Intheconventionalautomotiveelectricalnetwork,theleadacidbatteryservesrelatively fewandsimplefunctions.Ingeneralitisusedtostarttheenginebyprovidingahigh currentandhelpoperateonboardelectricaldevices.Anautomotiveelectricalpower generationandstorage(EPGS)systemconsistsofabattery,analternator,avoltage regulator,andservesalltheelectricalloadsinthevehicle.Thealternatorisanelectrical generatorthatconvertsmechanicalenergyintoelectricalenergy.Thealternatorisa synchronouselectricmachinethatreceivesinputmechanicalenergyfromtheengine shaftthroughabeltcoupling.ThealternatorproducesanACoutput,andtherefore requiresarectificationcircuit,implementedbymeansofabridgesolidstaterectifier.In addition,avoltageregulatorcontrolstherectifierDCoutputtoadesiredspecification,so thatthebatterycanmaintainthedesirablestateofcharge[3].

Theleadacidbattery’smainfunctioninthissystem,besidesprovidinghighcurrentto starttheengine,istoactasabuffertothealternator.Thebatteryabsorbshighfrequency pulsesthatthealternatormaygenerate,andprovidesenergyforthetransientloads demandedwhentheelectricloadsareturnedonandoffwhilethealternatoradjuststothe

6 newload[4].Moreover,thebatterygenerallyprovidestherequiredenergyduring transientcurrentdemandsfromtheloadwhiledriving,andprovidestheshortburstof highcurrentneededtostarttheengineandpowerallelectricloadsuntilthealternator takescontrol.

1.4.2.HYBRID ELECTRIC VEHICLES

HEVelectricalnetworksareabitmorecomplicatedthanthe12Velectricalsystem describedintheprecedingsection.HEV’scombinedifferentenergyconversion(IC engineandelectricalmachines)andenergystoragesystemstoachieveimprovedfuel economyandperformance.Thus,abatterysysteminaHEVnotonlyprovidesthepower andenergythataconventionalsystemwouldneed,butitalsoisrequiredtoprovide tractionpowerthroughelectricmotors.Thetwobasicconfigurationsareaparallel hybridandaserieshybrid.

Inaparallelhybrid,theelectricmotorandthecombustionenginearebothconnectedto thewheelsbywayofamechanicaltransmission.Thecombustionengineprovidesmost ofthenecessarydrivingpower,whiletheelectricmotorisusedwheneverahigher demandisneeded,likeforpassing,hillclimbs,oracceleration,aswellastoprovide energyrecoverythroughbrakingregeneration.Thisallowsfortheimplementationofa smallerandmoreefficientcombustionenginewiththepotentialtogreatlyincreasefuel economy.Ageneratorisnotneededinaparallelhybridbecausetheelectricmotorcan beusedtogeneratethebattery.

7 Inaserieshybrid,theelectricmotorisdirectlyconnectedtothewheels,whilethe combustionengineisconnectedtoageneratorthatcangenerateelectricpowertocharge thebatteryandruntheelectricmotor.Thecombustionengineinthisconfigurationnever actuallypowersthevehicle.Itconvertschemicalenergytomechanicalenergy,to electricalenergyfordirectusefortractionorforchargingthebatteries.Thetraction motorscanalsoserveasgeneratorstorecoverkineticenergyduringbraking.The advantageofthisconfigurationisthatthecombustionengineneveridlesandcanoperate initsmostefficientrange,withbenefitsinbothfueleconomyandreducedemissions.

Additionally,atransmissionisnotneededsincetheelectricmotorcontrolsthewheels.

Thissystemcanrequireaverylarge(andthereforeheavy)batterypackandcanbeless efficientthanaparallelhybridbecauseofthebidirectionalenergyconversionchain[1].

Toyotahasintroducedathirdconfigurationthattakesadvantageoftheadvantagesof bothparallelandserieshybrids,andwhichisappropriatelycalledtheparallelseries(or powersplit)hybrid.Thissystemhasitsownadvantagesanddisadvantagesmuchlike thoseoftheotherconfigurations.Regardlessoftheconfiguration,theHEV’shavebeen demonstratedtosuccessfullymeettheobjectivesofloweremissionsandhigherfuel economy.

1.5. BATTERY OPERATION

Allchemicalbatterieshavethesamebasiccharacteristics.Insideeachchemicalbattery thereexistfourmaincomponents…

:Theanodeisthenegativeelectrodethatprovidestheelectrons.

8 • :Thecathodeisthepositiveelectrodethatcollectstheelectrons.

:Theelectrolyteistheconductorbetweenthe.Itprovides

themeansforelectrontransferbetweenthepositiveandnegativeelectrodes.

:Theseparatoristhemediumthatpreventstransferofelectronswhile

thebatteryisatrest.

Thebattery’sfunctionistostoreenergy.Thisenergyisintheformofavoltage potential.Chargeseparationbetweentheelectrodesprovidesapotentialthatcangive risetoacurrentflowinthepresenceofanelectricalload.Duringoperation,chemical reactionsoccurinsidethebatteryatthesurfaceoftheelectrodes.Thesereactionsare calledoxidationreductionor‘redox’reactions.Thereactionsaremostsimplydescribed asachemicalreactionthroughatransferofelectrons,whichprovidestheabilitytocreate electricity.Anadvantageofchemical(secondary)batteriesistheirabilitytoreplenish theirenergy.Whenthechemicalreactionisreversedbetweenthetwoelectrodes,energy canbereturnedtothebattery.

1.5.1.NIMH CHEMICAL REACTIONS

TheNiMHbatteryconsistsofanickelmetalcathodeandahydrogenabsorbingmetal alloyconsistingofanearth/nickelalloyoratitaniumandzirconiumalloyanode.The electrolyteismadeofalkaline,adiluteofpotassiumhydroxide[5].The chemicalreactionsthatoccurwithinthebatteryarelistedinTable2.

9 Table2:NiMHElectrodeSurfaceReactions NegativeElectrode:

M+H 2O+e ↔MH+OH

PositiveElectrode:

Ni(OH) 2+OH ↔NiOOH+H 2O+e

FullCellReaction:

Ni(OH) 2+M ↔ΜΗ+Ν iΟΟΗ

1.5.2.LEAD ACID REACTIONS

TheLeadAcidbatteryconsistsofaleaddioxidecathodeandaleadanode.The electrolyteisasulfuricacidsolution.Thechemicalreactionsthatoccurwithinthis batteryaresummarizedinTable3[4].

Table3:LeadAcidElectrodeSurfaceReactions PositiveElectrode:

+ 2+ PbO 2+4H +2e →Pb +2H 2O

2+ 2 Pb +SO 4 →PbSO 4

NegativeElectrode:

Pb→Pb 2+ +2e

2+ 2 Pb +SO 4 →PbSO 4

FullCellReaction:

PbO 2+Pb+2H 2SO 4↔ 2PbSO 4+2H2O

10 1.6.CELL CONSTRUCTION

Whilethechemicalreactionsofthebatteryremainthesame,thebatterycellconstruction candiffer.Eachchemicalbatteryhasthesamecorecomponents:i)twoelectrodes;ii)a separator;iii)anelectrolyte;andiv)ahousing.Theconstructionofthesecomponentsis basedonthechemistryofthebatteryandthedesiredapplication.

1.6.1.NICKEL METAL HYDRIDE CELLCONSTRUCTION

TheNiMHbatteryhastwobasicconstructionpossibilities:cylindricalorprismatic.The cylindricalconstructiontakesthepositiveandnegativeelectrodesandtheseparatorand wrapsthemtogether.Theyarethenenclosedbyametalliccasing.Theelectrolyteis theninjectedintothebattery[5].Figure2providesaviewofthecylindricaldesign.

Figure2:CylindricalDesignofNiMHCell[5]

11 Theprismaticdesignmayofferbettervolumetricadvantagesforcertainapplications.

Thisdesignisverysimilartothecylindricaldesignexceptthesinglepositiveand negativeelectrodesarereplacedwithmultipleelectrodesets.Figure3providesan exampleofthiscelldesign.

Figure3:PrismaticDesignofNiMHCell[7]

1.6.2.LEAD ACID CELLCONSTRUCTION

TheLeadAcidbatteryhasaslightlymorecomplicatedconstructionthantheNiMH construction.WheretheNiMHcellutilizesmetalplatesasitselectrodes,theLeadAcid batteryusesaleadgridstructurethatcontainsaleadoxidepaste.Thisisthemost

12 commonconstructionfortheelectrodes.Itisoftencalledthe‘pastedflatplate’design.

Theleadoxidepasteisappliedtoaleadalloygridstructureandthenallowedtodry.The cellisthenimmersedinthesulfuricacidelectrolyteandthenencasedinaplasticasis commonforcarbatteries.Whencurrentpassesthroughtheplatesitconvertsthelead oxideintoleaddioxideforthepositiveplate,andleadoxideintoleadforthenegative plate[8].Figures4,5and6showthecellconstruction.

Figure4:PositiveandNegativeGrids[8]

13

Figure5:PositiveandNegativePastedFlatPlates[8]

Figure6:PlateAssemblyinCell[8]

14 1.7.BATTERY CHARACTERISTICS

Batteriesarecomparedanddescribedbycertaincharacteristics.Additionally,certain termsareusedtoexplainbatteryoperation.Thesetermsaredefinedbelow,andwillbe usedthroughoutthisthesis.

• Capacity :Theamountofenergythebatterycandeliverunderspecific

conditions.Thisisrepresentedinamphours,whichmeansthebatterycan

provideenergyataratedamountofampsforacertainamountoftime.A50

Amphourbatterycandeliver50ampsfor1houror5ampsfor10hours,etc.

• State of Charge (SOC) :Thestateofchargeisameasureoftheamountof

energyremaininginthebattery.Itisoftendisplayedasapercentofthebattery’s

nominalcapacity.

• Depth of Discharge (DOD) :Theoppositeofstateofcharge.Thedepthof

dischargeistheamountofenergyremovedfromthebattery.Alsorepresentedas

apercentofnominalcapacity.

• State of Health (SOH) :Thestateofhealthofabatteryisagageofthebattery’s

conditionandabilitytoperformascomparedtoanewbattery.Thiscanalsobe

describedasthebattery’sage.

• Specific Energy :Theamountofenergycontainedinaspecifiedamountofmass.

Itisexpressedasaratioofenergycapabilitytomass,Wh/kg.

• Specific Power :Theamountofpowercontainedinaspecifiedamountofmass.

Itisexpressedasaratioofpowercapabilitytomass,W/kg.

• Calendar Life :Thelengthoftimethebatteryisabletoprovidetheenergyfor

performance.

15 • Cycle Life :Thenumberofcyclesthebatteryisabletoundergowhileproviding

thenecessaryamountofenergyforanapplication.

• Impedance :Theimpedanceofabatteryisapresentationofitsvoltagecurrent

relationshipasafunctionoffrequencyandothervariables,suchastemperature

andSOC.Batterieshavelossesduringoperation,andtheselossesmaybesimply

representedasaresistance.Itisimportanttounderstandthattheimpedanceofa

batteryisanonlinear,statedependentquantity.

• Power :Thepowerofthebatteryisgeneralizedthroughitsabilitytoprovide

current.Themorepowerfulthebattery,thehigherthecurrentitisableto

provide.

Everybatteryhasdifferentadvantagesanddisadvantagesthatoftencanbedescribed basedonthesecharacteristics.Chemicalbatterieshavevastlydifferentcharacteristics basedonthechemicalsused.Theabovecharacteristicsdonotdescribeallaspectsofa battery’sperformancebutdoadecentjobinexplainingthemajordifferencesinmany batterytypes.

1.8.BATTERY AGING – GENERAL PRINCIPLES

Thisthesisfocusesontheaspectsofbatteryaging.Ineveryrechargeablebattery,itis theoreticallycapableofinfinitelifeifonewasabletocontinuallyreplacetheallthe energyitremoved.However,asitisknownalltoowell,batterieseventuallydie.There aretwogeneralagingmechanismsforbatteries.Theycaneitherbecomeunableto providetheenergythatisneededtorunanoperationforthetimeneeded,knownas

16 capacityloss,orincapableofprovidingthepowertoruntheoperation,knownaspower loss.Throughrepeatedcyclesofcharginganddischarging,therearesmalland permanentdamagesthatcausethebatterytoneverregainitsoriginalcapabilities.These effectsarecalledbatteryaging.Mostresearchhasbeendonetorelatetheaging characteristicsofthebatterytoactualfailuremechanismsinsidethechemistryofthe battery,likegridofleadacidbatteries.Asummaryofthesemechanismscan befoundinsections2.1.4and2.2.3‘FailureModes’forNiMHandLeadAcid respectively.Sincetherearemanypossibilitiesthatcouldlimitthebattery’s performancebasedonitschemistry,itisdifficulttopreciselydeterminewhichmodeof failureisprofoundlyresponsibleforcapacitylossorpowerloss.

Moregenerally,abatterycanbequalitativelycomparedtothatofawatertankwiththree imaginaryelements.Thefirstelementisthewaterinsidethewatertank,whichwould relatetotheavailablechargeinthebattery,orSOC.Thesecondelementistheempty spacethatcanberefilled.ThisrelatestotheDOD,butwithoutanyconsiderationsof permanentaging.Thelastelementisanunusablesectionintheformofrocks.This constitutestheaccumulatedagingofthebatteryduetothesmallpermanentdegradations ofthebattery.Figure7providesdepictsthisqualitativerelationship.

Figure7:WaterTankwith3Sections[2]

17

Iftheagingmechanismthatdominatesthedegradationofthebatteryisthecapacityloss, thenoneshouldimagineawatertankslowlybeingrefilledwithmoreandmoreunusable rockcontentaftereveryuse.Iftheagingmechanismthatdominatesthedegradationof thebatteryispowerloss,thenoneshouldimagineawatertankthatcannotdeliverashigh aflowasbefore.Figure8belowillustratespowerlossthroughthewatertankanalogy.

Figure8:WaterTankswithDifferentResistancesforLossofPower[2]

Capacitylosscanalsocomeintheformofanelevatedselfdischarge.Asabatteryis cycledovertime,theselfdischargecharacteristicsofthebatterycanincrease.Imaginea watertankwithholesinthesideswhichdecreasestheavailablewaterinsidethetank.

Figure9:WaterTankwithSelfDischargeforLossofCapacity[2]

18 1.9.GENERAL TEMPERATURE EFFECTS

Temperatureiscloselyrelatedtobatteryagingandperformance,andmuchresearchhas beendonetodetermineitsrelationship.Batteryperformancedependshighlyon operatingtemperature.ItisverycloselyassociatedwiththeArrheniuslawthatsimply describeshowendothermicchemicalreactionsoccuratafasterrateathigher temperatures.Thus,temperatureplaysalargeroleindischargeandchargecharacteristics ofbatteries.

Thissetofexperimentswillavoidunnecessarytemperatureeffectsonagingby controllingtheoperatingtemperatureinanenvironmentalchamber.Thiswillensurethe agingofthebatterywillbeduetodesiredagingcharacteristics.Additionally,keepingall testbatteriesatthesametemperaturewillallowforaccuratecomparisonbecauseall agingeffectsandbatteryperformancewillbetemperatureindependent.

19 2.LITERATURE REVIEW

ThissectionprovidestheliteraturereviewforbothNickelMetalHydrideandLeadAcid batteries.Itincludesmoredetailedcharacteristicsaswellasbatteryaginginformation.

2.1.NICKEL METAL HYDRIDE

2.1.1. BACKGROUND INFORMATION

ResearchonaNiMHbatterybeganinthe1970’s,butastablehydridealloywasnot developeduntilthe1980’s.TheNiMHbatterybecamecommerciallyavailableinthe

1990’s.ThemotivationtodevelopaNiMHbatterywasduetothehighpotentialfor improvingthecurrentNickelCadmiumtechnologies,andasameansforanewernickel hydrogenbattery.NickelCadmiumhasrelativelylowenergydensity,anditalsohasa phenomenonknownasmemory.Batterymemorydescribeshowbatteries(most prominentlynickelbasedbatteries)tendtorememberthedepthofitspreviousdischarge cycles.Inasense,thebatterybeginstoacquirea‘falsebottom,’andeffectivelyreduces itsavailablecapacity.Ifthebatteryisnotperiodicallyfullydischarged,largecrystals willformontheelectrodesandthebattery’sperformancewillsuffer.Additionally,

NickelCadmiummaterialsaretoxic,andthebatteryhasahighselfdischarge.The

NiMHbatterywasdevelopedtoreducethesedisadvantagesfromnickelbasedbatteries

[2].

TheNiMHbatteryoffersahigherenergydensityandenvironmentallyfriendlymaterials.

TheonlyshortcomingofthisbatterycomparedtothatofNickelCadmiumisitshigher

20 selfdischarge.Whilethebatterystillhassomememorycharacteristics,itisless problematicthanNickelCadmium[2].

2.1.2. BATTERY PERFORMANCE

Asbrieflymentionedbefore,thechargeanddischargeperformanceoftheNiMHbattery involvesthesimpletransferofhydrogenbetweentheelectrodes.Theelectrolyteisso conducivetothisreactionthatitdoesnotevenenterintothefullcellreactionofthe battery.Figure10showsagraphicaldescriptionofthechargeanddischargereactions.

Figure10:ChargeandDischargeReactionsofNiMH[9]

21

2.1.2.1. DISCHARGEPERFORMANCE

OneofthemostadvantageouscharacteristicsoftheNiMHbatteryisitsdischarge performance.Asthebatterydischarges,thevoltagelevelremainsnearlyconstantforthe entiredischarge.AsthedischargetimeincreasesandtheSOCdecreases,thevoltage levelwillremainrelativelyflatuntilitcomestothe‘knee’wherethevoltagewillbegin todecreaserapidly.Whenthevoltagereachesthe‘knee’thereisrelativelylittlecharge leftinthebattery.

Figure11:DischargeofNiMH[10]

Thisvoltagecurveisheavilydependentonmanyconditionslikeambienttemperatureand dischargeratefromanyelectricloads.Asthetemperaturedecreases,thevoltagecurve willbeshifteddownward,ortotheleft.Similarly,astheloadordischargerateincreases, thevoltagecurvewillshiftdownward.Sinceoneisremovingchargeatahigherrate,the voltagelevelwilldropaccordingly.Additionally,thevoltagecurvewillloseits

22 ‘flatness,’oritsabilitytoremainconstantovertheprolongeddischarge.Discharge characteristicsareoftendescribedthroughthebattery’sratedcapacity.A1Cdischarge ofa6.5Ahbatteryisadischargeof6.5ampsthatwillprovidechargefor1hour.

Likewise,a2Cdischargeofthesamebatterywillprovide30minutesofchargeat13 amps.Figure12and13belowhelpshowtheseeffects.

Figure12:TemperatureEffectsonDischarge[10]

Figure13:DischargeRateEffectsonDischarge[10]

23 2.1.2.2. CHARGECHARACTERISTICS

ChargingperformanceofNiMHisverydifferentthantheirdischargeperformance.

Initially,thevoltagerisesquicklyatthebeginningofacharge.Afterthisinitialrise,the voltagegraduallyincreasesaschargingcontinues.Asthechargeofthebatteryslowly reachesfullcharge,thegraduallyincreasingvoltagemaybegintoclimbevenfaster.

Whenthevoltagereachesitspeak,thebatteryissaidtobecompletelycharged.If continuedtocharge,thevoltagewilldecrease,andoverchargingwilloccur(discussedin thenextsection,section2.1.2.3).Duringcharging,thetemperatureofthebattery increasesbecausethechargereactionisexothermicalongwiththegenerationofextra heatduetoexcesscharge.Ingeneral,therearefourindicationsofwhentoterminatethe chargingofaNiMHbattery.Commercialchargersuseacombinationofthese indications[2].Theyare…

1. Negativechangeinvoltage

2. Rateoftemperatureincrease(usuallyaround1 oCperminute)

3. Temperaturesensing(formaximumallowablebatterytemperature)

4. Timers(maximumallowablechargetime)

Figure14showsthechargingperformanceofaNiMHbattery.Asthebatteryreaches fullchargeandintoovercharge,therateoftemperatureincreasegrows,thevoltage decreases,andthepressureinsidethebatteryincreases.

24

Figure14:ChargingCharacteristics[5]

Similartodischarging,temperatureandrateofchargehaveaneffectonthecharging performance.Ahighertemperaturewillcausethevoltagecurvetoshiftdownward.This isduetothedecreaseofresistance(orincreaseinefficiency).Asthechargerate increasesthevoltagecurvewillincreasebecausemorechargeisbeingsuppliedtothe batteryatahigherrate.

Figure15:TemperatureEffectsonCharging[10]

25

Figure16:Chargerateeffects[10]

Figure17showstheentirecycleofaNiMHbatterybasedonSOCrepresentingatypical chargeanddischargeprofile.

Figure17:ChargeandDischargeofNiMHBattery[9]

26 2.1.3. ABUSIVE OPERATION

ThecommonabusivetreatmentonNiMH,andofallbatteriesingeneral,isovercharging andoverdischarging.Thebatterycanbeseverelydamagedifprecautionsarenottakento avoidoverdischargeandovercharge.Thecellundergoesdifferentchemicalreactionsthat allowthebatteryto,inasense,handleabusiveconditionsandlimitsevereandpermanent effects[2].Thesereactions,whichcanalsobeseeninFigure10(cellreaction),are showninTable4.Thereactionsarerecombinationreactions.

Table4:OverchargeandOverdischargeCellReactions Overdischarge:

2H 2O+2e ↔H 2+2OH

Overcharge:

4OH ↔2H 2O+O 2+4e

Foroverdischarge,the“netresultisnoreactionbutheatandsomepressurearegenerated inthecell.TheabilityoftheNiMHcelltotolerateoverdischargeisveryimportantfor largeseriesstringsofbatteriessincecapacitymismatchesmayallowsomecellstobe overdischarged”[9].Forovercharge,theresultisalsoheatgeneration.Theheat generationfromthereactionequalstheenergyinput.“Thisoccursattheexpenseof increasingthestoredchargeinthebattery.Iftherateofchargeexceedstherateof recombination,thenanincreaseincellpressurewillresult”[9].AlthoughtheNiMHhas theslightabilitytotoleratemoderateoverdischargingandovercharging,especiallyfor instanceswhenbatteriesareconnectedinseriesandthepossibilityforcorrectiondueto capacitydifferences,itisstronglyrecommendedtoavoidifatallpossible.

27

2.1.3.1. OVERDISCHARGE

Thebatterycanonlyhandleuptoacertainpointofdischargingbeforeitbeginstohave severeandpermanenteffects.Onceallthechargeinthebatteryhasbeenremoved, continuingadischargewillbegintoreversetheelectrodesinthebattery.Whenabattery ispermanentlydamagedduetooverdischarging,theelectrodesarecompletelyreversed andhydrogengasbuildsupinsidethecell,oftencausingthebatterytovent(releaseof gas).Usually,thereisaspecifiedlowervoltagelimitfordischarging.Thislimitcan varyfrombatterytobattery,butagenerallimitforallNiMHis0.9V/cell[1].

2.1.3.2. OVERCHARGE

Asthebatterycharges,thereactionisexothermic,andheatbeginstogrowinsidethe battery.Whenthebatteryreachesfullchargeandchargingcontinues,almostallthe electricalenergyistransformeddirectlyintoheat.Thiscausesthetemperaturetorise evenfaster.Thepressureinsidethebatterywillgreatlyincreasealongwiththe temperature.Thepressurecontinuallyincreasesasgasisgeneratedduringthecharge reactions.Theseeffectsareresultsofovercharging.Ifoverchargingpersists,the pressurewillgrowenoughtoventthebattery,whichresultsinpoorerbattery performance.Ifthebatterydoesnothaveasafetyvent,thenthebatterycouldexplode

[1].

28 2.1.4. FAILURE MODES

Asinallchemicalbatteries,therearemanymodesoffailureassociatedwiththe chemistryinsidethebattery.Ingeneral,thesemodescausedamagetothebattery.Some damagescanberectified,whileothersremainpermanent.Themainmodesoffailurefor

NiMHbatteriesarethefollowing:

1. SurfaceCorrosionofNegativeElectrode[12]

2. DecrepitationofAlloyParticles[12]

3. LossofWaterintheElectrolyte(SeparatorDryOut)[9]

4. CrystallineFormation[2]

5. CellReversal[9]

6. HighSelfDischarge[2]

7. ShortedCells[2]

Someofthefailuremodesoccurwhenthebatteryundergoesabusiveconditions,but othersoccurthroughnormalcycling.Someofthesefailuremodescanberestored throughvariousprocedurestoprolongthebattery’slife.However,anycombinationof thesefailuremodescanoccurinthebattery.Theslowaccumulationofthepermanent damageofthebatteryduetothesemodesisconsideredbatteryaging.

SurfaceCorrosion ofthenegativeelectrodeisgenerallythemaincauseofNiMHaging.

Thebatterycanbeoperatedunderidealconditionsthrough‘small’cycles(witha periodicfulldischargetoreducememoryeffects)andstillnotbeabletoavoidcorrosion ofthenegativeelectrode.Thisfailuremodedoesnotcausecatastrophicfailure,butit

29 doescausecapacityloss.Theactivematerialofthemetalhydrideisveryconductive,so corrosionatthesurfaceresultsinareductionofcapacity,aswellas,reductionofability tosupplypower.Thecorrosionalsohasasideeffectofreducingthecontentofwaterin theelectrolyte,whichisdescribedlaterinthissection[9].

DecrepitationofAlloyParticles oftenoccursalongwithsurfacecorrosion.Normalaging ofthebatterywillcausedecrepitationofthenegativeelectrode.Thisisnottechnicallya failuremodebyitself.Itonlyincreasesthesurfaceareaoftheelectrode,whichatfirst canincreaseconductivitybyincreasingtheareaavailableforthechemicalreactions.

However,italsoincreasestheareaavailableforsurfacecorrosion.Someliterature suggeststhatalloydecrepitationandsurfacecorrosionofthenegativeelectrodeisthe maincauseofnormalbatteryagingandcanbequantifiedasafunctionofDODwithEIS

[12].Thisisdiscussedinsection2.1.5‘AgingofNiMH.’

LossofWaterintheElectrolyte canbecausedbyanumberofconditions,suchassurface corrosion,butismostlyencounteredduringabusiveoperation.Operatinginabusive conditionswhetheritisovercharge,overdischarge,orimpropertemperaturerangescan causethepressureinsidethebatterytobuildandthegastovent.Ventingthegasses reducesthebattery’sabilityfor,andthusreducesitspower.Another contributiontolossofwaterintheelectrolyteisdiffusionthroughthecaseonlyifthe caseisplastic.Thisisnotaproblemwithsteelconstructedcasing[9].

30 The CrystallineFormation isthecauseofbatterymemory.IftheNiMHbatteryisnot periodicallydischargedto0%SOC,thencrystalswillformaroundtheelectrodesofthe battery.Afulldischargeusuallyrestorestheelectrodesurface.However,ifnotproperly maintained,thecrystallinesurfacewillgrowandcandamagetheseparator.Ifthegrowth reachesthroughtheseparator,thebatterywillsimplyshortcircuitandberendered useless[2].ThefigurebelowshowsthecrystallineformationonaNickelCadmium batteryelectrode.Thecrystalshavegrownfromaround1micronto50100microns.

Afterapulsedcharge,thecrystalswerereducedto35microns.

NewNickelCadmiumCell

CrystallineFormation

Restored

Figure18:CrystallineFormationonNickelCadmiumElectrode[2]

CellReversal onlyoccursthroughabusiveoperation,mostnotably,overdischarging.

Thisiswhentheelectrodesinsidethecellbecomereversedincharge,renderingthe batteryunabletostoreandsupplyenergy.

31

Figure19:CellReversalthroughAbusiveDischarging[13]

HighSelfDischarge willnotcausecatastrophicfailure,unlessitistotheextremeofan electricalshortcircuit.Allbatteriesareaffectedbyselfdischarge,NiMHbeingoneof thehighest.Elevatedselfdischargeoccursalongwiththegrowthofcrystalline formation.Asthecrystallineformsoutfromtheelectrode,itbeginstomartheseparator, thusallowingforaneasierpathfromoneelectrodetotheother[2].Accordingly,the highertheselfdischarge,thelowerthecapacityofthebattery.

ShortedCells aregenerallyrareandsometimesunexplainable.Ithasbeensuspectedthat foreignparticlesmayhavecontaminatedtheseparatorduringmanufacturingcausingthe shortedcellsofnewbatteries.Asmanufacturingprocessesimprove,shortednew batterieshavereducedinnumber.Cellreversalcanalsocauseshortedcellswhenin serieswithotherbatteries.Asmentionedabove,thegrowthofcrystalsthroughthe separatorwillalsocauseanelectricshort[2].

32

2.1.5. AGING OF NIMH

Batteryaginggenerallymeansbothoroneofthefollowingperformancelevelsto depreciate:PowerandCapacity.Agingoccursthroughregularcyclingofthebattery, calendartime,andabusiveoperation[9].Anycombinationofthefailuremodeslisted abovecausesthedegradationofthebattery.Muchresearchhasbeendonetorelate batteryagingcharacteristicstoDODandoperatingtemperature.

Figure20:TypicalCycleLifeofNiMHBatteries[2]

33 Capacity

Figure21:TypicalCycleLifeofNiMHBatteries2[14]

2.1.5.1. DEPTHOF DISCHARGE

Figures20and21representthenormalagingofthebatterywithpredefinedandrepeated cyclesofthesameDOD.Figure22showshowdifferentDOD’sonthebatterywill affectitscyclelife.Ifthebatteryundergoesfulldischargesof100%DOD,thebattery willthenonlybeabletoprovideafewhundredofthesecycles.

34

Figure22:DepthofDischargeEffectonCycleLifeofNiMHBatteries[15]

2.1.5.2 TEMPERATURE

Operatingtemperaturehasabittersweeteffectonbatteryperformance.Increasingthe operatingtemperaturewilldecreasetheinternalresistanceofthebattery,andthus increasingbatteryefficiency.However,increasingthetemperaturewillalsohave adverseeffectsonbatterylife.Figure23showshowincreasingtheoperating temperaturecanhavealargeimpactonbatterycyclelife.

35

Figure23:TemperatureandCycleLifeofNiMHBattery[15]

2.1.5.3. DISCHARGE RATES

Itisexpectedthattherateofdischargingthebatterywillalsohaveaffectsonabattery’s cyclelife.Thebatterystressesmorewhenhighercurrentsaredemandedofit.Some literaturesuggeststhatthecorrosionoftheelectrode,whichismaincauseofnormal batteryaging,isindependentofdischargerate[12].Otherliteraturesuggeststhe oppositeinsayingthathigherdischargeratesdohaveadverseeffectsonacell’sexpected lifetime[15].Itispossiblethatdrawinghighcurrentcancauseunevendistributionsof chargethroughouttheplatesofthebatterycausinghigherstressonthebattery,sinceeach platedoesnothavethesameconductivity[14].Theresearchofthispaperhopesto breachthepossibilitiesofbatteryagingdependenceondischargerate.

2.1.5.4. CAUSESOF NORMAL AGING

Underthemosttypicalcircumstances,ithasbeenshownthatmuchoftheagingisdueto thesurfacecorrosionofthenegativeelectrode.Therefore,themainhindranceofbattery

36 lifeiscapacityloss.Itisgenerallyacceptedthatthebatteryhasreacheditsendoflife whenitreaches80%ofitsratedcapacity.Likewise,thepowerfadeofthebatteryisfrom thelossofwaterintheelectrolyteduringcorrosion.TheNiMHbatteryalreadyhas reasonablyhighpowercomparedtootherbatteriesandfortheirapplications.Thus,the

NiMHbatterywillbefirstlimitedbythecapacitylossandnotthepowerloss.Figures

24,25and26showthroughascanningelectronmicroscopethedecrepitationofthealloy aftercycling.Asdescribedabove,thedecrepitationallowsformorecorrosionofthe electrodeandthusmorepermanentaging.

Figure24:InitialMHElectrodeSurface[12]

37

Figure25:MHElectrodeAfter10Cycles(9.6AhDischarged)[12]

Figure26:MHElectrodeAfter100Cycles(96AhDischarged)[12]

2.1.6. MOTIVATION

Theresearchpresentedinthisthesisspecificallyattemptstotranscendtraditionalaging researchbycharacterizingNiMHagingdirectlytorealHEVcycles.Asetofbasiscycles canbestudiedtoquantifyagingforrealHEVoperation.Thesebasisvectorswillthenbe characterizedbyhowtheyagetheNiMHbatteries,thusattemptingtocreateamethodto predictagingofNiMHbatteriesinHEVapplications.

38

2.2.LEAD -ACID

2.2.1. BACKGROUND INFORMATION

LeadAcidbatteriesaretheoldestrechargeablebatteriesinexistence.Therechargeable

LeadAcidbatterywasinventedbyFrenchphysicistGastonPlantéin1859.Itiseven speculatedthatthebatterymaybemucholderthanthis.Somebelievethatthisleadacid chemistrywasusedbytheEgyptianstoelectroplateantimonyontocopperover4300 yearsago[2].

EvenwiththenewhighenergydensitybatterieslikeNiMHandLithiumIonemerging intothecommercialmarkets,LeadAcidbatteriesstilldominateinautomobilesasstarter batteriesandlargeuninterruptiblepowersupplysystems.TheLeadAcidbatteryis inexpensiveandsimpletomanufacture.Ithasoneofthelowestselfdischargeratesofall rechargeablebatterysystems.Ithasnomemory,andiscapableofhighdischargerates.

TheLeadAcidbatteryislimitedbylowenergydensity,andlimitednumberoffull discharges,alongwithanenvironmentallyunfriendlyelectrolyte[2].

2.2.2. BATTERY PERFORMANCE

ThecelloperationofaLeadAcidbatteryisslightlymorecomplicatedthanthatofthe

NiMHbattery.Itselectrolytedoesenterintoitsfullcellreaction,unliketheNiMH, whichmeansthestateoftheelectrolytewillaffectthebatteryperformance.

39

Figure27:ChargingofLeadAcidBattery[16]

Figure28:DischargingofLeadAcidBattery[16]

2.2.2.1. DISCHARGE PERFORMANCE

TheLeadAcidbatteryhasaveryacceptabledischargeprofileforrechargeablebatteries.

Asthebatterydischarges,thereisaninitialdropandpartialrecoveryinvoltageknownas thecoupdefouet,andthenthevoltagegraduallydecreaseswithtime.Towardstheend ofthedischargeasthestateofchargeofthebatteryreachesverylowvalues,thevoltage declinesveryrapidly,whichcanbecalled‘knee’oftheprofile.TocomparewithNiMH,

40 thedischargeperformanceisverysimilarinprofileifoneremovesthecoupdefouet phenomenon;however,theLeadAcidbatterydoesnotmaintainasflatavoltagelevelas theNiMH.Figure29providesatypicaldischargeofaLeadAcidbattery.

Figure29:TypicalDischargeofLeadAcidBattery[17]

Thedischargeprofileofthesebatteriesisalsodependentontemperature,anddischarge ratemuchlikethatofNiMH;asthetemperaturechanges,theperformanceofthebattery changes.Figures30and31provideexamplesofdischargeperformancewithdifferent temperatures:asthetemperaturedecreases,thecapacityofthebatterydecreases.

41

Figure30:Temperatureeffectsonleadacidbatterydischarge[17]

Figure31:Temperatureeffectsonleadacidbatterydischarge2[18]

Thedischargerateofthebatteryaffectsthevoltagecurveinasimilarfashion.Asthe dischargerateincreases,thevoltagecurveshiftsdownwardmuchliketheNiMHbattery.

42

Figure32:DischargeRateEffectonDischargePerformance[17]

2.2.2.1.1. THE PEUKERTEFFECT

ForLeadAcidbatteries,however,thereisnotalinearrelationshipwiththedischargerate andcapacity.ForNiMH,theCrateisaverygoodindicationoftheamountoftimeone coulddelivercharge.TheLeadAcidbatteryencounterswhatisknownasthePeukert

Effectwithhigherdischargerates.ThisisnottosaythePeukertEffectdoesnotaffect

NiMH,itisjustpracticallynegligibleforthatbatterywithloadsunder1C.Forexample, ifonedischargestheLeadAcidbatteryat1C,itwilltakelessthan1hourtodischarge completely.Generally,onehastodischargeataslowas0.05Cinordertoproportionally relatethetimeandtheratedcapacityofthebattery.Table5providessomeexample dischargesofaLeadAcidbattery.

43 Table5:EstimatedDischargeTimeofa10AhLeadAcidBattery[2] Discharge End of C-Rate Discharge time current discharge

0.5A 0.05C 20h 1.75V/cell

0.1A 0.1C 10h 1.75V/cell

2A 0.2C 5h 1.70V/cell

2.8A 0.28C 3h 1.64V/cell

6A 0.6C 1h 1.55V/cell

10A 1C 0.5h 1.40V/cell

ThePeukertEffectcanbeportrayedthroughanequationrelatingavailablecapacityand dischargecurrent.Itismostcommonlymodeledasanexponentialfunctionwhereeach batterytypehasitsownPeukertconstantstobeinsertedintotheequation.LeadAcid batteriesgenerallyhaveaPeukertNumberaround1.4[2].Thecloserthenumberisto1, thelessPeukertEffectonthebattery.

Table6:PeukertEquation[4] PeukertEquation:

Qisthecapacity,and Iisthecurrent. Kand narethebatterycharacteristicconstantand thedischargeratesensitivityexponent,respectively.Theequationquantifiesthehowthe apparentcapacityofthebatterydecreasesdisproportionatelytoadischargerateincrease

[4].Italsocanbeusedtodescribetheinternalresistanceofthebatterybasedonits efficiency.Avaluecloseto1indicatesefficientbatteryperformancewithlittlelosses

44 andthusalowerinternalresistance[2].Figures33and34showthePeukertEffecton dischargeandcapacity.Figure33showsvoltagecurvesshiftingdownwarddueto dischargerate.DuetothePeukerteffect,the1Cdischargedoesnottake1hourto completelydischargethebattery.Itonlytakesabouthalfanhoursincethebatteryisnot asefficientatthehigherrate.Thisinefficiencycanbeexpressedthroughtheeffective capacityprovidedthroughthedischarge.Ifonelooksatthefinalvalueoftime,and multipliesbythedischargerate,thecapacitydischargeddoesnotequaltherated capacity.Figure34,providesanexampleforthechangeineffectivecapacityduetothe

PeukertEffectonNiMHbatteries.AsimilareffectalsoappliestoLeadAcidbatteries.

Figure33:PeukertEffectonLeadAcid[2]

45

Figure34:PeukertEffectonNiMH(6.5Ah)[19]

2.2.2.1.2. COUP DE FOUET

TheinitialdipthatoccursintheLeadAcidbattery’sdischargeiscalledthecoupde fouet.Itusuallyoccurswhenthebatteryisonalongtermfloatchargeandthensuddenly appliedtoaload[8].Afloatcharge,alsoknownasatricklecharge,isverycommonin operatingleadAcidbatteries.ItisachargingtechniquethatkeepstheLeadAcidbattery continuallyatfullchargebychargingitatthesameratethebatteryselfdischarges.The dischargeprocessconvertsleaddioxideintoleadsulfate.Thischemicalreactionisbetter facilitatedwhentheleadsulfatemoleculeisgenerated.Inotherwords,duringtheinitial momentsofdischarge,thereactionisslightlylessefficientthanwhentheleadsulfate moleculesarecreated[8].Thus,aninitialvoltagedropisseeninthedischarge,andthen itrecoversasthechemicalreactionbecomesmoreefficientwiththegenerationoflead sulfate.

46

Figure35:VoltageDipknownastheCoupdefouet[8]

2.2.2.1.3. SURFACE CHARGE

Thisbatterycharacteristicdoesnotdescribethedischargeorchargeperformanceofthe battery,butcannotbeignoredindiscussionofLeadAcidbatteries.Surfacecharge occursmoreonLeadAcidbatteriesthanthatofNiMHandmostotherbatteries.Itis simplythebuildupofchargeonthesurfaceoftheelectrodeasthebatteryeithercharges ordischarges.Forresearchthatdealswithrapiddynamictesting,surfacechargecanbe quitecumbersome.Ithastheabilitytomakeagoodbatteryappearbad,andabadbattery appeargoodthroughopencircuitvoltagemeasurement.Ifonemeasuresthevoltageof thebatterydirectlyafteracharge,thenthevoltagewillappearveryhighandpossibly above‘overvoltage’criteria.Thisisbecauseofthechargebuildupontheelectrode.Itis recommendedtowaitatleast412hoursforthechargebuilduptodissolve,andthen measuretheopencircuitvoltage.Additionally,thehigherthechargeordischargerate, thelargeraccumulationofsurfacechargewillbe.

47 2.2.2.ABUSIVE OPERATION

TheLeadAcidbatteryiswellknownforitstoleranceofabusiveconditions.TheLead

Acidbatteryisreasonablyforgivingontemperatureextremes;however,higher temperatureswillshortenlife[2].Evenwhenoperatingthebatteryinreasonable temperatureregimes,therearecertainconditionsthatcandamagethebattery.Muchlike

NiMHbatteries,dischargingpastacertainlimitwilldamagethebattery,chargingpasta certainlimitwilldamagethebattery,andimproperfloatchargingwilldamagethe battery.Batterydamagewilldrasticallyshortenthecycleandcalendarlifeofthebattery andistobeavoided.

2.2.2.1.OVERCHARGE

SincetheLeadAcidbatteryhassuchalonghistory,therearesomebasic,almostfool proofmethods,forchargingthebattery.Onemethod,whichisoftenusedbycommercial batterychargers,isamultistagechargemethodthatinitiallycontrolsthechargecurrent, andthenswitchestocontrolavoltagelimit.Atfirstthebatterywillrapidlychargewitha reasonablyhighcurrentuntilitreachesaspecifiedvoltage,thenthechargerwillswitchto acontrolledvoltageandthebatterywillslowlychargetofullcapacity.Figure36depicts thisprocess.Oftenthebatterywillbeplacedonfloatchargeuntilitisused.

48

Figure36:MultiStageChargeMethod[2]

Anothermethodinvolvesjusttheuseofapowersupply.OnecanchargeaLeadAcid batterywithaconstantvoltagethresholdandlimitthecurrenttoamaximumampere level.Otherprocessesincludepulsechargemethodswhichsomebelievereducethe amountofcellcorrosionduringcharging[2].

Withanychargemethod,thelimitsareappliedtopreventovercharging.Overcharging willcausecellcorrosionattheelectrodeswhichwillcausepermanentdamage[2].Some pulsechargetechniquesclaimtoreducecorrosion,buttheeffectivenesshasnotbeen widelyaccepted.OverchargingforaLeadAcidbatterycomesintwoforms:currentand voltage.Chargingattoohighofacurrentwillcausemorecorrosionandovercharging, andlikewisechargingattoohighofavoltagewilldothesame.Manufacturerswill

49 specifytheirrecommendedchargeprocedure.Overchargingacceleratesfailuremodesof thebattery,whichcanleadtogassing.Thesefailuremodes,includinggridcorrosion,are discussedinSection2.2.3.

2.2.2.2. OVERDISCHARGE

TheLeadAcidbatteryshouldbelimitedataspecifiedvoltagetoterminateadischargeto preventcelldamage.Regularoperatingconditionsgenerallyplacethislimitat1.75V/cell

[2].Thus,fora12Vbattery,adischargeshouldterminateat10.5V.Goingbeyondthis limitwillbegintooverdischargethebattery.Suchabusecancausecellreversal,oreven shortcircuitingofthebattery.Thesefailuremodeswillbediscussedinmoredetailedin subsequentsection2.2.3‘FailureModes.’

2.2.2.3. FLOAT VOLTAGE VARIATION

Floatvoltageisafixedvoltagelimitthatallowsafullychargedbatterytochargeatthe samerateitdischarges.Thebatteryisthus‘floating’atfullcharge.Variationofthefloat chargeiscloselyrelatedtoovercharging.Ifthefloatvoltageistoohighandcharging occursatafasterratethantheselfdischargeofthebattery,thenoverchargingoccurs.

Additionally,ifthefloatchargeisnotequaltotheselfdischargeofthebattery,thenthis isknownasunderchargingandcandamagethebattery.Underchargingcanleadto sulfationwhichleadstocapacitylossandpermanentdamage.Thissulfationisdifferent fromthesulfatethatformsduringnormaldischarging.

50

2.2.3. FAILURE MODES

ThefailuremodesassociatedwiththeLeadAcidbatteryareverysimilartothemodes associatedwiththeNiMHbatteries.TheLeadAcidbatterydoeshave,however,afew moremodesoffailure.Someofthesefailuresarenotcatastrophicandcannearlybe fullyrestored.ThemainmodesoffailurefortheLeadAcidbatteryarethefollowing:

1. CorrosionofBatteryComponents[8]–positivegrid,negativestrap

2. LossofWaterintheElectrolyte(Dryout)[2]

3. LossofActiveMaterial[2]

4. Sulfation[2]

5. CellReversal[8]

6. HighSelfDischarge/ShortedCells[2]

7. Hydration[8]

8. ThermalRunaway[8]

Corrosionofthepositivegrid contributestomostbatterydegradation.Thisfailuremode takesplacethroughnormaloperatingconditions,butwillaccelerateifthebatteryis operatedinabusiveconditionslikehightemperatureandovercharging.Corrosioncan alsooccuratthenegativestrap,butisgenerallyrare. Corrosionofthenegativestrap occursinabsorbedglassmattVRLAbatteries.Thenegativestrapisoftennotcompletely immersedintheelectrolyteandisgenerallyexposedtoahydrogenenvironmentinthe voidspaceabovethenegativeplates.Sincethenegativeplatesareoftendepolarized,the

51 negativestrapcancorrodeandfracturecausingprematurefailureofthebattery.Some manufacturingprocessesnowwrapthenegativestrapinabsorbedglassmatttoprevent corrosionofthenegativestrap.Corrosionofthebatterycomponentsleadstobothlossof capacityandpowerbecausethebuildupofcorrosionreducesthesurfaceareaavailable fortheactivematerialtointeractwiththeelectrolyte[8].Thiseffectisnoticedmore profoundlyinlossofcapacitysinceitgreatlyreducesthecapabilitytostorecharge.

Lossofwaterintheelectrolyte hasgenerallythesameeffectforLeadAcidbatteriesasit doestheNiMHbatteriesandmostanyotherchemicalbatteries.Itreducesthe conductivityofthechemicalreactions,whichgenerallymeansanincreaseininternal resistanceandconsequentlyalossofpower.Sincetheelectrolyteplaysalargerolein thereactionsinsidetheLeadAcidbattery,italsoaccountsforlossofcapacity.Ifthe batteryundergoesventing,thentherewillbelesswaterintheelectrolyte.Waterlosscan alsooccurbydiffusionthroughaplasticbatterycasing.VentedLeadAcidbatteriescan beaccessedtorestorethewatersupplyintheelectrolyte,butVRLAbatteriescannotbe refilled.Manycallthisfailuremode starvedelectrolyte sinceitis‘starved’ofwater.

Thecorrosionprocessreducestheamountofwaterintheelectrolytesinceitisusedinthe corrosionprocess[8].

Lossofactivematerialonthepositiveelectrode willacceleratethelossofcapacity.This generallyonlyoccursinovercharging,whenexcessivegassingmayknockactivematerial offapartiallycorrodedpositiveplate[8].

52 Sulfation occursthroughthedischargeprocessandisbrokendownthroughthecharge process.Ifthebatteryundergoesabusiveconditions,sulfationcanbecomepermanent.

Higherdischargeratesalsoincreasethegrowthofsulfation.Operatingathigh temperatures,leavingthebatteryonalowstateofcharge,orsimplyatopencircuitfor extendedperiodswillincreasesulfation.Itisgenerallynotaproblemunlessit crystallizesintoaninactiveformwhichcannotberebrokenthroughcharging.

Permanentcrystallizationispossibleinanycircumstanceinwhichsulfationoccurs.

Sulfationcanleadtobothfailuremodes.Sinceitremovestheavailablesurfaceareafor thechemicalreactionitwilleffectivelyincreasethebattery’sinternalresistance.Itwill usuallypermanentlymanifestitselfasalossofcapacitysincemostsulfationisremoved duringchargingandareductioninchargingefficiencywillreducetheabilitytostore energy.

Cellreversal isveryrarewithLeadAcidbatteriessincetheyaregenerallyverytolerant toabusiveoperation,butitisstillpossible.Cellreversalcouldhappenthroughavery abusiveoverdischargeprocess,butmostlyoccursifthecellsinsidethebatterydonot match.Aweakcellwilldischargemorequicklyandcouldcausereversalifdischarged toolow.

Highselfdischarge isalsonotcommoninLeadAcidbatteriesbecausetheyremaintobe oneoftheleastselfdischargingbatteriesavailable[2].ALeadAcidbatteryonlyself dischargesatarateofapproximately5%amonthwhichismuchslowerthanthenickel basedandlithiumtechnologies.Repeateddeepcyclingofthebatterywillincreasethe

53 rateofselfdischarge.Otherfailuremodeslikecrystallineformationduetosulfationthat marstheseparatorcouldcausehighselfdischargesandashortcircuit.Additionally,if thenegativestrapcorrodesandfallsoverthetopoftheseparatorandconnectstothe positiveplate,thenitwillresultinanelectricalshortcircuit[2].

Hydration istheprocessofleadcompoundsfromtheplatesdissolvinginthewaterofa dischargedcelltoformleadhydrate,whichisthendepositedintheseparators.Thiswill causemultipleshortcircuitsbetweentheplates.Hydrationiscausedbyoverdischarging, orleavingthebatteryinadischargedconditionforanextendedtime[8].

ThermalRunaway istheprocesswherethebatterydestroysitselfthroughinternalheat generation.Thiscanoccurthroughoverchargingofafloatcharge.Asthebattery naturallyheatsupthroughcharging,morecurrentisneededtokeepthefloatvoltageata setlevel.Theadditionalcurrentwillthenprovidemoregasgeneration,whichresultsin moreheatgenerationasthegasundergoestherecombinationprocess.Thebattery temperaturewillcontinuetoincrease,eventuallydestroyingitselfbyoverheating[8].A thermalrunawaydiagramispresentedFigure37.

54

Figure37:ThermalRunawaySequence[8]

2.2.4. AGING OF LEAD -ACID

TheLeadAcidbatteryisdestinedtowearoutevenunderidealconditionsandoperation.

Thereisnoguaranteetohowlongthebatterywillprovideenergynomatterhowgently thebatteryisoperated.Itcanbeguaranteedthatthelifeofthebatterywillbeshortened ifoperatedinabusiveconditions.Therehasbeenmuchresearchdoneontheagingof

LeadAcidbatteries.LossofpowerisnotamajorconsideredforLeadAcidbatteries sincetheyaredesignedtosupplyhighpowerapplications.Mostresearchfocusesonthe lossofcapacityofthebatterysincethisismostoftenencounteredfirst.Typically,a batteryisassumedattheendofitslifewhenitdropsbelow80%ofitsratedcapacity althoughanautomotiveLeadAcidbatteryisstillfunctionalat80%capacityforits intendedpurpose.Agingofthebatteryiscloselyrelatedtothebattery’sDOD,and operatingtemperature.IdealperformanceoftheLeadAcidbatterycanactuallyoperate

55 higherthanitsratedcapacityifproperlymaintained.Figure38describestheideal batterylifeforaLeadAcidbattery.

Figure38:IdealBatteryLife[8]

2.2.4.1.DEPTHOF DISCHARGE

Ingeneral,theLeadAcidbatteryisnotdesignedfordeepcyclingpurposes.Infact,the sealedLeadAcidbatterywillprobablyonlyprovideacouplehundredcyclesofdeep discharges.AstheDODincreases,thecyclelifeofthebatterydecreases.Any combinationoffailuremodeslistedabovecanagethebattery,butitismostlythegrowth ofgridcorrosionthatmakesthedepthofdischargevariableagethebattery.

56

Figure39:CycleLifeofSealedLeadAcidBattery[20]

2.2.4.2. TEMPERATURE

Theoperatingtemperaturebecomesanagingfactormostlybecauseitcanincreasethe effectsofthefailuremodesdescribedabove.Temperaturewillincreasethecorrosion process,thusincreasingthedegradationofthebatterycomponents.Highertemperature willhelpthebatteryrunmoreefficiently,atthepriceofagingthebatteryfaster.

57

Figure40:TemperatureEffectonExpectedLife[8]

2.2.4.3. DISCHARGE RATE

MuchlikethatforNiMHbatteries,thereisnotmuchresearchthathaslookedintothe directrelationshipofdischargerateandcyclelifefortheLeadAcidbattery.Itisknown thatthedischargeratewillincreasesulfationinthebatteryaswellasincreaseother possiblefailuremodes.Itisalsosuspectedthatthedischargeratewillagethebattery muchlikethatofDOD.Alargerdischargeratewillstressthebatterymoremuchlikethe largerDODstressesthebatterymore.Itisoneofthegoalsofthisresearchtoinvestigate theeffectofdischargerateonagingofthebattery.

2.2.4.4. CAUSESOF NORMAL AGING

Evenifthebatteryperformsideallyandisoperatedunderidealconditions,itwill eventuallyfail.Asbrieflyexplainedbefore,themaincauseofbatteryfailureislossof capacity.Mostresearchhasdeterminedthatthislossofcapacityisstronglyrelatedtothe

58 positivegridcorrosionofthebattery,withtheadditionoflossofwaterfromthe electrolyteduetothecorrosionprocess.

2.2.5. MOTIVATION

Onegoalofthisresearchistoconductexperimentsinordertofurtherthecharacterization ofaginginLeadAcidbatteries.Morespecifically,itishypothesizedthatthebatterywill undergodifferentagingmodesbasedontheoperatingconditions.Ifthebatteryis subjectedtodifferentandspecificloaddemands,thenitisexpectedtoagedifferently.

Mostagingresearchfocusesoncapacitylosssincethemajorityofbatteriesreachthis endoflifecriterionbeforepowerloss.However,inrealworldconditions,itispossible forthebatterytoloseitspowercapabilitiesbeforeasubstantialamountofcapacityis lost.Inotherwords,thecarbatterynayhavetheabilitytostoreandprovidecharge,but maylosetheabilitytosupplycurrentduringcranking.Thus,whenthecarisrunning,all onboardelectricaldeviceswilloperatenormally.Thebatteryonlyfailswhentheengine needstostart.Understandingtheeffectsthesespecificcycleshaveonagingwillprovide insighttowardsagingduringrealworldoperation.

2.3. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

ElectrochemicalImpedanceSpectroscopyisauniquetoolforevaluatingdynamicbattery performance.Itisessentiallyameasureofthebattery’sinternalresistanceasafunction offrequency.SimilarmethodsincludeDCstepresponses,butEISisnotsuspecttolong relaxationtimesandnonlinearity[1].Thismethodisbasedontheclassicaltransfer functionwheretheimpedanceisaratioofthesinusoidalinputandresponse.Theinputis

59 anACsignalofsmallamplitudeandtheresponsebeingthevoltage.Thus,throughbasic

Ohm’sLaw,theimpedanceofthebatterycanbedetermined.Ifthesignalandresponse aremeasuredthroughabroadfrequencyrange,manydynamiccharacteristicsofthe battery’simpedancecanbedetermined.

Whenthisspectrumisacquired,electriccircuitmodelscanbeevaluatedtowhetheror nottheyaccuratelydepictthebatteryperformance.Thesemodelsconsistof combinationsofresistorsandcapacitorsasanattempttorelatechemicalbatteriesto traditionalelectricalcircuits.Thisiswherethisresearchwillfocusitsattentionsince evaluatinganequivalentmodelcanhelpdetermineagingcharacteristics.Ifoneimagines anelectricalcircuitwithasimpleresistor,theEIStestcandescribetheresistorstateof health.Ifthisresistorincreasesitsresistanceovertime,theEIStestswillbeableto capturethischange.Thus,thesameholdswithbatteryaging.TheEIStestswillhelp capturetheagingofthebatterythroughitsincreaseininternalresistance.

2.3.1 EIS BASICS

TheEISsystemcaneitherbepotentiostaticorgalvanostatic.Thefirstisasystemthat inputsasinusoidalvoltageandmeasuresthecurrentresponse.Thelatterisasystemthat inputsasinusoidalcurrentandmeasuresthevoltageresponseandisthetypeusedforthis research.TheimpedancecanthenbedeterminedwiththisresponsebasedonOhm’slaw.

60

Figure41:CurrentandVoltageasFunctionsofTime[21]

Table7:Ohm’sLaw[1] DirectCurrent–Resistance:

V R = I

AlternatingCurrent–Impedance:

V Z = ac Iac

Theimpedanceisthenplottedalongarangeoffrequenciestohelpdescribebattery behavior.TheplotsthatareusedtoshowthisspectrumareaBodePlotandaNyquist

Plot.

61 BodeDiagram 0

10

20

Magnitude(dB) 30

40 0

45 Phase(deg)

90 2 1 0 1 2 10 10 10 10 10 Frequency(rad/sec)

Figure42:SampleBodePlot(FirstOrderSystem)[1]

NyquistDiagram 1 2dB 0dB 2dB 4dB 4dB 0.8 6dB 0.6 6dB

0.4 10dB 10dB

0.2 20dB 20dB

0

0.2 ImaginaryAxis

0.4

0.6

0.8

1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 RealAxis

Figure43:SampleNyquistPlot(FirstOrderSystem)[1]

62 2.3.2. BATTERY MODEL OVERVIEW

EISisusedinthiswaytohelpcreateelectricalcircuitmodelsforchemicalbatteries.By developingtheimpedancespectrumthroughEIS,acircuitmodel’simpedancecanbe comparedtothechemicalbattery.[1]createdanelectricalmodelfortheNiMHbattery usingEISandalsodescribeshowthosemodelelementschangetheimpedancespectrum.

MostNiMHelectricalmodelsarebasedofftheRandle’sCircuitModel,whichconsistsof tworesistorsandacapacitor.Afterfurthertrials,mostresearchersgenerallycomeup withasecondordermodeltobettercharacterizetheNiMHbattery.

Figure44:Randle’sModel[11]

Figure45:VisualizationofBatterywithRandle’sCircuit[2]

63

Figure46:SecondOrderModel[1]

SomemodelsevenincludeaspecialimpedanceelementcalledtheWarburgImpedance.

ThiselementallowsforanevenbetterfittoNiMHbatteryspectrum.[1]foundthe

SecondOrderModelwithaWarburgImpedancetobethebestapproximationofthe

NiMHbatteryspectrum.Figures47and48showthemodel,andthefittedspectrum.

Figure47:SecondOrderModelwithWarburgImpedance[1]

64

Figure48:ResultingfitofsecondordermodelwithWarburgimpedanceonNyquistPlot [1]

Themodelinghelpsdescribetheinternalcomponentsofthebattery.Athighfrequencies, thecapacitorsinthemodelactasanopencircuit,thusallowingtheimpedancespectrum tobenearlyrepresentedbyonlytheseriesresistance.Theresistorsthemselvescan physicallyrepresenttheconductionoftheelectrolyte,sulfation,etc.Knowingthese impedancecharacteristicscanallowforpredictionoffuturebatteryperformance.Some manufacturershavedevelopedalgorithmsthatapproximatethebattery’sperformance basedonanEIStest.Figure49showshowwelltheEIS(inthischartcalled‘Spectro’) canpredictthecoldcrankingampsofaLeadAcidbattery;thefigurealsoprovidesa comparisonwithACconductancetesting.

65

Figure49:EISPredictingCCA[2]

Oneofthemostimportantindicationsofbatterystateofhealthiscapacity.EIScannot directlyassessthecapacityofthebatterybecausethereisnosimplerelationshipbetween impedanceandcapacity.Figure50showstheinabilitytorelateimpedancewithcapacity byplottingabattery’scoldcrankingabilityalongwithitscapacity.

Figure50:CCAvs.Capacity[2]

66

However,somemanufacturershavedoneextensiveresearchtocreatemodelsthatwill approximatethereservecapacityofabatterythroughEIS.Theseapproximationsare foundtobereasonablyaccurate,ascanbeseenintheFigure51,especiallyforarapid batterytestwhenconsideringtheonlytruewaytodeterminecapacityisthroughalong anddeepdischargeofthebattery.

Figure51:EISPredictingCapacity[2]

2.3.3. BATTERY AGING WITH EIS

NotonlydoesEIShavetheabilitytohelpgenerateandvalidateelectricalmodels,itcan alsobeusedtodescribebatteryaging.Asthebatteryages,itsinternalresistancewill increase.Thisincreasecanbeseenintheimpedancespectrum.Byplottingtheoriginal spectrumovertheagedspectrum,itiseasytoseetheshiftinthecurverepresentingthe increaseinimpedance.

67

Figure52:BodePlotIncreaseinImpedanceMagnitudeShowingAging[1]

Figure53:NyquistPlot–IncreaseinImpedanceShowingAging[1]

68 EIScanalsobeusedtodescribeaginginmoredetail.[12]usesEIStoquantifytheaging mechanismofcorrosionanddecrepitation.ThemodeldevelopedforthisNiMH spectrumwasalsoasecondordermodel,butwithouttheWarburgimpedance.

Figure54:SecondOrderModelafter[12]

Withthismodel,[12]determinedarelationshipbetweensomeofthecircuitelementsand thedecrepitationoftheelectrode.Moreover,theratiooftheinitialresistance RLF over theactual(aged)resistance RLF wasfoundtobe“anaccuratemethodforalloy decrepitationevaluation”[12].

EIScontinuestobecomeaveryreasonablemeansofdescribingbatteryaging.Itisalso conceivablethatifonecouldimplementalowcostonboardversionofthisdiagnostic tool,ithasthepotentialofbecominganonboarddiagnosticmethodinHEV’s.This wouldallowtheownertoeasilyassesthebattery’sstateofhealthanddetermineresidual lifeofthebattery.

69 3.BATTERY AGINGAND PROGNOSISAPPROACH

Thegenerationofbasiscyclesfromrealbatteryoperationisanattemptatdiagnosingand predictingbatterylife.Thisnextsectionwillprovidethemethodologyforcreatingthis basiscyclesetthatwillbestudiedandusedinpredictingbatterylife.Thisapproachwas developedinconjunctionwithbothDr.GiorgioRizzoni,DirectoroftheCenterfor

AutomotiveResearch,andLorenzoSerrao,aPhDcandidateinMechanicalEngineering.

Herearesomerelevantreferences:

1. Serrao,L.,Chehab,Z.,Guezennec,Y.andRizzoni,G.,“AnAgingModelofNiMH BatteriesforHybridElectricVehicles”,Proc.IEEEVehiclePowerandPropulsion Conference,Chicago,PeerReviewed,September2005. 2. Chehab,Z.,Serrao,L.,Guezennec,Y.,Rizzoni,G.,“AgingCharacterizationof Nickel–MetalHydrideBatteriesUsingElectrochemicalimpedancespectroscopy”, ProceedingsofIMECE2006,2006ASMEInternationalMechanicalEngineering CongressandExposition,November510,2006,Chicago,Illinois,USA

3.1 PROGNOSTICS BACKGROUND

Manyapplicationsrequirethattheirsystemsundergohealthmonitoringdiagnosticsin ordertoassesthesystem’sreliabilityfortheapplication.Wheresystemmonitoringis quitecommon,prognosticstechnologyisjustemerging.Mostcurrentprognostictheory comesintheformofstructuralengineeringwhereasystem’slifeundercyclicloading canbepredictedtoavoidcatastrophicfailurefromfatigue.Forinstance,thePalmgren

Minerrule[22,23,24]predictsfatiguefailurethroughcrackpropagationbyaddingthe damageofthecurrentcrackpropagationasafunctionofitslifetodate.This‘additive law’isessentialinapproximatingthecumulativedamageonthesystemandthus predictingfuturedamagefromthesameloading.Theaccumulationofdamageis factorizedasaproductofthefunctionofthecurrentdamage, ϕ1(ϑ ),andafunctionof

70 theexcitationamplitude, ϕ2(p),where pistheexcitationamplitude,and ϑ isthedamage variable.

dϑ(n) =ϕ ()ϑ ϕ (p) 1 dn 1 2

Manysystemsareeffectivelynonlinearwhenestimatingdamageevolution,andmustbe examinedthoroughlytodetermineareasonablerelationship.Beforethedamagecanbe studied,thevariablesthatcausethedamagemustbeidentifiedandexperimentally validated.Additionally,thesevariablesmustprovidesomemeansofparameter extractionthatwillreliablycorrelatewiththedamagevariableasitchangeswiththelife ofthesystem.Thisprocesscanbeextremelydifficult,especiallywithanonlinearsystem wheretheinitialconditionshavehighimportance,andmustbeconductedthroughsetsof experimentswithcarefullycontrolledconditions.

Theabove‘additive’relationshipwillbeappliedtobatteryaging.Thedamagevariables thataffectaginghavebeenreviewedearlierinthereportandincludethebattery’s internalresistance.DOD,dischargerate,operatingconditions,etcarethenvectors representing p,theexcitationamplitudeinrelationship.Itisthisresearch’sapproachto utilizeasimilarrelationshipdescribedinthePalmgrenMinerruletobatteryaging prognosis.

3.2 BATTERY AGING PROGNOSIS METHODOLOGY

Thecurrentmanufacturersupplieddataonbatterylifeisnotsufficientforestimating batterylifeinauseablecontext.Thesupplieddataisarepresentationofthebattery’s

71 decreasedcyclelifeasafunctionofDOD.Thisinformationcannotbeeasilytranslated toactualbatterylifedegradationbecauseofthefactthatthisinformationwasdeveloped solelythroughpredeterminedloadcyclesthatdonotrepresentrealworldoperation.

Figure22insection2.1.5.1providesasampleofmanufacturersuppliedbatterycyclelife informationforNiMH.

Thisinformationisusuallyobtainedthroughasimplesignal,usuallyasquarewave.The squarewavecaneasilybeadjustedtoinvestigateadifferentDODbysimplychangingthe periodofthesignaloritsamplitude.Whileunderstandingthebatterycyclelife dependenceonDOD,itdoesnotcomeclosetorepresentingwhatreallyhappensinsidea vehicle.Figure55providesasimplerepresentationofwhataNiMHbatterycouldsee insideanHEV.

80

60

40

20

0 Current(A)

20

40

60 0 100 200 300 400 500 600 Time(s)

Figure55:TypicalCurrentofNiMHinanHEV

72 Asonecansee,thisinnowayrelatestoasquarewave.Thecurrentprofileisquite dynamicwithmanysharppeaksandvalleys.Thechallengethenbecomescreatingsome methodfornotonlydeterminingtheagingeffectsthroughrealoperation,butalso creatingameansofpredictingtheremaininglifeofthebattery.

Theapproachthroughthisresearchwillbebasedonthe‘additivelaw’describedabove.

Thedamageaccumulatedinthebatteryfromonecycleorintervalofoperationwilladd cumulativelywiththepreviousdamagealreadyinherenttothebatteryfromprevious cyclesorintervalsofoperation.Thislawthenallowsforanapproximationofremaining lifebasedontheagingeffectsofthecurrentandpreviousdatabydefiningatotallifethat isdecreasedfromeverycycleorintervalofoperationtowhichthebatteryissubjected andassumingthesameoperatingconditionsforthefuture.

Thefirststepistoidentifythedamagevariables,asbrieflymentionedabove.These variablesarediscussedintheprevioussectionsthatagethebattery.Thevariablesthat willbeconsideredwiththehighestweightingaretheDOD,theoperatingtemperature, andtheshapeofthecurrentprofilewhichinherentlyincludesthedischargerate.This lastvariableistheelementthatissignificantindeterminingtheagingofthebatteryfrom previousdamageaswellaspredictingsubsequentaging.Itisimportanttonotethatitis assumedthattheshapeoftheprofilehasaneffectonbatteryaging.Relatingonceagain tomechanicalfatigue,thesystemwillundergomorestressfromalargerload.Ifthisidea isrepresentedthroughabatterycell,thecellwillundergomorestressfromahigher dischargerate,andconsequentlytheshapeofthecurrentprofilecouldthenalsohavean

73 effectonthestressofthebatterycell.Inordertoinvestigatethisrelationshipthrough representationsofrealworldoperatingcycles,asetofbasiscycleswillbegeneratedand testedfortheiragingordamageeffectonthebattery.

InsummaryaproposedagingmodelwillbedependentonDOD,dischargerate, operatingtemperature,andprofileshape.Eachprofileshapewillbeinvestigatedforits agingeffectonthebatteryalongwiththeeffectsinchangingtheprofile’sDOD, dischargerate,andtheoperatingtemperature.Inasense,eachprofilewillthenprovide one‘map’ofagingbasedonthoseothervariables.Repeatingthisprocessforeach representativebasiscyclewillprovideacomprehensiveagingmodelthatcanthenbe usedtodiagnosebatteryagingaswellaspredictitsremaininglife.

Themodelproposestoassumethateachprofilewillhaveaneffectivetotallifeona battery.ThatistoassumeifthebatterywassubjectedtothisprofileatthesameDOD, dischargerate,andtemperatureoverthebattery’sentirelife,thentheresultinglife, Lk,is theamountoftotalchargeinAmphoursthebatterywasabletoprovideoveritsentire life.Eachprofilewouldthenhaveadifferent Lk,whichwouldfluctuatebasedonthe

DODandtemperatureoftheprofile.

Lk = f (profile,Tk , DODk ) 2

Theresultingdamageoragingonthebatterycanthenberepresentedwiththe‘additive law.’Theamountofamphouragingundergoneataparticularprofilecouldbe representedasapercentageofthebattery’sactuallifebasedonthetotalamphourlifefor

74 thatparticularprofileunderthoseoperatingconditions.Thusaresidualbatterylife, Λres , couldbecalculatedthroughthesimpleequation.

N Idt ∫k Λ res =100% − ∑ 3 k =1 Lk where Lk,isthetotallifefromthatparticularprofile,andtheintegralistheamountof amphoursappliedtothebatteryforthatprofile.

Throughagingdiagnosistests,theagingofeachprofilecanbequantifiedanda comprehensivemodelcanbecreated.Ifonewastousethisprocesswiththe predeterminedsquarewaveprofilethatistypicalofamanufacturer’sdata,theprocess wouldfollowthediagrambelow…

Lk = f (Tk , DODk , profilek ) t Battery Functionobtainedusinga Capacity map ofexperimentalresults:

Condition k 100% (T, SOC, profile) 80%

(for a given profile )

Ahdrawn (∫I dt) Ah life Lk of the battery in a given condition k

75 Figure56:SquareWaveProfileinAgingModelMethodology

Thesurfaceplotonthelowerleftisjustanexampleofwhateachprofilewouldcreate whenadjustingtheotherparametersofDODandtemperature.First,aprofile, Lk,is createdandconditionsareset.Itisagedcontinuouslywithintermittentagingdiagnosis testsappliedtodeterminethebattery’sstateofhealthafteracertainnumberofcyclesor totalAmphours.Oneagedbatterythroughthoseconditionswouldthenrepresentone pointforthethreedimensionalsurfacethatrepresentstheagingduetoonegivenprofile.

Toexpeditetheprocess,theprofilestobeinvestigatedwillbeabasissetthatstatistically representsrealworldoperation.Thiswilllimitthenumberofprofilesthatwillneedtobe studiedtodiagnoseandpredictaging.TheprocessisdescribedintheFigure57.

BasisCycle Nowagebatterywith basiscycles over multipleconditionstogeneratethe “map ”forthoseprofiles,justlikethe genericsquarepulseusedbefore.

Lk = f (Tk , DODk , profilek )

I

(for a given profile ) t

BatteryCapacity

100% Condition k 80% Ahdrawn (∫I dt)

Ah life Lk of the battery in a given condition k

Figure57:AgingModelMethodology

76 4.LEAD ACID EXPERIMENTAL METHODOLOGY

ThissectiondescribesthemethodologyforLeadAcidbatteryaging.Twospecific profilesthatareintendedtocausethetwocommonfailuremodesforthisbatterytypeare discussed.Agingthebatterythroughtheseprofileswillprovideinsightintothecreation ofacomprehensiveagingmodelforLeadAcid.

4.1 BACKGROUND REVIEW

ThedominantfailuremodesoftheLeadAcidbatteryinvolveeithercapacitylossor powerloss.Mostresearchandexperiencesuggestthatcapacitylossisthemorefrequent failuremechanismofthetwo.However,powerlossisstillencountered,anditisthegoal ofthisresearchtohelpdeterminethemethodsthatcausethesefailuremodes.To visualizethedifferencesbetweenthetwo,oneshouldimagineonceagainthewatertanks.

Forabatterywithpowerloss,thebatteryisstillcapableofsupplyingalltheratedenergy, butcannotsupplythehighamountofcurrent.Torelatetoawatertank,imagineatank thatisfullbutcanonlybeemptiedonedripofwateratatime.

Figure58:BatteryasaWaterTankwithPowerLoss[2]

77 Alternatively,abatterythathascapacitylosscanstilldeliverhighamountsofcurrentbut cannotdelivertheratedamountofenergy.Asawatertank,itwouldbeabletoprovidea strongstreambuttherewouldberocksinsidethetanklimitingtheamountofusable waterinside.

Figure59:BatteryasaWaterTankwithCapacityLoss[2]

Inordertodeterminethemethodsthatcausethesebatteryfailuresandalsodistinguish betweenthetwo,thisresearchhasdevelopedspecificdischargingcyclesthatwilltryto causethesespecificfailuresindependentlyfromtheother.Thefirstdischargecycle consistsofhighdischargerateswithaverysmallamountofremovedenergy.The seconddischargecyclehasverysmalldischargerateswithverydeepandlargeamounts ofremovedenergy.Itishypothesizedthatthelatterwillcauseamoreprofoundcapacity loss,andtheformerwillcauseamoreprofoundpowerloss.Ifthisisthecase,thenmore advancementsandtestingcanbedonetohelppreventthesefailuresinfuturebatteries.

78 4.2 PROCEDURE

TheapproachtostudyingthecommonfailuremodesoftheLeadAcidbatteryinvolves cyclingthebatterywithtwodifferentloadingprofiles.Theseprofilesarehereincalled the PowerCycle ,forpowerlossaging,andthe EnergyCycle ,forcapacitylossaging.

4.2.1 POWER CYCLE

Thebatteryisconnectedtoaconstantimpedanceload,andallowedtodischargeashigh aspossiblebasedonthatimpedance.Thisisrepeatedforanumberoftimesatafixed duration.Thebatteryisthenrechargedwithapowersupply,andtheprocessbegins again.Afteranumberofagingcycleshavebeenapplied,agingtestswillbeadministered torecordthebattery’sage,orstateofhealth.Thesetestswillbediscussedinmoredetail insection4.2.3‘AgingDiagnosisTests.’

Theagingcycleofthepowertestissimplyrepetitionofrapidbutshallowdischarges, followedbyaslowcharge.Figure60showsthisprofile.

I 8C

time C/6

Figure60:PowerCycle

79 Therapiddischargewillberepeated40timesbeforetherecharge.Thedischargeis providedbyconnectingthebatterytotheimpedanceloadandcommandingtherelay connectortocompletethecircuit.Theuserwillspecifyhowlongtodischargealongwith thenumberofpulses,whichwillcontrolwhentherelayconnectordisconnectsthecircuit andendsthedischarge.Thechargingbeginswiththepowersupplyaftertherepetitive dischargeshaveended.Thesoftwarewilldeterminethroughintegrationofthecurrent andtimeresponse,howlongtochargethebatterywithauserspecifiedamountof current.ThecurrentforthisprofilewasdeterminedtobeC/6forcharging,andabout8C fordischarging.Thealgorithmbelowdescribesthisprocess.

PowerCycleAgingAlgorithm :

1. Takea75%SOCbatterybasedonitsV oc .

2. Stabilizeat113 oFor45 oC

3. Dischargethebatterythroughtheimpedanceloadfor5secondsandrestfor5

seconds.

4. Repeatstep2,40times.

5. ChargewithC/6toreplacecharge.

6. Repeatfromstep2,32times(orbasedonscheduling).

4.2.2. ENERGY CYCLE

Theagingcyclesforthistestconsistoflongdeepdischargesatlowdischargerateswith longandslowchargecurrentstoreplacethecharge.Afterapredeterminednumberof dischargesandcharges,thebatterywillundergoagingteststoassessitsstateofhealth.

80

TheagingcyclefortheEnergyCycleisrepresentedbelowinFigure61.Theslowrates makethecyclingofthistestverylong,soittoowillbeautomated.

I C/2

tim e C/6

Figure61:EnergyCycle

Inordertoautomatethisprofile,thesystemrecordsagainthevoltagelevelandthetime.

Thebatteryisdischargedbytheelectronicloadatauserspecifiedrate,inthiscaseC/2, untilthebatteryreaches10.5.Toaidincontrol,anotherrelayconnectorisusedto ensureimmediateconnectionanddisconnectionofthecircuit.Afterthedischarge,the relayconnectorconnectsthebatteryincircuitwiththepowersupplyinordertocharge thebattery.Thepowersupplyisprogrammedbytheusertochargeataspecificrate, onceagainC/6forthiscase,andiscommandedbythesoftwaretochargeforthesame timethebatterywasdischarged.Thealgorithmbelowhelpsdescribethisprocedure.

EnergyCycleAlgorithm :

1. Takea75%batterybasedonitsV oc .

2. Stabilizeat113 oFor45 oC.

3. DischargeatC/2rateuntil10.5volts.

4. ChargeatC/6toreplacechargeforsameamountoftimeinstep2.

5. Repeatfromstep2,20times(basedonscheduling).

81

Thenumberoftimestorepeattheagingcycleisdeterminedmostlythroughscheduling.

Additionally,agingthebatteryatahighertemperaturewillincreasetherateofaging.

Thiswillshortenthetimetoobtainresults.

4.2.3. AGING DIAGNOSIS TESTS

Inordertoassesstheagingofthebattery,agingtestsmustbeconductedperiodically betweencycling.Theagingtestsusedinthisresearchinvolveasimpleindustrystandard capacitytest,animpedancespectrummeasurement,arealenginecrankingcapabilitytest, andalargesignalresponsetest.Bycomparingthesetestsalongthebattery’scyclelife, thebattery’sagingcanbegintobecomequantified.

Thecapacitytestremainstheonlytruemeansofagingassessment,orstateofhealth.It iswidelyacceptedastheindustrystandardforassessingbatteryhealthbecauseitiseasily relatabletoanewbattery.Thecapacitytestisalongtestthatalsorequireslaboratory conditionslikethecontroloftemperature.Sinceitisthebestwaytoassessbatterylife, anditisaverylongtest,itleadslittlepossibilityfor‘onthefly’onboardvehicle assessment.

Thecapacitytestprocedureisrelativelysimple.Itisonlyacompletedischargeofafully chargedbattery.ThedischargerateisveryslowinordertoavoidthePeukertEffectas muchaspossible.Forthisresearch,thecapacitytestwillbeconductedatroom temperatureandadischargerateofC/20isutilized.Beforethecapacitytestcanbe

82 conducted,thebatterymustbefullychargedandatroomtemperature.Thus,thereare alsoproceduresforacquiringtheseconditionsbeforebatterytestingcanbegin.

Tostabilizeabatteryatroomtemperature,oranyothertemperature,itsimplyconsistsof resting,or‘soaking’,thebatteryinthattemperatureforanextendedperiodoftime.The timeforsoakingshouldbesufficientenoughthatthebatteryelectrodesareatthedesired temperature.Forleadacidbatteries,thistimeperiodcantakemorethan24hours.

Assumingthebatteryisbeingoperatedunderatemperatureotherthanroomtemperature, thebatteryhastosoakatroomtemperaturefor24hoursbeforeagingtestscanbegin.If agingtestsaredesiredtobeatacertainhotorcoldtemperature,thebatteryshouldsoak anadditional16hourswhileinthedesiredtemperatureaftersoakingfor24hoursatroom temperature.

TemperatureStabilization :

1.Soakthebatteryat23 oCfor24hourstostabilizeatroomtemperature

2.Ifothertemperatureisdesired,soakforadditional16hoursatdesiredtemperature.

Thisresearchmustmaintainconsistencyinthebatteryconditionsinordertoaccurately assessandcomparethebatteryaging.Todeterminedifferentstatesofcharge,onemust firsttakeafullychargedbatteryanddischargeittothedesiredSOClevel.Inorderto fullychargea12VLeadAcidbattery,theprocedurecallsfora24hourchargewithtwo differentsteps.Thefirststepinvolvesavoltagethresholdwithacurrentlimitingpower

83 supply.Thesecondstepinvolvesasimpleandverysmallsupplycurrent,whichis generallycalledafloatcharge.

Chargeto100%SOC :

1.Stabilizebatteryatroomtemperature.

2.Apply16Vthresholdwhilelimitingthecurrentto25A.Continuefor23hours.

3.ApplyaC/200chargecurrentfor1hour.

Afterthisprocedure,thebatteryisconsideredfullychargedandtemperaturestabilized andagingassessmentcanbegin.

CapacityTest :

1.Stabilizefullychargedbatteryat23 oC.

2.DischargewithC/20untilterminalvoltagereaches10.5V(0%SOC).

3.Recordtimetakentoreach10.5V.

4.Capacity=(C/20)*time

5.DonotleavebatteryatlowSOC,rechargetoatleast50%SOC.

ThisresearchalsousesEIStoassessthebattery’saging.EISremainsahighpotentialfor

‘onthefly’onboardvehiclebatteryassessmentbecauseitusesaverysmallsignalandis amuchfastertestthanacapacitytests.

84 EISTest :

1.Stabilize75%SOCbatteryat23 oC.

2.ConductfrequencysweepwithEISequipment(Solartron)

Thereareseveralreasonsforusinga75%SOCbatteryinsteadofafullychargedbattery.

TheprimaryreasonisthattheSolartron(EISEquipment)hastroublewithabove

13V,andafullychargedbatteryisgenerallyabove13V oc .Anotherreasonisthatanaged batterymightnotbeabletocontinuallyreachabove13Vforthetest.Theonlywayto consistentlymeasureagingistokeepthesameV oc asthebatteryages.Usingalower

SOCasthetestlevelwillhelpensureitsrepeatabilityasthebatteryages.

SimilartotheEIStest,alargesignalresponsetestisappliedtoinvestigatethebattery parametersatlargersignalsthantheEIStest.Thesesignals,orloads,willrangefrom10

60Amps,whereastheEIScanonlyconsistentlytestthebatteryimpedancebelow10

Amps.ThisisduetothefactthattheSOCofthebatterychangesasthebattery discharges,whichinturnchangesthebatteriesinternalresistance.TheEIStestthen becomestoolongofatesttoassumeaconstantSOCduringthedischarge.Thelarge signalresponsetestisessentiallyaseriesofcurrentstepswhichwillprovideameansfor estimatingthebatteryparametersatdifferentlevelsofcurrent.Thistest’sprotocolisthe sameastheEIStest.

LargeSignalResponseTest :

1.Stabilizea75%SOCbatteryat23 oC.

85 2.Conductstaircaseloadandrecordvoltageandtemperatureresponse

Thelasttestwillonlyprovideinformationforonecharacteristicofthebatteryandonly throughcomparison.Acrankingtestwillprovideaconsistentmeansofcomparingthe internalresistanceofthebatteryasitagesthroughitspeakcurrent.Thecrankingtestis conductedbyplacingthebatteryinanengineandcrankingtheenginewhilerecording thevoltageandcurrentresponses.ThetestwillalsobeconductedatthreeSOC’sand threedifferenttemperaturesinordertoobtaindataforinvestigatingtheireffects.

CrankingTest :

1.StabilizebatteryatdesiredtemperatureandSOC.

2.Connectbatterytotestcellengine.

3.Starttheignitionwhilerecordingvoltage,current,andRPMsignals(10kHz).

4.Afterenginecranksandsettlestoidle,turnoffengineandendtest.

86 5.INSTRUMENTATION

5.1 TEST BENCH DESCRIPTIONS Thepurposeofthetestbenchesistoconductreliableagingexperimentsonleadacid batteries.Thetestbencheswillalsobeautomaticsincethetestswilltakelargeamounts oftime.Thisinturnrequiresthetestbenchestobeverysafebecauseofthehigh possibilitythattheywillberunningunattended.ThesetestbenchesarelocatedatThe

OhioStateUniversity’sCenterforAutomotiveResearch(CAR)andthemainpurposeis tosimulateagingonleadacidbatteries.

ItisimportanttonotethattheLeadAcidtestbenchesareadaptationsfromtheprevious batteryagingbenchatCARforNiMH.Thenextsectionwilldescribetheprevious

NiMHtestbench,andthenthechangesmadetothatbenchtocreatethetwonewLead

Acidtestbenches.

5.1.1 NIMH AGING TEST BENCH STRUCTURE

Theprevioustestbenchstructureusedforotherbatteriesinwhichtheleadacidbattery benchesaremodeledincludesapowersupply,anelectronicload,adataacquisition system,andacomputer.Boththepowersupplyandtheelectronicloadare programmableandarecurrentlycontrolledthroughaLabViewinterface.Thecurrent systemsrundirectlyfromMatlabalongwiththedataacquisitionsystem.

Theprogrammableload,orelectronicload,providestheloadcurrenttobeappliedtothe battery.Conversely,thepowersupplyprovidesthechargeprofile.Thesystemallows

87 forthecreationofacurrentprofileinMatlabwhichcanthenbeappliedphysicallytothe batterythroughthepowersupplyandelectronicload.Inotherwords,thepowersupply andloadworktogethertocreateauserdefinedprofile.

Anadditionalmemberofthetestbenchstructureistheenvironmentalchamber.The batteryagingistobeconductedatdifferenttemperaturestotestthedependenceofaging ontemperature.Therefore,anenvironmentalchamberthatcancontroltemperatureand humiditywillsimulatetheclimatethatisdesiredforaging.Thebatterywillsimplybe agedthroughtheuserdefinedprofileswhileinsidetheenvironmentalchamber.Figure

62providesapictureofthepreviousbatteryagingsystem.Figure63providesapicture oftheenvironmentalchamber.Figure64providesaschematicoftheprevioussystem’s physicalconnections.

10V Power Supply for Signal Conditioning Box

Signal Conditioning Box

NI DAQ Ports

Electronic Load controlled through RS232

Power Supply controlled through GPIB Desktop PC with LabView Interface

Figure62:PreviousBatteryAgingTestBench

88

Figure63:SystemwithEnvironmentalChamber

Figure64:SchematicofTestBench[1]

89

5.1.2 LEAD ACID TEST BENCH STRUCTURES

Thecurrentbatterytestbenchesaremodeledofftheprevioussystem,butareadaptedto thespecificagingcyclesdesiredfortheproject:theEnergyCycleandPowerCycle.

5.1.2.1 ENERGY TEST BENCH

TheEnergyTestdemandsalongslowdischargeofthebattery.Infact,thedesired dischargecurrentisC/2whichmeansonedischargewilltakeapproximately1.5hours.

Afterthedischarge,achargingcurrentofC/6isusedtoreplacethecharge.Thismeans thatonecycleofagingwilltakeatleast4hourswithoutrestingforafullycharged battery.Thetestbenchforthistestneedstobecapableofautomatingthisprocesssothat itcanberepeatedcontinuouslytosavetime.

Eventhoughtheprocessneedstobeautomated,thereisnotmuchadaptationneeded fromtheprevioussystemtomakethispossible.Forthissystem,apowersupplyandan electronicloadareneededforthedischargeandchargeregimes.However,theuserdoes notinputacurrentprofile,theywillonlyneedtospecifytheconstantcurrentamplitude, whichisC/2forthedischarge,andC/6forthecharge.Aswiththeprevioussystem, voltagesensors,currentsensors,andthermocoupleswillbeusedtomonitorthebattery performanceandconditions.

Thistestrequiresasimplefeedbackloopforcontrol.Itdemandsthatthedischarge shouldbestoppedwhenthebatteryreachesitslowervoltagelimit.Forleadacid

90 batteries,thelowervoltagelimitisgenerallyacceptedas10.5V,whichiswhenthe batteryisconsideredtobefullydischarge.Moreover,thesystemreadsthevoltageasthe batterydischarges,andthencommandstheloadtoendthedischargewhenthebattery’s voltagereaches10.5V.

Toreplacethechargeremovedfromthebattery,onemustknowtheamountoftimethe batterywasjustdischarged.Ifoneknowsthetimeandrateofthedischarge,thento replacethechargeoneonlyneedstospecifythenewcurrentrateforalongertimeto chargeequivalentlythesameamount.Therefore,thetestbenchmustcontainaninternal clockthatwillkeeptrackofthetimethebatteryisbeingdischargedtobefully automated.Thenthepowersupplyisthencommandedtoprovidethenewcurrentrate fortheappropriatelycalculatedtimelength.

Sincethecyclesmustberepeatedautomatically,certainsafetyaspectsmustbe implemented.Onesafetyaspectthatissimilartotheprevioussystemisthetemperature measurement.Thetestbenchcanbesettoturnoffifthebattery’stemperaturereaches aboveaspecifiedvalue.Likewise,thesamecanbeimplementedbytheuserforcurrent andvoltage.

91 Table8:SystemComponentsforEnergyTest Components Model/Make Usage Notes

ElectronicProgrammable AgilentN3301A LoadCurrent Load

40V/40ASorensonDHP PowerSupply SupplyCurrent Series

DAQcard NISCXI1000 DAQsystem DesktopPC Dell

Honeywell Currentsensor RecordCurrent 225ASensor

VoltageSensor VoltageDivider(1:2) RecordVoltage

OmegaSA1XLK72 Batterytemperature Thermocouples SRTC monitoring

CincinatiSubzero Batterytemperature Temperaturechamber CTH2722HAC control

Software Matlab InterfaceandAnalysis

5.1.2.2 POWER TEST BENCH

ThePowerTestdemandshigh,shortdischargeratesandthereplacementofchargeafter thehighdischarge.Thedesiredcurrentforthistestisessentiallythemaximumcurrent thebatterycanprovide.Ingeneral,thistestshouldbeabletodischargeatnearly500A forapproximately5seconds.Thisdischargeisthenrepeatedanumberoftimes,andthen thebatteryisrecharged.Thetimetoconductthepulsedischargesandreplacethecharge

92 isestimatedtobelessthanonehour.Thus,thePowerCycleisabletoapplymoreaging cyclesperdaythantheEnergyCycle,anddoesnotneedtorunovernight.

ThistestbenchhasafewmoreadaptationstothecurrentsystemthantheEnergyTest.

First,thistestbenchdoesnotrequireaprogrammableelectronicload.Inordertoallow thebatterytodischargeatitshighestrate,thebatteryneedsonlytobeconnectedtoa smallresistance.Figure65showstheresistorsthatwillbeconnectedinparalleltocreate asmallenoughresistanceforanominalcurrentof500A.Second,liketheEnergyTest,a feedbackloopisneededtoreplacethechargeremoved.Forthistest,onedoesnotknow exactlywhattheresponseofthebatterywillbe.Thecurrentthebatteryisabletoprovide willvarydependingonthebattery’sconditionsandage.Onceagain,voltage,current, andtemperaturearemeasuredtomonitorthebattery’sconditionsandresponse.Inorder toreplacethecharge,thecurrentduringdischargeisintegratedalongthetimedomain.

Thiswillprovidetheexactamountinamphoursoftheremovedcharge.Thepower supplyisthencommandedtoprovidethesameamountofamphoursbutataslowerrate, whichreplacesthechargeremovedfromthebattery.

93

Figure65:PowerTestResistors

Sincethecurrentforthistestisveryhigh,additionalsafetymeasuresareneeded.To avoiddamagingthebatterytemperature,current,andvoltagelimitswillbesettoturnoff thesystemifthelimitsarereached.Also,theresistorsarelocatedawayfromany possiblecontacttoavoidinjury.

94 Table9:SystemComponentsforPowerTest Components Model/Make Usage Notes

ImpedanceLoad N/Aseeabove ResistiveLoad

PowerSupply 10W50V/200APowerTen SupplyCurrent

DAQcard NISCXI1000 DAQsystem DesktopPC Dell

Currentsensor LEMHallEffect500A RecordCurrent

VoltageSensor VoltageDivider(1:2) RecordVoltage

OmegaSA1XLK72 Batterytemperature Thermocouples SRTC monitoring

CincinatiSubzero Batterytemperature Temperaturechamber CTH2722HAC control

Software Matlab InterfaceandAnalysis

5.1.2.3CRANK TESTING EQUIPMENT

Thetestingprocedurecallsforintermittentcranktesting,whichissimplythestartingof anenginewiththebattery.Thistestisusedforagingdiagnosis,sincetheamountof currentthebatterywillbeabletosupplywillchangeasitages.Theengineusedforthis testisa2LiterIVECODieselEnginethatismountedinatestcellareaattheCenterfor

AutomotiveResearch.Thisengineisconcurrentlybeingutilizedforexhaustand emissionstesting.Theadvantageforusingthisengineforthecrankingtestsisthefact thatitwilldemandahighcurrentfromthebatteryduetoitsinitialinductanceandis alwayskeptatroomtemperature,whichwillensureconsistentresults.

95 Therearethreevariablesthatneedrecordedforthistest:thebatterycurrent,thebattery voltage,andtheengineRPM.ThebatterycurrentismeasuredfromaFlukeCurrent clampratedat1000Awitharesolutionof1mV/1A.Thebatteryvoltageisdividedinhalf byavoltagedividerandsentdirectlytotheDataAcquisitioncard.TheengineRPMis estimatedfromtheECUoftheengine.ADellLaptopequippedwithLabViewandaNI

DAQCard1200isusedtosampleandrecordthesignals.Figure66providesadiagram ofthesetup.

Figure66:CrankTestSetUp

5.2 SOFTWARE

ThesoftwarefortheEnergyCycleandthePowerCycletestbenchesisdesignedbyB.J.

Yurkovich,astudentattheCenterforAutomotiveResearch.Thecurrentbenchesarenot yetfullyautomatedasdescribedintheinstrumentationabove,butdocollectallthe

96 signalsnecessaryforanalysis.Thisautomationwillbedoneinthefuture,butfornow, thesoftwaresimplysavesandplotsinrealtimethebatterydata.

TheEnergyCycleisoperatedmanuallybyspecifyingthecurrentappliedtothebattery bothfromthesupplyandload.Thesoftwareusedfortheacquisitionofdataandasan interfacefortheuserisaMatlabVI.Thisprogram,dubbed‘DAQCollector’receivesthe signalsfromthevoltagedivider,thecurrentsensorandtheamplifiedthermocouples.

Theprogramalsoallowstheusertospecifyachannelthatcanbeplottedinrealtime.

Additionally,theprogramallowsfortheusertospecifythesamplingrateandthescaling ofthechannels.Figure67providesaviewoftheinterfacefortheprogram.

Figure67:MatLabVIforDataAcquisition

97 ThePowerCycletestbenchutilizesthesameprogramforacquisition,butthisbenchis semiautomated.Fordischarging,acontactorisneededtoaccuratelytimethepulse discharges.Theprogramusedforthepulsedischargessendsauserspecifiedtime sequencetooperatethecontactorwhichconnectsthebatterytotheresistorsallowingfor thebatterytodischarge.Whenthebatteryundergoesthechargingregime,thesame programasintheEnergyCycleisutilized.Figure68providesavisualizationofthe

PowerCyclecontrolandacquisitionfordischarges.

Figure68:MatlabVIforPowerCycleDischarges

98 Atsomepointinthefuture,theseprogramswillbemanipulatedtocontroltheloadsand suppliesremotely.Thedataacquisitionaspectsoftheseprogramswillremainthesame, butthecomputerwillbeabletocontroltheelectronicswithuserspecifiedvaluesof current.

99 6.BASIS CYCLE GENERATION

Theapproachforcreatingthecomprehensiveagingmodelcallsforthegenerationofaset ofstatisticallyrepresentativebasiscycles.Thissectiondescribestheprocessfor extractingthosecyclesfromrealdrivingdata.

6.1 WAVEFORM DECOMPOSITION

Thegenerationofthebasiscyclesetstemsfromalargerealworlddrivingdataset.The currentfromthebatteryisrecorded,andthevehicleislefttooperatewhilethedatais collected.Thedrivingpatternsaredependentonthevehicleownerwiththe understandingofobtainingasmanydifferentdrivingscenariosaspossiblethatinclude highway,neighborhood,rushhour,etc.Withthislargedataset,enoughinformationis obtainedtogeneratethebasiscycleset.

Thislargedatasetissplitinto‘minicycles’whereeachminicycleissimplyallthedata betweentwozerocrossings.ThisisrepresentedinFigure69.Eachminicycleisthen putintoamatrixwhereeachcolumnthenconsistsofoneminicycle.Inordertocreatea squarematrixeachcolumnisinterpolatedtohavethesamenumberofdatapointsasthe largestminicycle.

100 MiniCycle3 MiniCycle1 MiniCycle5 MiniCycle2 MiniCycle6 MiniCycle4

Figure69:MiniCycles

Theminicyclesarethennormalizedagainsttheirlength(time)andtheiramplitude,thus preservingtheirshapewhichisthemostimportantaspecttoanalyzeincreatingthebasis cycleset.Forexample,afewminicyclesareshowninFigure70withtheirnormalized shape.

101

Figure70:NormalizedMiniCycles

Oncethematrixismanipulatedinthisfashion,adecompositioncanbeperformedin ordertofindtheorthonormalbasisforthematrix.ThisisdonesimplyinMatlabby usingthefunction orth() .Abasissetisthencreatedwheretheoriginalminicycles canbereconstructedthroughthebasiscyclesetthroughanappropriateweightingofeach basiscycle.Theformulabelowrepresentsthisreconstructionwherethefirstcolumnof thematrixis, Ic1 ,thebasiscyclesetis B,andtheweightingforeach ith basiscycleis k.

S c1 I = ∑ ki 1, ⋅ Bi i=1

102 Theresultsfromthisfunctionprovidealargesetofbasiscycles.Inordertorestrictthe numberofcyclestobeanalyzed,onlythefirstfewwiththemostsignificancewillbe analyzed.Thebasiscyclesthatwillprovidethebestreconstructionarethecyclesthat providethebestdegreeofapproximation.Theapproximationisdeterminedthrough erroranalysis.

N k [I ] − [I] ∑ ,1 i N 1− real est i=1 ∝ (totalweightofbasiscycleB 1) S N ∑ k ,1 i []I real i=1 ∑∑ k ,ij j=1i = 1

N ∑ k ,2 i i=1

Figure71:DegreeofApproximationforEachBasisCycle

Thereforedependingonthedegreeofapproximationdesired,onlyafewbasiscycles needtobeusedinordertostatisticallyreconstructtheminicycleswithover90% accuracy.

103 6.2 BASIS CYCLE SET FOR NIMH

Followingtheaboveprocedure,thebasiscyclesetforNiMHisshowninFigure72.

Basedonthedegreeofapproximation,thefirstfourvectorscouldstatisticallyrecreate theminicycleswithapproximately97%accuracy.Suchasmallbasiscyclesetwill provetosimplifytheagingmodelgreatlyinfutureresearch.

Figure72:BasisCycleSetforNiMH

Figure73:DegreeofApproximationforBasisCyclesofNiMH

104

Investigatingthereconstructionofthefirstminicycleshowedareasonablerecreation withthefirstfourbasiscycles.Ifthefirsteightbasiscyclesareused,thereconstruction becomeseventighter.

Figure74:MiniCycleReconstructionwith4BasisCycles

Figure75:MiniCycleReconstructionwith8BasisCycles

105 Furtheranalysisisconductedbyinvestigatingthedifferencesthatmightarisein separatingdischargeandchargingminicyclesindependentlyinsteadofhavingthemin thesamematrixfordecomposition.Thisanalysisprovidedsimilarresultsintheshapeof thebasiscycleset.Foranycaseinvestigated,thebasiscyclesseemedtorepresent harmonicswhichcouldprovetomakeanalyzingandcreatingtheagingmodelsimpler sincetherearenocyclesthatcontainlargespikesorothermorecomplicatedshapes.

6.3 BASIS CYCLE SET FOR LEAD -ACID

ResearchisongoingattheCenterforAutomotiveResearchatTheOhioStateUniversity, forthegenerationofaLeadAcidBasisCycleSet.Alargedrivingdatasetiscurrently beingacquiredwhichwillinevitablybeusedinthedeterminationofthebasiscycles.It willbeinterestingtoseethedatasetsinceaLeadAcidbatteryoperatesdifferentlyina conventionalautomobileascomparedtoahybridbatteryinanHEV.Theonlyloadsthe

LeadAcidbatterytendstoencounterinaregularcararetransientloadsfromtheon boardelectronicsandthestartingoftheengine.Thebasiscyclesetforthisbattery chemistryandoperationshouldbequitedifferentfromthesetobtainedforNiMHinan

HEV.

106 7.BATTERY CHARACTERIZATIONAND MODELINGRESULTS

Thepurposeofthebatterymodelrefinementistoadaptthecurrentmodelslightlyto allowforbatteryresultsforbatteryprognosis.Therefinementprocesswillalsoconsider multipletechniquesindetermininganewelectriccircuitmodelforthebattery.Thetwo techniquestobeutilizedforthismodelarelargesignalresponseanalysisand electrochemicalimpedancespectroscopy.

Batterymodelingistheprocessofrepresentinganelectrochemicalcellbyasimpler electricalcircuitofresistorsandcapacitors.Thisrepresentationisnottrivial,notjust becauseitisinherentlydifficulttoestimateacomplicatedchemicalprocessthrougha simpleseriesofresistorsandcapacitors,butalsobecausetheseparameters,theresistors andcapacitors,areknowntochangeasthebattery’sconditionschange.

7.1 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MODELING

Theuseofelectrochemicalimpedancespectroscopy(EIS)providesthemostconvenient processofinvestigatingmanycircuitmodelsforthebattery.Theequipmentusedisa

Solartron1280B,andthesoftwareisZplotandZViewforWindows.Theprocessinputs acertainfrequencyofeithercurrentorvoltage,anaspectthatisdeterminedbytheuser, andmeasurestheimpedanceatthatfrequency.Thesoftwarethenallowsforanattempt atfittinganycircuitmodelcreatedbytheusertothespectrummeasured.Thisprocessis appliedforopencircuitanalysis,andclosedcircuitanalysis.Themethodusedforthe fittinganalysisistheComplexNonlinearLeastSquaresLevenburgMarquardtmethod.

107 Theusercreatesarepresentativecircuitmodelinthesoftware,andthentheleastsquares methodattemptstofitthemodeltotheimpedancespectrum.

7.1.1 OPEN CIRCUIT EIS MODELING

Thefirsttestsconductedaretestswithaleadacidbatteryatopencircuit.Todothese tests,thebatteryissimplyconnectedtotheEISSolartronandthefrequencysweepis applied.Figure76providesthenyquistandbodeplotsoftheimpedancespectrumfora leadacidbatteryatopencircuit.

Figure76:ImpedanceSpectrumforBatteryatOpenCircuit

Theopencircuitanalysismustbeinvestigatedatdifferentstatesofchargeofthebattery sincethebatteryparametersareknowntochangewiththebatterystateofcharge(SOC).

Theopencircuitanalysisisthenappliedatthreedifferentstatesofcharge,andmultiple modelfittingsareattemptedateachstateofcharge.Thestatesofchargestestedare50%,

75%,and100%.Figure77providesanexampleofathirdorderRandleModelfittingto

108 abatteryat100%SOC,orfullycharged.AllotherSOC’sprovidedsimilarshapeswith thesameresultsfortheorderandtypeofthemodel.

R0 R3

C3

Figure77:3 rd OrderRandleModelFittoa100%SOCBattery

ThebestfitmodelforthebatteryatopencircuitprovedtobeafirstorderRandlemodel withaWarburgImpedance.Thisimpedanceelementisaspecialconstantphaseelement thatprovidesalinearslopeinthecomplexplane.TheWarburgisespeciallydifficultto modelinthetimedomain,whichmeansitwouldnotbeadvantageousforbattery prognosissimulationsiftherefinedbatterymodelcontainedaWarburgimpedance.The

Warburgimpedancecanberepresentedbytheequationbelow.

1 WarburgImpedance: Z = 4 T ( jω)p

109 where Tisthelengthormagnitudeand pistheangleinthecomplexplane.Ifpis0.5,

1 thentheequationchangesto Z = andtheangleis45 o. Tcorrespondstothe T jω diffusionofchargebasedonthematerialthickness.

Figure78:WarburgImpedance

R0

Figure79:1 st OrderRandleModelFitof100%SOCBattery

110 Theopencircuitmodelinginvestigatessixdifferentmodelsforfitting.Themodels includelinearRandleModelsfromfirstordertofourthorder,andtwoRandleModels, firstandsecondorder,thatincludetheWarburgimpedance.Asstatedabove,thefirst orderRandleModelwiththeWarburgisthebestfitforbatteriesatopencircuit.This result,however,maynotbethemostadvantageoussincethepurposeistosimplify batteryprognosisthroughsimulationsandotheranalysisduetothedifficultyin representingtheWarburginthetimedomain.Thisleadstotheconclusionthatthebest modelforbatteryprognosisisathirdorderRandleModel.

EIStestingatdifferentbatterystatesofchargeallowsforaneasyapproachtostudying thebatteryparameter’sdependenceonitsstateofcharge.Theresultsshowthatasthe batterySOCdecreases,theinternalresistanceincreases.Thiscanbeseenintheshiftof theEIScurvestotheright,whichrepresentsanincreaseintheseriesresistanceofthe batteryequivalentcircuit.

Figure80:EISandSOC

111

Figure81:RealAxisofNyquistPlot

TheslightchangeinshapeshowsadependenceonSOCforalltheotherparametersin thecircuit.Thisshowsthenonlinearityofthesystemevenfurther.

7.1.2 CLOSED CIRCUIT EIS MODELING

Thesameprocedureisconductedagain,butwhilethebatteryisoperatedincircuit.Itis possibletoobtainafrequencyspectrumwhilethebatteryisbeingchargedorunderload whichprovidesfurtherinformationfordeterminingafinalbatterymodel.Inanycase, investigatingtheimpedancespectrumofaclosedcircuitbatterymaybemoreeffective thanopencircuitsinceallbatteryprognosissimulationswillbeforsituationswhilethe batteryisoperated.Thebatteryisthustestedatthreecurrents,1A,5A,and10A,forboth charginganddischarging.

112

Figure82:ChargeComparison

Figure83:DischargeComparison

Forclosedcircuitmodeling,theWarburgimpedanceislesseffectiveinfittingthe chargingregimebecausemostofthespectrumsdidnothavethelinear‘tail’inthe complexplane.OnceagainathirdorderRandleModelprovidedthebestfitforallof thesescenarios.Thechargingregimeshowsatrendtowardsmoreofafittoa1 st Order

Randlemodelsinceitsspectrumseemstogrowtowardsasemicircle.Asthecharging rateincreases,thespectrumbecomesmoreandmorerelatabletoasemicircle.The

113 dischargingregimeshowsatrendinthesizeofthespectrum.Asthedischargingrate increases,thespectrumresponseseemstomaintainitsshapewhileshrinkingin magnitude.

Thetrendsshownaboveprovethatthebattery’sparametersareinfactdependenton dischargerate.Therefore,itiscorrectinapplyingitasafactorandvariableinthe comprehensiveagingmodel.Thenextstepistotryandunderstandthistrendfurther; however,EIScannotprovidesufficienttestingresultsforlargerdischargerates.Inorder tostudythisfurther,largesignalmodelingisutilized.

7.2 LARGE SIGNAL RESPONSE MODELING

Thelargesignalresponsemodelingprovidesanothermethodforrefiningthebattery model.Thismethodallowsforcomparisonandallowsforbettermodelingofthebattery foroperationsincetheEISmodelingisreallyonlysufficientforsmallsignals.This modelinginvestigatesthebatteryresponsetodifferentlargesignals,forchargeand discharge,andonceagaintriestofitacircuitmodeltotheresponse.

7.2.1 MODIFYING ORIGINAL METHOD

Theoriginalbatterymodel(frompreviousresearchatCAR)isbasedonthismethod,and therefinedmodelisanadaptationtothismethod.Thelargesignaltobeappliedconsists ofastaircasecurrentprofile,whichwillprovideasufficientsetofresponsesto characterizethebattery.Theoriginalmodel,however,seemstoneedadjustmentstothis staircaseprofile,aswellas,adjustmentstotheparameterizationmethod.

114

Tobegin,thestaircaseofcurrentisdevelopedspecificallyforthesizeofthebattery capacity.Moreover,thetimethecurrentistobeapplieddependsonthebatterycapacity.

Theentirestaircasewillonlydischargethebatteryapproximately5%ofitsrated capacity.Thisconstraintisimposedbecauseofthedependenceoftheparametersonthe battery’sSOC.IfwelimitthechangeofSOC,thenwecaneffectivelyneglectthe dependenceofparametersonSOC.Eachstepwithinthestaircaseisadifferentcurrent level,whichwillthenprovideadifferentresponse.Theparametersarethendetermined ateachsteponthestaircasebyassumingconstantSOCandtemperaturealongthestep.

Theresultisasetofresponsesforonestaircasewhereasetofparameterswill characterizeeachstep.AnexamplestaircasecurrentprofilecanbefoundintheFigure

84.

1 2 0 Posssiblebatterycurrentprofile

1 0 0

8 0

6 0 currentAps constantparam eter ateachstepr(I,SOC,T) 4 0 2 I /N m a x s te p s

2 0 1 I /N m a x s te p s initialre st interpulserest

S O C = 5 % c h a n g e 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 tim es

Figure84:StaircaseProfileforLargeSignalModeling[4]

Asbrieflymentionedabove,thisstaircaseprofileneededtobemodifiedtobetter approximatethebatteryparameters.Onemodificationforthestaircaseprofilesisto

115 includemorestepsinthestaircasetoobtainmoreresponses.Anothermodification consideredistostaggerthesteplevels.Sincethebatteryinavehicleisfoundtooperate around20Amorethananyothercurrentlevel,itcouldbeadvantageoustohavemore currentstepsaroundthe20Alevel.Figures85and86helpshowthesemodifications.

90

Figure85:AdditionalStepsintheStaircase

116

Figure86:MoreStepsConcentratedaround20A

ThefinalstaircasetobeusedfortheagingbatteriesisdepictedinFigure87.This staircaseconsistsofstepsbetween0and60Ampsseparatedequallyin10steps.This limitof60Ampsisahardwarelimit,butthroughpreliminarytesting,itwasfoundthat60

Ampswith10stepsshouldprovidemorethanenoughinformationforaging characterization.Includedinthisprofileisachargingstaircasethatappliesthreestepsof

1,5,and10Amps.Thechargingstaircaseisappliedfortworeasons.Thefirstisthatit allowstheentireprofiletobechargesustaining.Thesecondisthatifthereisafuture desiretoinvestigatetheresponsefromchargingregimes,theresultsfromthisprofilewill allowforthefurtherresearch.

117

Figure87:StaircaseProfileforLargeSignalAnalysis

7.2.2 STAIRCASE RESPONSE ANALYSIS

ApplyingthecurrentprofileinFigure87willgenerateavoltageresponsefromthe battery.Thisvoltageresponsecanthenbeusedtoestimatethebatteryparameterswhich willbefittoasimilarequivalentcircuitfromtheEISresults.Theseparameterscanthen beusedasanothermeanstounderstandandquantifyaging.Thisresearchwillonly investigatethedischargeregimeforparameterization.

Thefirststepintheanalysisistorepresentthebatteryasanequivalentcircuitmuchlike theapproachforEIS.Thefirstequivalentcircuitthatwillbeusedforthisresponse analysiswillbethatofthe1 st OrderRandleModel.Ifa1 st ordersystemisanalyzed,the setofequationsbecomesthefollowing…

118

Figure88:1 st OrderRandleModel

where KVL and KCL areKirchhoff’svoltage

andcurrentlaws,respectively.These

relationshipsprovidethefoundationfor

estimatingtheparameterswithinthe

equivalentcircuit.Ifthebattery’sopen

circuitterminalvoltage, E0,itscurrent, IB,and

itsclosedcircuitvoltage, VB,areknown,then

theparameters R0, R1,and C1canbe determined.ThroughaconstraintminimizingfunctioninMatlabcalledfmincon,the parametersarefoundandafittingisprovidedinFigure89.Eachstepofthestaircaseis parameterizedindividuallywiththisprocedureandtheparametersarelistedinTable10.

119

Figure89:Experimentalvs.ModelResponseofStaircase

Table10:1 st OrderParameters

(ROhms,CFarads)

Thefunctionislargelydependentontheinitialconditionsincludingthestartingvoltage levelwhichistheopencircuitvoltage.Asmentionedpreviouslyinthereport,theopen circuitvoltageisdirectlyassociatedwiththeSOCofthebattery.Similarly,theinternal resistanceofthebatteryisdependentontheSOCandthetemperature.Itwillbe importanttoestimatetheopencircuitvoltagebasedontheSOCandviceversa.Section

120 7.4ofthereportdiscussescreatingavoltagemapthatdescribestherelationshipbetween

SOCandopencircuitvoltage.

AmorevisualdepictionoftheresponseandparameterizationcanbefoundinFigure90.

Itshowstherelationshipoftheparametersateachcurrentstepwiththevoltageresponse.

Theinitialdropoftheresponseislargelydependentontheseriesresistanceofthecircuit.

Thesubsequenttransientresponseisduetothecapacitorstoringcharge.The consequenceisanexponentialdecaywithatimeconstantof R1C1.

Figure90:ParameterExtractionfromVoltageResponse[4]

121 Thisprocessisconductedintermittentlythroughoutthebattery’saginginordertostudy theagingaffectsonthecircuitparameters.Moredataisneededbeforeafinalmodelcan bedetermined,butcurrentlya1 st Ordermodelisquitereasonableincomparisontothe experimentalresponse.

7.3 LARGE SIGNAL RESPONSE AND EIS COMPARISON

Thedifferencesbetweenthetwomethodsabovecanbeseenintheequivalentcircuit models.TheEISanalysisshowsthata3 rd OrderRandleModelisneededtofitwith reasonableaccuracytheentirefrequencyrange,whereasa1 st Ordermodelcanonlyfit withinacertainrangeofthespectrum.Additionally,a1 st Ordermodelcanfittheentire spectrumbutonlywithaWarburgImpedanceelement.TheLargeSignalResponse analysisshowsthataregular1 st OrderRandleModelissufficientinfittingthebattery response.Thismakesitquiteclearthatthesetestmethodsareinherentlydifferent,and willprovedifficultincorrelation.

Inanattempttocompareandcorrelatethetwomethods,athirdbatteryistested extensivelythroughboththeEISandLargeSignalmethods.SincetheEISmethod investigatesthefrequencyresponseofthebatteryatlowsignals,theLargeSignal

Responseneedstobemanipulatedtodothesame,butwithlargesignals.Thiscanbe donebyalteringthetimelengthofthestepsaswellastheheight,orchangeincurrent,of eachstep.Thiswill,inasense,excitethebatterythroughdifferentfrequencies,andthe responsecanbeanalyzed.

122 Astaircaseprofileiscreatedtoinvestigateanydifferencesthebatteryresponsemight havetodifferencesinthechangeofcurrentlevel,whilekeepingthetimestepconstant.

Figure91:DynamicStaircaseProfile

Theresponsefromthisstaircaseallowsfurtherinvestigationonthedependenceofthe batteryparameterswithcurrentlevelsandthechangeincurrentlevels.Theparametersat eachstepcanthenbeplottedasafunctionofcurrentlevelandthisfunctioncanbe extrapolatedandcomparedtosmallsignalresponseslikeEIS.Forthisprofile,themodel fittingneededtobeatleastsecondorder.

123

Figure92:BatteryResponsetoDynamicProfile

Figure93:SecondOrderModelFittingtoBatteryResponse

124 Table11:BatteryParametersfromModelFitting

(ROhms,CFarads)

MoreresearchisneededtoinvestigatethedifferencesbetweenEISandLargeSignal

Responsemodeling.Thenonlinearitiesofthebatteryparameterswillbestudiedusing thesemethods,andtheresultswillbecomparedtoprovidefurtherinsightonthe differencesinmodelresultsforthesetests.

7.4 ENGINE CRANK TESTING

Anothermeansofinvestigatingtheinternalresistanceofthebatteryisbyplacingthe batteryunderahighcurrentdemandingload.Thebatteryisthenplacedinconnection witha2LiterIVECODieselEngine,andusedtocrankandstarttheengine.Anengine istheperfectloadforthistestsinceitrequiresahighcurrenttoovercomeitslarge inductance.Toavoidanyinconsistenciesduringtestingfromanyenvironmentalfactors ontheengine,theengineisconvenientlylocatedinsideatemperaturecontrolledtestcell, whichwillensureconsistentresultsforthecranktesting.

ThiscranktestingisconductedatthreedifferentSOC’satthreedifferenttemperatures.

ThebatterySOC’schosenwere90%,75%,and65%ofthenominalcapacity.Toobtain theseSOC’sthebatteryissettledatspecificopencircuitvoltagesatroomtemperature basedonthelinearrelationshipbetweenSOCandV oc (Section7.4)Oncethebatteryis deemedtobeatthedesiredSOC,thebatteryisplacedintheenvironmentalchamberat

125 thedesiredtemperatureformorethen16hours.The16hourlimitensuresthatthe electrodeshavereachedthedesiredtemperature.Thethreetemperaturesforthistestare

72 oF,0 oF,and22 oF.Thebatteryvoltage,current,andengineRPMarerecordedduring testing.Comparingthepeakcurrentdrawnfromthebatterywillinherentlycomparethe differenceininternalresistancesbasedonSOCandtemperature.Thisisassumingthat theloadisconstantforeachtemperature.Toensurethisassumption,asexplainedbefore, thesameengineisusedforeachtestatthesametemperature.Thepeakcurrentresults canbeseeninTable12.

Table12:PeakCurrentResultsofCrankTesting

(ColorrepresentsSOC= 90% , 75% , 65% )

Theseresultsshowthatasthebatterytemperaturedecreases,itsinternalresistance increases.Thisisconsistentwiththeliteratureandpreviousexperiments.Batteries operatewithlessefficiencyatlowertemperatures,andtheselossesinefficiencycanbe relatedtoitsresistance.Anincreaseininternalresistanceatalowertemperature describeshowthebatterybecomeslessefficientatlowertemperatures.Aphysical explanationcanbefoundintheArrheniusratelaw.Thislawdescribeshowchemical reactionscanoccuratfasterratesathighertemperatures.Sincebatteryoperationisa

126 chemicalreaction,thisratelawwouldexplainwhythebatteryislessefficientatlower temperatures.Thereactioninsidethebatteryisnotreactingatashighofarateasit wouldinhighertemperatures.

Additionally,theresultsverifythefindingsfromtheEISmeasurementsatdifferent

SOC’s.Forthecrankingtests,astheSOCdecreased,thepeakcurrentalsodecreased.

Onceagain,adecreaseinpeakcurrentimpliesanincreaseininternalresistance.Thus thecranktestsalsoshowanincreaseininternalresistancewithadecreaseinSOC.

Figure94and95provideanexampleofthedatacollectedforoneofthecranktests.

Duringthetest,thevoltageofthebatterydroppedbelow9voltsforeverycrank,which correspondeddirectlywiththehighcurrentsuppliedtotheengine.Additionally,the engineRPMestimationshowsthattheenginecranksatapproximately200400RPMand thenjumpstoaround900RPMafterstarting.

PeakCurrent PeakMinimumVoltage

Figure94:BatteryCurrentandVoltageDuringCranking

127

EngineCranking EngineStart EngineIdle

Figure95:EngineCrankingResultsandDescription

Figure95showsthetransitionstheengineandbatterymakeduringstarting.Theinitial peakincurrentandvoltagedropshownovercometheinductanceloadofthemotor.

Thentheenginebeginstocrankataround200400RPMwhileboththecurrentand voltagebegintorecoverfromtheirpeaks.Thenwhentheenginestartsthebatteryisonly neededforafewmoresecondsbeforethecurrentdropsdowntozero,thealternatortakes over,andtheengineidles.

7.5 OPEN CIRCUIT VOLTAGE MAPPING

Asanadditionalfeaturetocharacterizingthebattery,anopencircuitvoltage(V oc )mapis createdforthebattery.ThishelpsdeterminetheSOCofthebatterybasedonitsV oc .

128 InvestigatingtherelationshipbetweenSOCandVoc helpswiththeparameterestimation procedurediscussedabove.CreatingageneralV oc mapprovidesausefulestimationthe

SOCofthebatterywhichisneededasaconditionforthemodelingtests.Additionally, thismapisutilizedinthedeterminationforthethreeSOC’sneededforthecrankingtests.

Figure96:V oc Map

Thismapisacombinationofadischargeandchargemap.Thereisanapparent hysteresisafterthebatteryhasdischargedandcharged.However,ifallowedtorestlong enough,themapcanbeapproximatedbyalinearrelationship.Tocreatethismap,the batteryisdischargedinsegmentsof6.25%SOCandallowedtorestfrom1.52hours beforeanopencircuitvoltageistaken.Additionally,alongerrestperiodisimplemented everyfewreadingstodeterminehowaccuratetheassumptionisforthesettledvoltage.

Forinstance,a12hourrestperiodisimplementedeveryfewreadings.Figure97 providesavisualdifferencebetweenthetworestperiods,anditwasdeterminedthata

1.5hourrestperiodissufficientenoughforaV oc readingafteradischarge.

129

Figure97:VoltageMappingRestPeriodsforDischarge

Thesameprocedureisappliedforachargingregime.Theseresultsshowthatthesettling voltageforchargingtookmuchlongerthanfordischarging.Atleasta12hourrest periodisneededforanaccurateV oc reading.Thedropinvoltageforthechargeregimeis representedbythe‘overnight’pointswhichrepresentarestperiodofatleast12hours.

130

Figure98:ChargeRegimeV oc Mapping

Thecharginganddischargingregimescanthenbecombinedandalinearrelationshipcan beestimated.Forthisresearch,thisestimationwillbesufficientsinceitisnotexpected thatthebatteryagingandparameterswillverydramaticallywithsmalldifferencesin

SOC.Therefore,testingthebatteriesatapproximatelythesameopencircuitvoltage,will allowforareasonableassumptionthattheyareindeedatthesameSOC.

131

Figure99:VoltageMappingChargingandDischarging

7.6 CONCLUSIONS

WhenusingtheEISmodelingtechnique,thebestfitlinearmodelisathirdorderRandle

Model.ResultsalsoshowarelationshipwithinternalresistanceandSOC;astheSOC decreases,theinternalresistanceincreases.ThiscanbeseenthroughboththeEIS measurementsandtheenginecranking.Itismostnotablyduetothesulfationbuildup ontheelectrodeswhichincreasesthebatteryresistance.Asabatterydischarges, sulfationwillcollectattheelectrode.AdecreaseinSOCisaresultofadischargewhich causessulfation,andthereforeresultsinanincreaseinresistance.Whenusingthelarge signalresponsemodelingtechnique,asecondorderRandleModelisneededtofitthe responseswithsomelimitations.Moreexperimentationandvalidationisneededfor furtherrefinementandtoprovideresultsforcomparisonwiththeEISthirdordermodel.

132 Bothapplicationsshowalargedependenceoncurrentlevelforthebatterymodel parameters.Thismeansthatthebatteryisanonlinearsystemandwillprovetobe difficultinfinalizingacompleteequivalentcircuitmodel.

133 8.SUMMARYAND CONCLUSION

Allbatteriesundergosmallbutpermanentdegradationswhichleadtotheiragingand ultimatefailure.The‘aging’ofthebatterycanbecharacterizedthroughthesystemof agingdiagnosistestsconductedinthisresearch.EISshowsgreatpotentialinbecoming anonboardmethodforjudgingabattery’sageandstateofhealth,butcannotbedirectly relatedtothebattery’scapacity.

Inordertocharacterizethebatteryasitages,certainqualitieshavetobetested.First,an estimationofSOCisneededthroughamappingofopencircuitvoltageandSOC.This mapshowedanearlylinearrelationshipforLeadAcidbatterySOCandV oc .Second,the effectsofabattery’sSOCneededtobeinvestigatedtounderstanditsusein characterization.ResultsfromEISandenginecrankingmeasurementsshowthatthe battery’sinternalresistanceincreaseswithadecreaseinitsSOC.Inotherterms,a batteryisunabletoprovidethesameamountofpoweratlowerstatesofcharge.Third, theEIScharacterizationofaLeadAcidbatteryshowedthatathirdordermodelisneeded tofittheentirespectrum,butonlyasecondordermodelisneededwhenfittingtoaLarge

SignalResponse.Moreresearchisneededtoinvestigatethesedifferences.

TheLeadAcidbatteryhastwocommonfailuremodesthatwillbestudiedforadeeper understandingofitsaging.Twoprofileswerecreatedthatareexpectedtogeneratethe differentfailuremodes,andtheseeffectswillbehelpfulincreatinganagingmodelfor

LeadAcidbatteries.

134 Acomprehensiveagingmodelforbatteriescanbecreatedbydecomposingrealbattery datainabasiscyclesetandanalyzingtheagingeffectsforeachcycle.Theseeffectscan thenbeusedinestimatingtheremainingbatterylifebyassuminganadditivepropertyfor batteryagingsimilartothatinmechanicalfailurethroughfatigueandcrackpropagation.

ThebasiscyclesetforNiMHbatteriesshowthatonlythefirst4basiscyclesareneeded toregenerateatleast90%oftherealworldcycles.Furthertestingandresearchisneeded tocompleteandvalidatethesetheories.

135 9. REFERENCES

[1]Z.Chehab,‘AgingCharacterizationofNiMHBatteriesforHybridElectricVehicles’.

MastersThesis.TheOhioStateUniversity.2006.

[2]I.Buchmann,‘BatteriesinaPortableWorld.’IsidorBuchmann.CadexElectronix

Inc.2001.

[3] AutomotiveAlternators.WikimediaFoundationInc.2007. www.wikipedia.org

[4]A.Fasih,‘ModelingandFaultDiagnosisofAutomotiveLeadAcidBatteries’.

UndergraduateHonorsThesis.TheOhioStateUniversity.2006.

[5]Energizer. NiMHApplicationManual .2001.

[6]M.Keyser,A.Pesaran,M.Mihalic,‘ChargingAlgorithmsforIncreasingLeadAcid

BatteryCycleLifeforElectricVehicles’.NationalRenewableEnergyLaboratory.

2001.

[7]NickelMetalHydridePrismaticCellDesign.CobasysLLC.2007. www.cobasys.com

[8]R.Hansen,‘ValveRegulatedLeadAcidBatteriesforStationaryApplications’.

DepartmentoftheAirForce.AirForcePamphlet321186.1999.

[9]J.Kopera,‘ConsiderationsfortheUtilizationofNiMHBatteryTechnologyin

StationaryApplications’.Cobasys.Orion,MI.1999.

[10]PanasonicNiMHOverview,PanasonicOEMbatterydivision,

http://www.panasonic.com/industrial/battery/ February2002

[11]USABC. ElectricVehicleBatteryTestProceduresManual .1996.

[12]L.Guenne,P.Bernard,‘LifeDurationofNiMHCellsforHighPowerApplications’.

JournalofPowerSources.2002.

136 [13]MoltechCorporation.NiMHApplicationManual .

http://www.moltech.com/techdata/appmanuals/NiMH_Application_Manual.asp

[14]PanasonicEVEnergyCo. NiMHbatteryforEV .

http://www.peve.panasonic.co.jp/catalog/e_kaku.html

[15] R. Somogye, ‘An Aging Model Of NiMH Batteries For Use In HybridElectric

Vehicles’.MasterThesis.TheOhioStateUniversity.2004.

[16]G.R.Delpierre,B.T.Sewell,TheLeadAcidAccumulator.19922006.

www.physchem.co.za//cells.htm

[17]P.Pascoe,A.Anbuky,‘VRLABatteryDischargeReserveTimeEstimation’.IEEE

TransactionsonPowerElectronics.Vol.19,no.6,2004.

[18]D.Linden,T.Reddy, Handbookofbatteries .NewYork:McGrawHill.2002.

[19]PanasonicCorporation.‘HHR650Dnickelmetalhydridebatteries:individualdata

Sheet’.Online.

[20]PanasonicTechnicalHandbook.2006. www.batterywholesale.com

[21]D.Loveday,P.Peterson,B.Rodgers,“EvaluationofOrganicCoatingswith

ElectrochemicalImpedanceSpectroscopy”.JCTCoatingsTech.August2004

[22]M.A.Miner,J.Appl.Mech.12(1945)159164.

[23]M.T.Todinov,“Necessaryandsufficientconditionforadditivityinthesenseofthe

PalmgrenMinerrule”.ComputationalMaterialsScience. 21,pp.101110,(2001).

[24]D.Chelidze,J.P.Cusumano,‘ADynamicalSystemsApproachtoFailure

Prognosis’.ASMETransactions,JournalofVibrationanAcoustics .126(1),pp.2–8,

(January2004).

137 [25]B.Liaw,A.Urbina,T.Paez, LifePredictionModelingofLeadAcidBatteriesin

StationaryBackupPowerApplications .SandiaNationalLaboratories.2003.

[26]R.Smith,A.Bray,‘ImpedanceSpectroscopyasaTechniqueforMonitoringAging

EffectsinNickelHydrideandNickelMetalHydrideBatteries’.TexasResearch

InstituteAustin,Inc.IEEE.1992.

[27]SAE. EndofLifeBatteryTestMethods .2006.SAETestMethodJ1634.

[28]A.Yamada,O.Hirahara,T.Tsuchida,N.Sugano,M.Date,‘APracticalMethodfor

theRemoteControloftheScanningElectronMicroscope’.JapaneseSocietyof

Microscopy.2003.

[29]E.BaringGould,H.Wenzl,R.Kaiser,N.Wilmont,F.Mattera,S.Tselepis,F.

Nieuwenhout,C.Rodrigues,A.Perujo,A.Ruddell,P.Lundsager,H.Bindner,T.

Cronin,V.Svoboda,J.Manwell,‘DetailedEvaluationofRenewableEnergyPower

SystemOperation:ASummaryoftheEuropeanUnionHybridPowerSystem

ComponentBenchmarkingProject’.NationalRenewableEnergyLaboratory.2005.

[30]P.Cheng,I.Chen,‘HighEfficiencyandNondissipativeFastChargingStrategy’.

IEEEProceedings.Online#20030255,vol.150,no.5.September2003.

[31]Z.Salameh,M.Cassaca,‘DeterminationofLeadAcidBatteryCapacityVia

MathematicalAnalysis’.IEEETransactions.ID#08858969(92)0265,vol.7,no.3.

September1992.

[32]J.Disosway,‘ComparisonofServiceTestResultswithAnalyticalPredictionsfora

LeadAcidBattery’.IEEETransactions.ID#08858969(92)0273,vol.7no.3.

September1992.

138 [33]M.Ceraolo,‘NewDynamicalModelsofLeadAcidBatteries’.IEEETransactions.

ID#08858950(00)104363,vol.15,no.4.November2000.

139