Reviews on the U.S. Patents Regarding Nickel/Metal Hydride Batteries

Total Page:16

File Type:pdf, Size:1020Kb

Reviews on the U.S. Patents Regarding Nickel/Metal Hydride Batteries batteries Review Reviews on the U.S. Patents Regarding Nickel/Metal Hydride Batteries Shiuan Chang 1, Kwo-hsiung Young 2,3,*, Jean Nei 3 and Cristian Fierro 3 1 Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA; [email protected] 2 Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA 3 BASF/Battery Materials–Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309, USA; [email protected] (J.N.); cristian.fi[email protected] (C.F.) * Correspondence: [email protected]; Tel.: +1-248-293-7000 Academic Editor: Andreas Jossen Received: 21 February 2016; Accepted: 31 March 2016; Published: 12 April 2016 Abstract: U.S. patents filed on the topic of nickel/metal hydride (Ni/MH) batteries have been reviewed, starting from active materials, to electrode fabrication, cell assembly, multi-cell construction, system integration, application, and finally recovering and recycling. In each category, a general description about the principle and direction of development is given. Both the metal hydride (MH) alloy and nickel hydroxide as active materials in negative and positive electrodes, respectively, are reviewed extensively. Both thermal and battery management systems (BMSs) are also discussed. Keywords: metal hydride (MH); nickel/metal hydride (Ni/MH) battery; nickel hydride; electrode fabrication; U.S. patent 1. Introduction The nickel/metal hydride (Ni/MH) battery is an essential electrochemical device for consumer, propulsion, and stationary energy storages. Since its commercial debut in the late 1980s, many researchers have worked diligently in the Ni/MH battery field. Their contributions were publicized through two routes: academic publications and patent applications. While there are several key reviews available on the former [1–16], there is not one on the latter. Therefore, we have organized and summarized the patents related to Ni/MH battery technology in the current review and its companion—Reviews on the Japanese Patents Regarding Nickel/Metal Hydride Batteries [17]. 2. Results As shown in Figure1, the current review is divided into six categories in the chronological order of technology development, which are active materials Ñ electrode fabrication Ñ cell assembly Ñ multi-cell construction Ñ system integration Ñ application. Because of the extremely large number of U.S. patents on these subjects, we have selected and presented the most representative patents historically and technologically in the current review. More related U.S. patent documents can be found on each U.S. patent presented here. Batteries 2016, 2, 10; doi:10.3390/batteries2020010 www.mdpi.com/journal/batteries Batteries 2016, 2, 10 2 of 29 Batteries 2016, 2, 10 2 of 28 Figure 1.1. Content of this paper. MH:MH: metalmetal hydride.hydride. 2.1.2.1. Active Materials TheThe half-cellhalf-cell electrochemicalelectrochemical reactionreaction forfor thethe negativenegative electrodeelectrode is:is: − ⎯⎯→ − M + H2O + ´e ←⎯⎯ MH + OH´ (forward: charge, reverse: discharge) (1) M ` H2O ` e Ô MH ` OH pforward : charge, reverse : dischargeq (1) where M is a hydrogen storage alloy capable of storing hydrogen reversibly and MH is the wherecorresponding M is a hydrogenmetal hydride storage (MH). alloy During capable charge, of storingapplied hydrogenvoltage splits reversibly water into and protons MH is and the correspondinghydroxide ions. metal Driven hydride by the (MH).voltage During and diffusio charge,n caused applied by voltage the concentration splits water difference, into protons protons and hydroxideenter into ions.the bulk Driven of the by thealloy voltage and then and meet diffusion with caused electrons by thefrom concentration the current difference,collector, which protons is enterattached into to the a power bulk ofsupply. the alloy During and discharge, then meet protons with electrons at the alloy from surface the currentrecombine collector, with hydroxide which is attachedions in the to electrolyte. a power supply. Electrons During are injected discharge, into protons the circuit at the load alloy through surface the recombine current collector with hydroxide in order ionsto maintain in the electrolyte. charge neutrality Electrons in arethe injected negative into electrode. the circuit load through the current collector in order to maintainThe counter charge reaction neutrality for inthe the negative negative electrode electrode. is: The counter reaction for the negative electrode is: ⎯⎯→ Ni(OH)2 + OH− ←⎯⎯ NiOOH + H2O + e− (forward: charge, reverse: discharge) (2) ´ ´ NipOHq2 ` OH Ô NiOOH ` H2O ` e pforward : charge, reverse : dischargeq (2) where Ni(OH)2 is the active material going through +2/+3 oxidation state change during the electrochemical reactions. During charge, protons deprived of Ni(OH)2 move to the surface of the where Ni(OH)2 is the active material going through +2/+3 oxidation state change during the positive electrode because of the applied voltage and recombine with hydroxide ions in the electrochemical reactions. During charge, protons deprived of Ni(OH)2 move to the surface of electrolyte. In order to maintain charge neutrality, electrons are injected into the power supply the positive electrode because of the applied voltage and recombine with hydroxide ions in the through the current collector. During discharge, water at the surface of the positive electrode splits electrolyte. In order to maintain charge neutrality, electrons are injected into the power supply through into protons and hydroxide ions. Protons then enter into NiOOH and neutralize with electrons the current collector. During discharge, water at the surface of the positive electrode splits into through the load to complete the circuit with the negative electrode. Shown in the net reaction protons and hydroxide ions. Protons then enter into NiOOH and neutralize with electrons through Equation (3), charge/discharge reaction does not change the overall hydroxide concentration/pH the load to complete the circuit with the negative electrode. Shown in the net reaction Equation (3), value, which is different from the working principle of Ni/Cd battery Equation (4). charge/discharge reaction does not change the overall hydroxide concentration/pH value, which is ⎯⎯→ different from theM working+ Ni(OH) principle2 ←⎯⎯ ofMH Ni/Cd + NiOOH battery (forward: Equation charge, (4). reverse: discharge) (3) ⎯⎯→ Cd(OH)M 2` + Ni2Ni(OH)pOHq2 2 Ô←⎯MH⎯ `CdNiOOH + 2NiOOHpforward + 2H2 :O charge,(forward: reverse charge, : discharge reverse: qdischarge) (3)(4) Both the inventions and further developmental works of MH alloy and Ni(OH)2 are presented CdpOHq2 ` 2NipOHq2 Ô Cd ` 2NiOOH ` 2H2O pforward : charge, reverse : dischargeq (4) in the next two sections. Both the inventions and further developmental works of MH alloy and Ni(OH)2 are presented in the2.1.1. next Metal two Hydride sections. Alloys in the Negative Electrode 2.1.1.Klaus Metal Beccu Hydride contributed Alloys in theto the Negative earliest Electrode patent using MH alloy as an active material in the negative electrode to construct a Ni/MH battery in 1970 [18]. The alloy used had a composition of Klaus Beccu contributed to the earliest patent using MH alloy as an active material in the negative Ti85Ni10Cu3V2 (in wt%), which was later expanded to any hydride of the third, fourth, or fifth group electrode to construct a Ni/MH battery in 1970 [18]. The alloy used had a composition of Ti Ni Cu V of transition metal (for example, Ti) [19]. Two types of MH alloys were used 85in the10 first3 2 (in wt%), which was later expanded to any hydride of the third, fourth, or fifth group of transition commercialized Ni/MH batteries introduced in 1989. While Japanese companies such as Matsushita metal (for example, Ti) [19]. Two types of MH alloys were used in the first commercialized Ni/MH [20–22] (later changed its name to Panasonic), Toshiba [23], Sanyo [24,25], and Yuasa [26] used the batteries introduced in 1989. While Japanese companies such as Matsushita [20–22] (later changed its misch metal-based (mixtures of light rare earth elements such as La, Ce, Pr, and Nd) AB5 MH alloy, name to Panasonic), Toshiba [23], Sanyo [24,25], and Yuasa [26] used the misch metal-based (mixtures the Ovonic Battery Company (OBC, Troy, MI, USA) chose the transitional metal-based AB2 MH alloy of light rare earth elements such as La, Ce, Pr, and Nd) AB MH alloy, the Ovonic Battery Company as the active material in the negative electrode. General properties5 of these two alloy families are (OBC, Troy, MI, USA) chose the transitional metal-based AB2 MH alloy as the active material in the listed in Table 1. The AB5 MH alloy eventually dominated the market due to the substantially lower price of misch metal since 2000. Batteries 2016, 2, 10 3 of 29 negative electrode. General properties of these two alloy families are listed in Table1. The AB 5 MH alloy eventually dominated the market due to the substantially lower price of misch metal since 2000. Table 1. Property comparison between the AB2 and AB5 MH alloy families. FCC, 1C/1C, and DOD denote face-centered-cubic, 1C charge and discharge rates, and depth of discharge, respectively. Property AB2 MH alloy AB5 MH alloy Basic crystal structure Hexagonal C14 and FCC C15 Hexagonal CaCu5 Composition example Ti12Zr21Ni38V10Cr5Mn12Co1.5Al0.5 La10Ce5Pr0.5Nd1.5Ni60Co12Mn6Al5 Discharge capacity 340–440 mAh¨ g´1 300–330 mAh¨ g´1 High-rate dischargeability Acceptable Excellent Cycle life (1C/1C, 100% DOD) 800 1200 Self-discharge Acceptable (V-free alloy) Acceptable High-temperature storage Acceptable due to leach-out Bad due to surface passivation Activation Modest Easy Low temperature Good Modest Fabrication method Casting, hydriding, and grinding Casting and grinding Raw material cost V is expensive Volatile due to rare earth price fluctuation Low-cost version V and Co-free alloy Pr, Nd, and Co-free alloy Discovery of the hydrogen storage capability of the rare earth-based AB5 intermetallic alloy was accidental [27]. Guegen [28] filed the first patent using LaNi5 modified with Ti, Ca, Ba, Cr, and/or Cu with improved capacity as negative electrode material in 1978.
Recommended publications
  • Electrochemical Cells
    Electrochemical cells = electronic conductor If two different + surrounding electrolytes are used: electrolyte electrode compartment Galvanic cell: electrochemical cell in which electricity is produced as a result of a spontaneous reaction (e.g., batteries, fuel cells, electric fish!) Electrolytic cell: electrochemical cell in which a non-spontaneous reaction is driven by an external source of current Nils Walter: Chem 260 Reactions at electrodes: Half-reactions Redox reactions: Reactions in which electrons are transferred from one species to another +II -II 00+IV -II → E.g., CuS(s) + O2(g) Cu(s) + SO2(g) reduced oxidized Any redox reactions can be expressed as the difference between two reduction half-reactions in which e- are taken up Reduction of Cu2+: Cu2+(aq) + 2e- → Cu(s) Reduction of Zn2+: Zn2+(aq) + 2e- → Zn(s) Difference: Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) - + - → 2+ More complex: MnO4 (aq) + 8H + 5e Mn (aq) + 4H2O(l) Half-reactions are only a formal way of writing a redox reaction Nils Walter: Chem 260 Carrying the concept further Reduction of Cu2+: Cu2+(aq) + 2e- → Cu(s) In general: redox couple Ox/Red, half-reaction Ox + νe- → Red Any reaction can be expressed in redox half-reactions: + - → 2 H (aq) + 2e H2(g, pf) + - → 2 H (aq) + 2e H2(g, pi) → Expansion of gas: H2(g, pi) H2(g, pf) AgCl(s) + e- → Ag(s) + Cl-(aq) Ag+(aq) + e- → Ag(s) Dissolution of a sparingly soluble salt: AgCl(s) → Ag+(aq) + Cl-(aq) − 1 1 Reaction quotients: Q = a − ≈ [Cl ] Q = ≈ Cl + a + [Ag ] Ag Nils Walter: Chem 260 Reactions at electrodes Galvanic cell:
    [Show full text]
  • A Review on Lithium-Ion Battery Separators Towards Enhanced Safety Performances and Modelling Approaches
    molecules Review A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches Ao Li 1 , Anthony Chun Yin Yuen 1,* , Wei Wang 1 , Ivan Miguel De Cachinho Cordeiro 1 , Cheng Wang 1 , Timothy Bo Yuan Chen 1 , Jin Zhang 1, Qing Nian Chan 1 and Guan Heng Yeoh 1,2 1 School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia; [email protected] (A.L.); [email protected] (W.W.); [email protected] (I.M.D.C.C.); [email protected] (C.W.); [email protected] (T.B.Y.C.); [email protected] (J.Z.); [email protected] (Q.N.C.); [email protected] (G.H.Y.) 2 Australian Nuclear Science and Technology Organization (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia * Correspondence: [email protected] Abstract: In recent years, the applications of lithium-ion batteries have emerged promptly owing to its widespread use in portable electronics and electric vehicles. Nevertheless, the safety of the battery systems has always been a global concern for the end-users. The separator is an indispensable part of lithium-ion batteries since it functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of separators have direct influences on the performance of lithium-ion batteries, therefore the separators play an important role in the battery safety issue. With the rapid developments of applied materials, there have been extensive efforts to utilize these new materials as battery separators with enhanced electrical, fire, and explosion Citation: Li, A.; Yuen, A.C.Y.; Wang, prevention performances.
    [Show full text]
  • 3 PRACTICAL APPLICATION BATTERIES and ELECTROLYSIS Dr
    ELECTROCHEMISTRY – 3 PRACTICAL APPLICATION BATTERIES AND ELECTROLYSIS Dr. Sapna Gupta ELECTROCHEMICAL CELLS An electrochemical cell is a system consisting of electrodes that dip into an electrolyte and in which a chemical reaction either uses or generates an electric current. A voltaic or galvanic cell is an electrochemical cell in which a spontaneous reaction generates an electric current. An electrolytic cell is an electrochemical cell in which an electric current drives an otherwise nonspontaneous reaction. Dr. Sapna Gupta/Electrochemistry - Applications 2 GALVANIC CELLS • Galvanic cell - the experimental apparatus for generating electricity through the use of a spontaneous reaction • Electrodes • Anode (oxidation) • Cathode (reduction) • Half-cell - combination of container, electrode and solution • Salt bridge - conducting medium through which the cations and anions can move from one half-cell to the other. • Ion migration • Cations – migrate toward the cathode • Anions – migrate toward the anode • Cell potential (Ecell) – difference in electrical potential between the anode and cathode • Concentration dependent • Temperature dependent • Determined by nature of reactants Dr. Sapna Gupta/Electrochemistry - Applications 3 BATTERIES • A battery is a galvanic cell, or a series of cells connected that can be used to deliver a self-contained source of direct electric current. • Dry Cells and Alkaline Batteries • no fluid components • Zn container in contact with MnO2 and an electrolyte Dr. Sapna Gupta/Electrochemistry - Applications 4 ALKALINE CELL • Common watch batteries − − Anode: Zn(s) + 2OH (aq) Zn(OH)2(s) + 2e − − Cathode: 2MnO2(s) + H2O(l) + 2e Mn2O3(s) + 2OH (aq) This cell performs better under current drain and in cold weather. It isn’t truly “dry” but rather uses an aqueous paste.
    [Show full text]
  • Troubleshooting and Maintenance Guide
    ASSOCIATED EQUIPMENT CORPORATION TROUBLESHOOTING AND MAINTENANCE GUIDE Celebrating over 60 years of Quality American Manufacturing TROUBLESHOOTING & MAINTENANCE GUIDE TABLE OF CONTENTS SECTION PAGE CONCEPT OF A BATTERY CHARGER 3 MAINTENANCE AND CLEANING INSTRUCTIONS 4 EQUIPMENT NEEDED 5 TROUBLESHOOTING INSTRUCTIONS 6 DIAGNOSING FAILURES 8 COMPONENT FUNCTIONS 12 Manuals, Wire Diagrams, and additional information may be found on our website: http://www.associatedequip.com/support Additional technical help is available by emailing: [email protected] Trouble Shooting & Maintenance Guide.doc Rev.1 Last modified 12/17/2009 Page 2 TROUBLESHOOTING & MAINTENANCE GUIDE CONCEPT OF A BATTERY CHARGER In its most basic function, a battery charger uses a typical household voltage of 120 volts AC and steps it down to a lower AC voltage before converting that AC into DC to charge a battery. This is done by feeding the higher input voltage into the primary side of the transformer and the lower output voltage is produced on the secondary side of the transformer. The primary of the transformer consists of at least two inputs (or taps) and may contain several more. Each input tap is designed to produce a calculated voltage on the output windings called a secondary. Various switches are employed to change these taps in order to get the desired output levels and timers are often used to govern the length of time on charge. The lower secondary voltage of the transformer is then connected to the rectifier (or diodes) which clip the top half of the AC (alternating current) sine wave resulting in DC (direct current) voltage. This is the voltage used to actually charge the battery.
    [Show full text]
  • Elements of Electrochemistry
    Page 1 of 8 Chem 201 Winter 2006 ELEM ENTS OF ELEC TROCHEMIS TRY I. Introduction A. A number of analytical techniques are based upon oxidation-reduction reactions. B. Examples of these techniques would include: 1. Determinations of Keq and oxidation-reduction midpoint potentials. 2. Determination of analytes by oxidation-reductions titrations. 3. Ion-specific electrodes (e.g., pH electrodes, etc.) 4. Gas-sensing probes. 5. Electrogravimetric analysis: oxidizing or reducing analytes to a known product and weighing the amount produced 6. Coulometric analysis: measuring the quantity of electrons required to reduce/oxidize an analyte II. Terminology A. Reduction: the gaining of electrons B. Oxidation: the loss of electrons C. Reducing agent (reductant): species that donates electrons to reduce another reagent. (The reducing agent get oxidized.) D. Oxidizing agent (oxidant): species that accepts electrons to oxidize another species. (The oxidizing agent gets reduced.) E. Oxidation-reduction reaction (redox reaction): a reaction in which electrons are transferred from one reactant to another. 1. For example, the reduction of cerium(IV) by iron(II): Ce4+ + Fe2+ ! Ce3+ + Fe3+ a. The reduction half-reaction is given by: Ce4+ + e- ! Ce3+ b. The oxidation half-reaction is given by: Fe2+ ! e- + Fe3+ 2. The half-reactions are the overall reaction broken down into oxidation and reduction steps. 3. Half-reactions cannot occur independently, but are used conceptually to simplify understanding and balancing the equations. III. Rules for Balancing Oxidation-Reduction Reactions A. Write out half-reaction "skeletons." Page 2 of 8 Chem 201 Winter 2006 + - B. Balance the half-reactions by adding H , OH or H2O as needed, maintaining electrical neutrality.
    [Show full text]
  • “DC-UPS” Uninterruptible Power Supply Solutions” Make Your System Better Over Its Life Time DC-Ups
    “DC-UPS” uninterruptible power supply solutions” Make Your system better over its Life Time DC-Ups Integrated Electronic Solutions Connect The new communication platform for ADELSYS- 1 Power View App TEM devices allows the connection of all compo- System Monitoring Software APP for Tablet nents in a simple but very powerful way. A single “Power View App”, is an application for tablet, available in free download. With this App it is possible to connect to communication protocol based on MODbus-RTU ADELSYSTEM cloud and visualize in real time data stored or CANbus technology. You can select any of in your own account on the cloud. Data upload is possible the two buses depending on the application. It through “Power Bus”, an ADELSYSTEM MODBUS/Ethernet allows to communicate with all the accessories interface which connects the DC-UPS MODBUS output to provided by ADELSYSTEM and to develop an the cloud. Uploaded data can be battery voltage, charge current, discharge current, level of charge, charging mode, independent system for electrical continuity. At alarms, diagnostic signals and more. This allows monitoring of the same time, it allows monitoring and control DC-UPS and battery status from any location. It just requires all parameters in the system, even from the wireless internet connection via tablet. other side of the world, by means of application tools on the cloud. 2 Power View System Monitoring Software ADELSYSTEM allows you to implement very sim- “Power View System” is a PC-based software developed to ple but sophisticated monitoring and control for monitor in real time every important parameter of the DC- UPS/battery system.
    [Show full text]
  • Ion-Liquid Based Supercapacitors with Inner Gate Diode-Like Separators
    chemengineering Article Ion-Liquid Based Supercapacitors with Inner Gate Diode-Like Separators Tazima S. Chowdhury and Haim Grebel * Electrical and Computer Engineering and Electronic Imaging Center, New Jersey Institute of Technology, Newark, NJ 07102, USA; [email protected] * Correspondence: [email protected] Received: 11 March 2019; Accepted: 9 April 2019; Published: 14 April 2019 Abstract: In order to minimize unintentional discharge, supercapacitors are interfaced with a membrane that separates the anode from the cathode—this membrane is called the separator. We focus here on separators, which are structured as electronic diode-like. We call an electrically structured separator “the gate”. Through experiments, it was demonstrated that ionic liquid-filled supercapacitors, which were interfaced with gated separators exhibited a substantial capacitance (C) increase and reduction in the equivalent series resistance (ESR) compared to cells with ordinary separators. These two attributes help to increase the energy, which is stored in a cell, since for a given 2 2 cell’s voltage, the dissipated energy on the cell, UR = V /4(ESR) and the stored energy, UC = CV /2, would increase. These were indeed ionic diodes since the order of the diode layout mattered—the diode-like structures exhibited maximum capacitance when their p-side faced the auxiliary electrode. Keywords: supercapacitors; gated supercapacitors; energy storage elements; diode-like separators 1. Introduction Increasingly, supercapacitors find more and more applications in short-term energy storage [1–6], namely, energy elements that can quickly handle substantial amount of current. A supercapacitor is made of two electrodes: The anode and the cathode. Both electrodes are immersed in an electrolyte.
    [Show full text]
  • A Review of Functional Separators for Lithium Metal Battery Applications
    materials Review A Review of Functional Separators for Lithium Metal Battery Applications Jooyoung Jang y, Jiwoong Oh y, Hyebin Jeong y, Woosuk Kang y and Changshin Jo * School of Chemical Engineering & Materials Science, Chung-Ang University (CAU), 84, Heukseok-ro, Dongjakgu, Seoul 06974, Korea; [email protected] (J.J.); [email protected] (J.O.); [email protected] (H.J.); [email protected] (W.K.) * Correspondence: [email protected]; Tel.: +82-2-820-5477 These authors contributed equally to this work. y Received: 31 August 2020; Accepted: 12 October 2020; Published: 16 October 2020 Abstract: Lithium metal batteries are considered “rough diamonds” in electrochemical energy storage systems. Li-metal anodes have the versatile advantages of high theoretical capacity, low density, and low reaction potential, making them feasible candidates for next-generation battery applications. However, unsolved problems, such as dendritic growths, high reactivity of Li-metal, low Coulombic efficiency, and safety hazards, still exist and hamper the improvement of cell performance and reliability. The use of functional separators is one of the technologies that can contribute to solving these problems. Recently, functional separators have been actively studied and developed. In this paper, we summarize trends in the research on separators and predict future prospects. Keywords: lithium metal battery; separator; next-generation batteries 1. Introduction Rechargeable batteries are chemical energy storage systems that interconvert chemical energy and electrical energy through the redox reactions of cathode and anode materials. Fossil fuel-based energy cycles are being replaced by renewable energy cycles at a high pace. In this regard, energy storage devices have proven to be essential in fulfilling the global demands of sustainable energy supply and solving problems such as oil depletion and environmental pollution [1–5].
    [Show full text]
  • Advances in Materials Design for All-Solid-State Batteries: from Bulk to Thin Films
    applied sciences Review Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films Gene Yang 1, Corey Abraham 2, Yuxi Ma 1, Myoungseok Lee 1, Evan Helfrick 1, Dahyun Oh 2,* and Dongkyu Lee 1,* 1 Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA; [email protected] (G.Y.); [email protected] (Y.M.); [email protected] (M.L.); [email protected] (E.H.) 2 Chemical and Materials Engineering Department, Charles W. Davidson College of Engineering, San José State University, San José, CA 95192-0080, USA; [email protected] * Correspondence: [email protected] (D.O.); [email protected] (D.L.) Received: 15 June 2020; Accepted: 7 July 2020; Published: 9 July 2020 Featured Application: All solid-state lithium batteries, all solid-state thin-film lithium batteries. Abstract: All-solid-state batteries (SSBs) are one of the most fascinating next-generation energy storage systems that can provide improved energy density and safety for a wide range of applications from portable electronics to electric vehicles. The development of SSBs was accelerated by the discovery of new materials and the design of nanostructures. In particular, advances in the growth of thin-film battery materials facilitated the development of all solid-state thin-film batteries (SSTFBs)—expanding their applications to microelectronics such as flexible devices and implantable medical devices. However, critical challenges still remain, such as low ionic conductivity of solid electrolytes, interfacial instability and difficulty in controlling thin-film growth. In this review, we discuss the evolution of electrode and electrolyte materials for lithium-based batteries and their adoption in SSBs and SSTFBs.
    [Show full text]
  • Advancing Focused Ion Beam Characterization for Next Generation Lithium-Ion Batteries
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Advancing Focused Ion Beam Characterization for Next Generation Lithium-Ion Batteries Permalink https://escholarship.org/uc/item/3sh5k04b Author Lee, Jungwoo Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Advancing Focused Ion Beam Characterization for Next Generation Lithium-Ion Batteries A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in NanoEngineering by Jungwoo Zema Lee Committee in charge: Professor Ying Shirley Meng, Chair Professor David P. Fenning Professor Eric E. Fullerton Professor Olivia A. Graeve Professor Ping Liu 2018 Copyright Jungwoo Zema Lee, 2018 All rights reserved. The Dissertation of Jungwoo Zema Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii DEDICATION To my given and chosen family iv TABLE OF CONTENTS Signature Page ..................................................................................................................... iii Dedication ............................................................................................................................ iv Table of Contents ................................................................................................................ v List of Abbreviations .........................................................................................................
    [Show full text]
  • High Purity Alumina (HPA) Application on Lithium Ion Battery Separator
    White Paper High Purity Alumina (HPA) Application on Lithium Ion Battery Separator Altech Chemical Limited 11 May 2020 1 Executive Summary As one of the major lithium ion battery components, battery separators play an essential role in safe battery operation. The vast majority of the traditional lithium ion battery separators are made from polyolefin membrane. The polyolefin membrane has a low melting temperature, typically less than 160°C. With the recent trend to increased battery energy density, the polyolefin membrane separator cannot meet the safety requirements. Historically, the failure of the lithium ion battery has led to recall of millions of laptops and mobile phones. Most of the battery failures were due to the thermal runaway caused by separator damage directly or indirectly. Ceramic powders are now widely used to enhance the separator safety performance by coating on a traditional polyolefin membrane, or on electrode laminate, or as a material for fabrication of inorganic composite membranes. The ceramic layer will maintain the integrity of the separator during a temperature rise, and hence prevent thermal runaway. Among the ceramics used in the separator enhancement, alumina (Al2O3) powder, especially high purity alumina (HPA), is one of the most widely accepted ceramic materials due to its unique properties. Alumina is electrically non-conductive and inert to all the chemicals present in the lithium battery components. Alumina is thermally conductive and thermally stable over a wide range of temperatures which are far beyond the battery operating temperature. These properties make it ideal for application as a coating and additive material for battery separator production.
    [Show full text]
  • Canopen in Light Electric Vehicles
    iCC 2008 CAN in Automation CANopen in light electric vehicles Holger Zeltwanger – CAN in Automation international users and manufacturers group – Light electric vehicles (LEV) driven by battery-powered motors require embedded communication networks. In order to standardize the communication between the different devices, some suppliers and some vehicle manufacturers have selected the CANopen application layer. The paper discusses the technical and market requirements and the possible CANopen profile solutions. Fig.1: Possible system architecture in an LEV (e.g. Pedelec) Introduction as for the service (repair and maintenance). However, labor cost is in Light electric vehicles (LEV) include Asia very low. In USA and Europe, the Pedelecs (bikes with electric motors), quality of Pedelecs must be much higher motor scooters, and many other battery- due to the high labor cost in the garages. powered small vehicles. The largest The Japanese market requests a market is of course the bicycle with electric maintenance-free lifetime of 5 to 7 years. motor. Last year there have been sold The Pedelec fleets of some European about 18 millions of Pedelecs, the majority post mail services require more in China, of course. The North American sophisticated products with standardized and the European markets are very small electrical interfaces, in order to keep the compared with the Asian markets. Just a service cost as low as possible. In few hundred thousands are sold in USA particular, the number of spare parts and Europe. should be reduced as much as possible. In many Asian countries, the highest On behalf of the EnergyBus prior requirement is the low price for the organization, the c&s service provider has LEV.
    [Show full text]