chemosensors Review Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review Eduardo C. Reynoso 1 , Serena Laschi 2, Ilaria Palchetti 3,* and Eduardo Torres 1,4 1 Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
[email protected] (E.C.R.);
[email protected] (E.T.) 2 Nanobiosens Join Lab, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy;
[email protected] 3 Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy 4 Centro de Quìmica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico * Correspondence: ilaria.palchetti@unifi.it Abstract: The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling an- timicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diag- Citation: Reynoso, E.C.; Laschi, S.; nosis of resistant microorganisms and could provide crucial information on the choice of antibiotic Palchetti, I.; Torres, E.