Battery Technologies for Small Scale Embeded Generation

Total Page:16

File Type:pdf, Size:1020Kb

Battery Technologies for Small Scale Embeded Generation Battery Technologies for Small Scale Embedded Generation. by Norman Jackson, South African Energy Storage Association (SAESA) Content Provider – Wikipedia et al Small Scale Embedded Generation - SSEG • SSEG is very much a local South African term for Distributed Generation under 10 Mega Watt. Internationally they refer to: Distributed generation, also distributed energy, on-site generation (OSG) or district/decentralized energy It is electrical generation and storage performed by a variety of small, grid- connected devices referred to as distributed energy resources (DER) Types of Energy storage: • Fossil fuel storage • Thermal • Electrochemical • Mechanical • Brick storage heater • Compressed air energy storage • Cryogenic energy storage (Battery Energy • Fireless locomotive • Liquid nitrogen engine Storage System, • Flywheel energy storage • Eutectic system BESS) • Gravitational potential energy • Ice storage air conditioning • Hydraulic accumulator • Molten salt storage • Flow battery • Pumped-storage • Phase-change material • Rechargeable hydroelectricity • Seasonal thermal energy battery • Electrical, electromagnetic storage • Capacitor • Solar pond • UltraBattery • Supercapacitor • Steam accumulator • Superconducting magnetic • Thermal energy energy storage (SMES, also storage (general) superconducting storage coil) • Chemical • Biological • Biofuels • Glycogen • Hydrated salts • Starch • Hydrogen storage • Hydrogen peroxide • Power to gas • Vanadium pentoxide History of the battery This was a stack of copper and zinc Italian plates, separated by physicist Alessandro brine-soaked paper Volta demonstrating disks, that could his pile to French produce a steady emperor Napoleon current for a Bonaparte considerable length of time. Although early batteries were of great value for experimental purposes, in practice their voltages fluctuated and they could not provide a large current for a sustained period. The Daniell cell, invented in 1836 by British chemist John Frederic Daniell, was the first practical source of electricity, becoming an industry standard and seeing widespread adoption as a power source for electrical telegraph networks. It consisted of a copper pot filled with a copper sulfate solution, in which was immersed an unglazed earthenware container filled with sulfuric acid and a zinc electrode. A voltaic pile, the first battery 1800 How do chemical batteries work? • Electricity, as you probably already know, is the flow of electrons through a conductive path like a wire. This path is called a circuit. • Batteries have three parts, an anode (-), a cathode (+), and the electrolyte. The cathode and anode (the positive and negative sides at either end of a traditional battery) are hooked up to an electrical circuit. The chemical reactions in the battery causes a build up of electrons at the anode. This results in an electrical difference between the anode and the cathode. You can think of this difference as an unstable build-up of the electrons. The electrons wants to rearrange themselves to get rid of this difference. But they do this in a certain way. Electrons repel each other and try to go to a place with fewer electrons. In a battery, the only place to go is to the cathode. But, the electrolyte keeps the electrons from going straight from the anode to the cathode within the battery. When the circuit is closed (a wire connects the cathode and the anode) the electrons will be able to get to the cathode. Primary cells or non-rechargeable batteries • A primary cell is a battery (a galvanic cell) that is designed to be used once and discarded, and not recharged with electricity and reused like a secondary cell (rechargeable battery). In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity and is useless. A variety of standard sizes of primary cells. From left:4.5V multicell battery, D, C, AA, AAA, AAAA, A23, 9V multicell battery, (top) LR44, (bottom) CR2 032 Secondary cells or rechargeable batteries • A rechargeable battery, storage battery, secondary cell, or accumulator is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Different Types of Rechargeable Batteries. Aluminium-ion battery Molten salt battery Flow battery Nickel–cadmium battery Vanadium redox battery Nickel–cadmium battery vented cell type Zinc–bromine battery Nickel hydrogen battery Zinc–cerium battery Nickel–iron battery Lithium based battery Nickel metal hydride battery Lead–acid battery Low self-discharge NiMH battery Starter battery Nickel–zinc battery Deep cycle battery Organic radical battery VRLA battery Polymer-based battery AGM battery Polysulfide bromide battery Gel battery Potassium-ion battery Glass battery Rechargeable alkaline battery Lithium air battery Rechargeable fuel battery Lithium-ion battery Silicon air battery Lithium ion lithium cobalt oxide Silver-zinc battery Lithium ion manganese oxide battery Silver calcium battery Sodium-ion battery Lithium ion polymer battery Sodium–sulfur battery Lithium iron phosphate battery Super iron battery Lithium–sulfur battery UltraBattery Lithium–titanate battery Zinc ion battery Thin film lithium-ion battery Magnesium-ion battery Lead–acid battery • The lead–acid battery, invented in 1859 by French physicist Gaston Planté, is the oldest type of rechargeable battery. Despite having a very low energy-to-weight ratio and a low energy-to-volume ratio, its ability to supply high surge currents means that the cells have a relatively large power-to-weight ratio. This technology contains liquid electrolyte in an unsealed container, requiring that the battery be kept upright and the area be well ventilated to ensure safe dispersal of the hydrogen gas it produces during overcharging. Its low manufacturing cost and its high surge current levels make it common where its capacity (over approximately 10 Ah) is more important than weight and handling issues. Starter vs Deep Cycle battery A deep-cycle battery is a lead-acid battery designed to be regularly deeply discharged using most of its capacity. In contrast, starter batteries (e.g. most automotive batteries) are designed to deliver short, high-current bursts for cranking the engine, thus frequently discharging only a small part of their capacity. VRLA battery (Sealed Lead-Acid) A VRLA battery utilizes a one-way, pressure-relief valve system to achieve a “recombinant” technology. This means that the oxygen normally produced on the positive plate is absorbed by the negative plate. This suppresses the production of hydrogen at the negative plate. The sealed valve regulated lead–acid battery (VRLA battery) is popular as a replacement for the lead–acid wet cell. The VRLA battery uses an immobilized sulfuric acid electrolyte, reducing the chance of leakage and extending shelf life. VRLA batteries immobilize the electrolyte. The two types are: Gel batteries (or "gel cell") use a semi-solid electrolyte. Absorbed Glass Mat (AGM) batteries absorb the electrolyte in a special fiberglass matting. Lithium-ion battery (Li-ion Battery) - LIB 1980 - The electrolyte, which allows for ionic movement of ions (electrically charge particles of an atom), and the two electrodes are the constituent components of a lithium-ion battery cell. The cathode is typically made from a lithium material. The anode is generally made from carbon (graphite). Li-ion Battery Comparison – One to another Lithium-ion battery Power Energy Safety Lifespan Cost Performance Types Lithium Cobalt L H L L L M Oxide Lithium Manganese M M M L L L Oxide Lithium Nickel Manganese Cobalt M H M M L M Oxide Lithium Iron H L H H L M Phosphate Lithium Nickel Cobalt Aluminum M H L M M M Oxide Lithium Titanate M L H H H H Lithium Iron Phosphate – LFP (LiFePo4) 1996 – LFP can be produced by heating a variety of iron and lithium salts with phosphates or phosphoric acid. The major differences between LFP batteries and ordinary lithium batteries are that LFP batteries do not have safety concerns such as overheating and explosion, that they have 4 to 5 times longer cycle lifetimes than lithium batteries and 8 to 10 times higher discharge power. Flow Batteries • Concept 1930’s main development in the 1980’s • A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids contained within the system and separated by a membrane. Vanadium Redox Battery The vanadium redox battery (VRB), also known as the vanadium flow battery (VFB) or vanadium redox flow battery (VRFB), is a type of rechargeable flow battery that employs vanadium ions in different oxidation states to store chemical potential energy. The vanadium redox battery exploits the ability of vanadium to exist in solution in different oxidation states, and uses this property to make a battery that has just one electroactive element instead of two. The oxidation state, sometimes referred to as oxidation number, describes degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually,
Recommended publications
  • In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review
    batteries Review In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review Purna C. Ghimire 1,*, Arjun Bhattarai 1,*, Tuti M. Lim 2, Nyunt Wai 3 , Maria Skyllas-Kazacos 4 and Qingyu Yan 5,* 1 V-flow Tech Pte Ltd., Singapore, 1 Cleantech Loop, Singapore 637141, Singapore 2 School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; [email protected] 3 Energy Research Institute @Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; [email protected] 4 School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia; [email protected] 5 School of Material Science and Engineering, Nanyang Technological University, Singapore 637141, Singapore * Correspondence: purna.ghimire@vflowtech.com (P.C.G.); arjun.bhattarai@vflowtech.com (A.B.); [email protected] (Q.Y.); Tel.: +65-85153215 (P.C.G.) Abstract: Progress in renewable energy production has directed interest in advanced developments of energy storage systems. The all-vanadium redox flow battery (VRFB) is one of the attractive technologies for large scale energy storage due to its design versatility and scalability, longevity, good round-trip efficiencies, stable capacity and safety. Despite these advantages, the deployment of the vanadium battery has been limited due to vanadium and cell material costs, as well as supply issues. Improving stack power density can lower the cost per kW power output and therefore, intensive research and development is currently ongoing to improve cell performance by increasing electrode activity, reducing cell resistance, improving membrane selectivity and ionic conductivity, etc. In order Citation: Ghimire, P.C.; Bhattarai, A.; to evaluate the cell performance arising from this intensive R&D, numerous physical, electrochemical Lim, T.M.; Wai, N.; Skyllas-Kazacos, and chemical techniques are employed, which are mostly carried out ex situ, particularly on cell M.; Yan, Q.
    [Show full text]
  • Electrochemical Cells
    Electrochemical cells = electronic conductor If two different + surrounding electrolytes are used: electrolyte electrode compartment Galvanic cell: electrochemical cell in which electricity is produced as a result of a spontaneous reaction (e.g., batteries, fuel cells, electric fish!) Electrolytic cell: electrochemical cell in which a non-spontaneous reaction is driven by an external source of current Nils Walter: Chem 260 Reactions at electrodes: Half-reactions Redox reactions: Reactions in which electrons are transferred from one species to another +II -II 00+IV -II → E.g., CuS(s) + O2(g) Cu(s) + SO2(g) reduced oxidized Any redox reactions can be expressed as the difference between two reduction half-reactions in which e- are taken up Reduction of Cu2+: Cu2+(aq) + 2e- → Cu(s) Reduction of Zn2+: Zn2+(aq) + 2e- → Zn(s) Difference: Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) - + - → 2+ More complex: MnO4 (aq) + 8H + 5e Mn (aq) + 4H2O(l) Half-reactions are only a formal way of writing a redox reaction Nils Walter: Chem 260 Carrying the concept further Reduction of Cu2+: Cu2+(aq) + 2e- → Cu(s) In general: redox couple Ox/Red, half-reaction Ox + νe- → Red Any reaction can be expressed in redox half-reactions: + - → 2 H (aq) + 2e H2(g, pf) + - → 2 H (aq) + 2e H2(g, pi) → Expansion of gas: H2(g, pi) H2(g, pf) AgCl(s) + e- → Ag(s) + Cl-(aq) Ag+(aq) + e- → Ag(s) Dissolution of a sparingly soluble salt: AgCl(s) → Ag+(aq) + Cl-(aq) − 1 1 Reaction quotients: Q = a − ≈ [Cl ] Q = ≈ Cl + a + [Ag ] Ag Nils Walter: Chem 260 Reactions at electrodes Galvanic cell:
    [Show full text]
  • Characterization of Battery for Energy Storage Applications – Lead Acid
    Abstract #1672, 224th ECS Meeting, © 2013 The Electrochemical Society Characterization of battery for energy storage applications curves of a lead acid battery (YUASA, NP4-6). It has a – lead acid battery, lithium battery, vanadium redox normal voltage of 6 V and capacity of 4 Ah. The battery flow battery, and capacitor power was drained at 0.5 A till the cell voltage down to 3.0 V. The E-I curve was recorded by linear scanning Chih-Lung Hsieh1, Yen-Ting Liu2, Kan-Lin Hsueh2, amperometry at scanning rate of 0.01 A/s. The battery is Ju-Shei Hung3 then charge at 0.5 A for 2 hours. The SOC was assumed reached 25%. The E-I curve was then recorded. This 1. Institute of Nuclear Energy Research, Taoyuan, Taiwan procedure was carried out for SOC at 50%, 75%, and 2. Dept. Energy Eng., National United University, Miaoli, 100%. When cell voltage reached 7.0 V during charge Taiwan was considered as 100% SOC. Curves shown on Fig. 2 3. Dept. Chem. Eng., National United University, Miaoli, was measured result of laed acid battery. These curves Taiwan can be described by following equations. Where the IR accounts for internal resistance. Last term of equation [1] is the voltage cahge due to acitvation over-potential. The purpose of this study is to measure the charge/discharge characteristics of four different During Charge components for energy storage application. They are lead RT nF E E 1 iRI o ln o exp[ )]( [1] acid battery, lithium battery, vanadium redox flow battery, nF SO 2 H 4 RT [ 4 [] ] and capacitor.
    [Show full text]
  • On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 Against Metal Electrodes
    nanomaterials Article Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes Maria Gombotz 1,* , Veronika Pregartner 1, Ilie Hanzu 1,2,* and H. Martin R. Wilkening 1,2 1 Institute for Chemistry and Technology of Materials, Technical Universtiy of Graz, Graz 8010, Austria; [email protected] (V.P.); [email protected] (H.M.R.W.) 2 ALISTORE—European Research Institute, CNRS FR3104, Hub de l’Energie, Rue Baudelocque, 80039 Amiens, France * Correspondence: [email protected] (M.G.); [email protected] (I.H.) Received: 27 September 2019; Accepted: 23 October 2019; Published: 25 October 2019 Abstract: Over the past years, ceramic fluorine ion conductors with high ionic conductivity have stepped into the limelight of materials research, as they may act as solid-state electrolytes in fluorine-ion batteries (FIBs). A factor of utmost importance, which has been left aside so far, is the electrochemical stability of these conductors with respect to both the voltage window and the active materials used. The compatibility with different current collector materials is important as well. In the course of this study, tysonite-type La0.9Ba0.1F2.9, which is one of the most important electrolyte in first-generation FIBs, was chosen as model substance to study its electrochemical stability against a series of metal electrodes viz. Pt, Au, Ni, Cu and Ag. To test anodic or cathodic degradation processes we carried out cyclic voltammetry (CV) measurements using a two-electrode set-up. We covered a voltage window ranging from −1 to 4 V, which is typical for FIBs, and investigated the change of the response of the CVs as a function of scan rate (2 mV/s to 0.1 V/s).
    [Show full text]
  • Next Generation Anodes for Lithium-Ion Batteries
    NEXT GENE ATION ANODES Next Ge eratio A odes for Lithium-Io Batteries Seco d Quarter Progress Report 2018 De is Dees, Poi t-of-Co tact Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-7349 E-mail: [email protected] Bria Cu i gham, DOE-EERE-VTO Tech ology Ma ager U.S. Department of Energy, Battery R&D Phone: (202) 287-5686 E-mail: [email protected] Table of Co te ts Overview (page 2) 1. Research Facilities Support (page 5) CAMP Facility Support Activities (ANL) (page 5) Characterization and Optimization of Si Slurry by Zeta Potential (ORNL) (page 7) Thermodynamic Understanding and Abuse Performance (SNL) (page 9) Hydro/Solvothermal Synthesis and Scale-up of Silicon and Silicon-containing Nanoparticles (ANL) (page 10) 2. Characterization, Diagnostics, and Analysis (page 12) Spectroscopic Characterization of Cycled Si Electrodes: Understanding the Role of Binder (ORNL) (page 12) EQCM Studies of Silicon Anodes (ANL) (page 13) Effect of silicate thickness on the electrochemical performance of silicate-coated silicon nanoparticles (ANL) (page 15) Calendar-life versus Cycle-life aging of Lithium-ion Cells with Silicon-Graphite Composite Electrodes – Electrolyte Analysis (ANL) (page 17) 3. Materials Advancements (page 18) Continued Study of Lithiation Effect of the Poly(Acrylic Acid) Binders on the Silicon Anode of Lithium-Ion Batteries (ANL) (page 19) Probe the relationships between functional electrolytes structure and SEI property for Si materials (LBNL) (page 21) Silicon Surface Modification Using
    [Show full text]
  • Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems
    energies Review Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems Qaisar Abbas 1 , Mojtaba Mirzaeian 2,3,*, Michael R.C. Hunt 1, Peter Hall 2 and Rizwan Raza 4 1 Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, UK; [email protected] (Q.A.); [email protected] (M.R.H.) 2 School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] 3 Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050040, Kazakhstan 4 Clean Energy Research Lab (CERL), Department of Physics, COMSATS University Islamabad, Lahore 54000, Pakistan; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 26 October 2020; Published: 9 November 2020 Abstract: Electrochemical energy storage and conversion systems such as electrochemical capacitors, batteries and fuel cells are considered as the most important technologies proposing environmentally friendly and sustainable solutions to address rapidly growing global energy demands and environmental concerns. Their commercial applications individually or in combination of two or more devices are based on their distinguishing properties e.g., energy/power densities, cyclability and efficiencies. In this review article, we have discussed some of the major electrochemical energy storage and conversion systems and encapsulated their technological advancement in recent years. Fundamental working principles and material compositions of various components such as electrodes and electrolytes have also been discussed. Furthermore, future challenges and perspectives for the applications of these technologies are discussed.
    [Show full text]
  • Elements of Electrochemistry
    Page 1 of 8 Chem 201 Winter 2006 ELEM ENTS OF ELEC TROCHEMIS TRY I. Introduction A. A number of analytical techniques are based upon oxidation-reduction reactions. B. Examples of these techniques would include: 1. Determinations of Keq and oxidation-reduction midpoint potentials. 2. Determination of analytes by oxidation-reductions titrations. 3. Ion-specific electrodes (e.g., pH electrodes, etc.) 4. Gas-sensing probes. 5. Electrogravimetric analysis: oxidizing or reducing analytes to a known product and weighing the amount produced 6. Coulometric analysis: measuring the quantity of electrons required to reduce/oxidize an analyte II. Terminology A. Reduction: the gaining of electrons B. Oxidation: the loss of electrons C. Reducing agent (reductant): species that donates electrons to reduce another reagent. (The reducing agent get oxidized.) D. Oxidizing agent (oxidant): species that accepts electrons to oxidize another species. (The oxidizing agent gets reduced.) E. Oxidation-reduction reaction (redox reaction): a reaction in which electrons are transferred from one reactant to another. 1. For example, the reduction of cerium(IV) by iron(II): Ce4+ + Fe2+ ! Ce3+ + Fe3+ a. The reduction half-reaction is given by: Ce4+ + e- ! Ce3+ b. The oxidation half-reaction is given by: Fe2+ ! e- + Fe3+ 2. The half-reactions are the overall reaction broken down into oxidation and reduction steps. 3. Half-reactions cannot occur independently, but are used conceptually to simplify understanding and balancing the equations. III. Rules for Balancing Oxidation-Reduction Reactions A. Write out half-reaction "skeletons." Page 2 of 8 Chem 201 Winter 2006 + - B. Balance the half-reactions by adding H , OH or H2O as needed, maintaining electrical neutrality.
    [Show full text]
  • All-Carbon Electrodes for Flexible Solar Cells
    applied sciences Article All-Carbon Electrodes for Flexible Solar Cells Zexia Zhang 1,2,3 ID , Ruitao Lv 1,2,*, Yi Jia 4, Xin Gan 1,5 ID , Hongwei Zhu 1,2 and Feiyu Kang 1,5,* 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Z.Z.); [email protected] (X.G.); [email protected] (H.Z.) 2 Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3 School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830046, Xinjiang Province, China 4 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; [email protected] 5 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China * Correspondences: [email protected] (R.L.); [email protected] (F.K.) Received: 16 December 2017; Accepted: 20 January 2018; Published: 23 January 2018 Abstract: Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materials, including carbon nanotubes (CNTs) and graphene films synthesized by chemical vapor deposition (CVD). Flexible and semitransparent solar cells with all-carbon electrodes are successfully fabricated.
    [Show full text]
  • Dual Battery Control System of Lead Acid and Lithium Ferro Phosphate with Switching Technique
    Article Dual Battery Control System of Lead Acid and Lithium Ferro Phosphate with Switching Technique Muhammad Nizam 1,2, Hari Maghfiroh 1,* , Fuad Nur Kuncoro 1 and Feri Adriyanto 1 1 Electrical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia; [email protected] (M.N.); [email protected] (F.N.K.); [email protected] (F.A.) 2 Centre of Excellence for Electrical Energy Storage Technology, Universitas Sebelas Maret, Jl. Slamet Riyadi 435, Surakarta, Central Java 57146, Indonesia * Correspondence: hari.maghfi[email protected] Abstract: The increase in electric vehicles needs to be supported by the existence of reliable energy storage devices. The battery, as an energy storage system, has its advantages and disadvantages. The combination of different battery types is chosen since the battery is one of the energy storage systems with mature technology and low life cycle cost. A solution that can be proposed to cover the weakness of each battery is the use of the Dual Battery System (DBS). In this project, a dual battery control system with a combination of Valve Regulated Lead Acid (VRLA) and Lithium Ferro Phosphate (LFP) batteries was developed using the switching method. Battery selection switching is determined by the specification and operational set point of the battery used. The experimental testing was carried out. The result of the research conducted showed that the current sensor accuracy was 83.75% and the voltage sensor accuracy was 94.25% while the current sensor precision value was 64.91% and the voltage sensor precision was 99.74%.
    [Show full text]
  • A Review of Cathode and Anode Materials for Lithium-Ion Batteries
    A Review of Cathode and Anode Materials for Lithium-Ion Batteries Yemeserach Mekonnen Aditya Sundararajan Arif I. Sarwat IEEE Student Member IEEE Student Member IEEE Member Department of Electrical & Department of Electrical & Department of Electrical & Computer Engineering Computer Engineering Computer Engineering Florida International University Florida International University Florida International University Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Lithium ion batteries are one of the most technologies such as plug-in HEVs. For greater application use, commercially sought after energy storages today. Their batteries are usually expensive and heavy. Li-ion and Li- based application widely spans from Electric Vehicle (EV) to portable batteries show promising advantages in creating smaller, devices. Their lightness and high energy density makes them lighter and cheaper battery storage for such high-end commercially viable. More research is being conducted to better applications [18]. As a result, these batteries are widely used in select the materials for the anode and cathode parts of Lithium (Li) ion cell. This paper presents a comprehensive review of the common consumer electronics and account for higher sale existing and potential developments in the materials used for the worldwide [2]. Lithium, as the most electropositive element making of the best cathodes, anodes and electrolytes for the Li- and the lightest metal, is a unique element for the design of ion batteries such that maximum efficiency can be tapped. higher density energy storage systems. The discovery of Observed challenges in selecting the right set of materials is also different inorganic compounds that react with alkali metals in a described in detail.
    [Show full text]
  • Recent Progress in Vanadium Redox-Flow Battery Katsuji Emura1 Sumitomo Electric Industries, Ltd., Osaka, Japan
    Recent Progress in Vanadium Redox-Flow Battery Katsuji Emura1 Sumitomo Electric Industries, Ltd., Osaka, Japan 1. Introduction Vanadium Redox Flow Battery (VRB) is an energy storage system that employs a rechargeable vanadium fuel cell technology. Since 1985, Sumitomo Electric Industries Ltd (SEI) has developed VRB technologies for large-scale energy storage in collaboration with Kansai Electric power Co. In 2001, SEI has developed 3MW VRB system and delivered it to a large liquid crystal display manufacturing plant. The VRB system provides 3MW of power for 1.5 seconds as UPS (Uninterruptible Power Supply) for voltage sag compensation and 1.5MW of power for 1hr as a peak shaver to reduce peak load. The VRB system has successfully compensated for 50 voltage sag events that have occurred since installation up until September 2003. 2. Principle of VRB The unique chemistry of vanadium allows it to be used in both the positive and negative electrolytes. Figure 1 shows a schematic configuration of VRB system. The liquid electrolytes are circulated through the fuel cells in a similar manner to that of hydrogen and oxygen in a hydrogen fuel cell. Similarly, the electrochemical reactions occurring within the cells can produce a current flow in an external circuit, alternatively reversing the current flow results in recharging of the electrolytes. These cell reactions are balanced by a flow of protons or hydrogen ions across the cell through a selective membrane. The selective membrane also serves as a physical barrier keeping the positive and negative vanadium electrolytes separate. Figure 2 shows a cell stack which was manufactured by SEI.
    [Show full text]
  • Alessandro Volta and the Discovery of the Battery
    1 Primary Source 12.2 VOLTA AND THE DISCOVERY OF THE BATTERY1 Alessandro Volta (1745–1827) was born in the Duchy of Milan in a town called Como. He was raised as a Catholic and remained so throughout his life. Volta became a professor of physics in Como, and soon took a significant interest in electricity. First, he began to work with the chemistry of gases, during which he discovered methane gas. He then studied electrical capacitance, as well as derived new ways of studying both electrical potential and charge. Most famously, Volta discovered what he termed a Voltaic pile, which was the first electrical battery that could continuously provide electrical current to a circuit. Needless to say, Volta’s discovery had a major impact in science and technology. In light of his contribution to the study of electrical capacitance and discovery of the battery, the electrical potential difference, voltage, and the unit of electric potential, the volt, were named in honor of him. The following passage is excerpted from an essay, written in French, “On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds,” which Volta sent in 1800 to the President of the Royal Society in London, Joseph Banks, in hope of its publication. The essay, described how to construct a battery, a source of steady electrical current, which paved the way toward the “electric age.” At this time, Volta was working as a professor at the University of Pavia. For the excerpt online, click here. The chief of these results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects viz.
    [Show full text]