Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies

Total Page:16

File Type:pdf, Size:1020Kb

Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies Arrhythmogenic potential of drugs FP7-HEALTH-241679 http://www.aritmo-project.org/ Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies V 1.3 Draft Lead beneficiary: EMC Date: 03/01/2010 Nature: Report Dissemination level: D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 2/85 Mazzaglia (F-SIMG) Draft TABLE OF CONTENTS DOCUMENT INFOOMATION AND HISTORY ...........................................................................4 DEFINITIONS .................................................... ERRORE. IL SEGNALIBRO NON È DEFINITO. ABBREVIATIONS ......................................................................................................................6 1. BACKGROUND .................................................................................................................7 2. STUDY OBJECTIVES................................ ERRORE. IL SEGNALIBRO NON È DEFINITO. 3. METHODS ..........................................................................................................................8 3.1.STUDY DESIGN ....................................................................................................................8 3.2.DATA SOURCES ..................................................................................................................9 3.2.1. IPCI Database .....................................................................................................9 3.2.2. PHARMO Database ......................................................................................... 170 3.2.3. Aarhus University Database ...............................................................................11 3.2.4. GePaRD Database ............................................................................................13 3.2.5. THIN Database ..................................................................................................16 3.2.6. Health Search Database ....................................................................................16 3.2.7. Emilia Romagna regional Database ...................................................................16 3.3.STUDY PERIOD ..................................................................................................................19 3.4.COHORT DEFINITION .........................................................................................................20 3.4.1. Inclusion Criteria ................................................................................................20 3.4.2. Cohort Entry .......................................................................................................20 3.4.3. Cohort Exit .........................................................................................................20 3.5.CASE DEFINITION ..............................................................................................................21 3.5.1. Symptomatic QT prolongation ............................................................................21 3.5.2. Torsade de Pointes (TdP) ..................................................................................21 3.5.3. Ventricular arrhytmia (VA) ..................................................................................21 3.5.4. Sudden Unexpected Death (SUD)/ Sudden cardiac death (SCD) ......................22 3.6.SELECTION OF CONTROLS .................................................................................................22 3.7.EXPOSURE DEFINITION ......................................................................................................22 3.7.1. Duration of Continuous Use ...............................................................................25 3.7.2. Dose ..................................................................................................................26 3.7.3. Route of administration ......................................................................................28 3.8.COVARIATES .....................................................................................................................28 4. PRIMARY STATISTICAL ANALYSES .............................................................................29 4.1.MAIN ANALYSIS .................................................................................................................29 4.2.SUB-ANALYSES.................................................................................................................30 4.2.1. Effect of Dosage ................................................................................................30 4.2.2. Effect of Duration of Use ....................................................................................30 4.2.3. Effect of Prior Use ..............................................................................................31 4.2.4. Effect of Co-Medication ......................................................................................31 4.2.5. Effect of Co-Morbidity ........................................................................................31 D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 3/85 Mazzaglia (F-SIMG) Draft 4.2.6. Effect of Indication for use ..................................................................................32 4.2.7. Examination of Subgroup Effects .......................................................................32 4.2.8. Examination of Age and Sex Effects ..................................................................32 4.3.CONFOUNDER SELECTION .................................................................................................32 4.4.SENSITIVITY ANALYSES .....................................................................................................32 5. QUALITY ASSURANCE ...................................................................................................33 6. ETHICAL, DATA PRIVACY, AND LEGAL ISSUES ..........................................................33 REFERENCES .........................................................................................................................36 ANNEXES ................................................................................................................................37 ANNEX I –PROTOCOL FOR DRUG UTILIZATION STUDIES ..............................................................36 ANNEX II – FREQUENCY OF OUTCOMES IN DIFFERENT DATABASES – PRELIMINARY ANALYSES ......45 ANNEX III – LIST OF DRUGS THAT WILL BE INVESTIGATED IN THE ARITMO PROJECT ....................46 ANNEX IV – COVARIATES OF INTEREST .....................................................................................63 ANNEX V – LIST OF MEDICATIONS THAT MAY POTENTIALLY INTERACT WITH THE STUDY DRUGS .....67 ANNEX VI – LIST OF MEDICATIONS THAWITH TDP LIABILITY .........................................................70 ANNEX VII – DESCRIPTION OF THE SOFTWARE JERBOA AS DEVELOPED IN EU-ADR PROJECT ......74 D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 4/85 Mazzaglia (F-SIMG) Draft Document Information Grant Agreement FP7-HEALTH-241679 Acronym ARITMO Number Full title Arrhythmogenic potential of drugs Project URL http://www.aritmo-project.org/ EU Project Fergal Donnelly ([email protected] ) officer Deliverable Internal Report: Common Study Protocol for Observational Database Studies Work package Numbe 5 Title WP5 – Analytic Database Studies r Delivery date Contractual Month Actual Status Version 1.1 final Nature Report Prototype Other Dissemination Public Confidential Level Authors Gianluca Trifiro’ (EMC), Giampiero Mazzaglia (F-SIMG) (Partner) Responsible Gianluca Trifiro’ Email [email protected] Author Partner EMC Phone +31 (0)10 7044128 Document History Name Date Version Description 19/09/10 v1.1 First draft for internal review Giampiero Mazzaglia (F- 19/09/10 v1.1 Integration of protocol for drug SIMG) utilization studies Alessandro Oteri (EMC) 19/09/10 v1.1 Preparation of the lists of drugs with arrhytmogenic potential and inhibitors of metabolism of the study drugs Tania Schink (Uni-HB) 11/10/2010 v1.2 External revision of the first draft Igor Diemberger (UNIBO) 11/10/2010 v1.2 External revision of the first draft Gianluca Trifiro’ (EMC) 11/10/2010 v1.3 Creation of the revised draft D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 5/85 Mazzaglia (F-SIMG) Draft Definitions Partners of the Artimo Consortium are referred to herein according to the following codes: - EMC: Erasmus Universitair Medisch Centrum Rotterdam - FIMIM: Fundació IMIM - LSHTM: London School of Hygiene and Tropical Medicine - UNIBO: Alma Mater Studiorum-Università di Bologna - UNI-HB: Universitaet Bremen - UoNEW: University of Newcastle - UB2: Université Victor Segalen Bordeaux2 - FSM-MCL: Fondazione Salvatore Maugeri Clinica del Lavoro e Della Riabilitazione - CHARITE: Charite - Universitaetsmedizin Berlin - UNIVR: Universita Degli Studi di Verona - SGHMS: St. George’s Hospital Medical School - AZ: AstraZeneca
Recommended publications
  • Comparison of Arbekacin and Vancomycin in Treatment of Chronic Suppurative Otitis Media by Methicillin Resistant Staphylococcus Aureus
    ORIGINAL ARTICLE Infectious Diseases, Microbiology & Parasitology http://dx.doi.org/10.3346/jkms.2015.30.6.688 • J Korean Med Sci 2015; 30: 688-693 Comparison of Arbekacin and Vancomycin in Treatment of Chronic Suppurative Otitis Media by Methicillin Resistant Staphylococcus aureus Ji-Hee Hwang,1 Ju-Hyung Lee,2,4 Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of ear infections. We Jeong-Hwan Hwang,3 Kyung Min Chung,5 attempted to evaluate the clinical usefulness of arbekacin in treating chronic suppurative Eun-Jung Lee,6 Yong-Joo Yoon,4,6 otitis media (CSOM) by comparing its clinical efficacy and toxicity with those of Mi-Kyoung Moon,1 Ju-Sin Kim,1 vancomycin. Efficacy was classified according to bacterial elimination or bacteriologic 1 3,4 Kyoung-Suk Won, and Chang-Seop Lee failure and improved or failed clinical efficacy response. Ninety-five subjects were diagnosed with CSOM caused by MRSA. Twenty of these subjects were treated with 1Department of Pharmacy, Chonbuk National University Hospital, Jeonju; Departments of arbekacin, and 36 with vancomycin. The bacteriological efficacy (bacterial elimination, 2Preventive Medicine and 3Internal Medicine, arbekacin vs. vancomycin: 85.0% vs. 97.2%) and improved clinical efficacy (arbekacin vs. Chonbuk National University Medical School, vancomycin; 90.0% vs. 97.2%) were not different between the two groups. However, the 4 Jeonju; Research Institute of Clinical Medicine of rate of complications was higher in the vancomycin group (33.3%) than in the arbekacin Chonbuk National University-Chonbuk National University Hospital, Jeonju; Departments of group (5.0%) (P = 0.020). In addition, a total of 12 adverse reactions were observed in the 5Microbiology & Immunology, and 6Otolaryngology- vancomycin group; two for hepatotoxicity, one for nephrotoxicity, eight for leukopenia, Head and Neck Surgery, Chonbuk National two for skin rash, and one for drug fever.
    [Show full text]
  • Injectable PLGA Adefovir Microspheres; the Way for Long Term Therapy of T Chronic Hepatitis-B ⁎ Margrit M
    European Journal of Pharmaceutical Sciences 118 (2018) 24–31 Contents lists available at ScienceDirect European Journal of Pharmaceutical Sciences journal homepage: www.elsevier.com/locate/ejps Injectable PLGA Adefovir microspheres; the way for long term therapy of T chronic hepatitis-B ⁎ Margrit M. Ayouba, , Neveen G. Elantounyb, Hanan M. El-Nahasa, Fakhr El-Din S. Ghazya a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt b Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt ARTICLE INFO ABSTRACT Keywords: For patient convenience, sustained release Adefovir Poly-d,l-lactic-co-glycolic acid (PLGA) microspheres were Adefovir formulated to relieve the daily use of the drug which is a problem for patients treated from chronic hepatitis-B. Biodegradable microspheres PLGA microspheres were prepared and characterized by entrapment efficiency, particle size distribution and Poly-lactic-co-glycolic acid scanning electron microscopy (SEM). In-vitro release and in-vivo studies were carried out. Factors such as drug: Entrapment efficiency polymer ratio, polymer viscosity and polymer lactide content were found to be important variables for the preparation of PLGA Adefovir microspheres. Fourier transform infrared (FTIR) analysis and differential scanning calorimetry (DSC) were performed to determine any drug-polymer interactions. One way analysis of variance (ANOVA) was employed to analyze the pharmacokinetic parameters after intramuscular injection of the pure drug and the selected PLGA microspheres into rats. FTIR and DSC revealed a significant interaction between the drug and the polymer. Reports of SEM before and after 1 and 24 h release showed that the microspheres had nonporous smooth surface even after 24 h release.
    [Show full text]
  • Hepsera, INN- Defovir Dipivoxil
    SCIENTIFIC DISCUSSION This module reflects the initial scientific discussion for the approval of Hepsera. For information on changes after approvalplease refer to module 8B 1. Chemical, pharmaceutical and biological aspects Composition Hepsera is presented as an immediate release tablet containing 10 mg of adefovir dipivoxil, as active substance. The other ingredients in this formulation are commonly used in tablets Hepsera is supplied in high-density polyethylene bottle (HDPE), with silica gel desiccant canisters or sachets, and polyester fiber packing material. The closure system consists of a child-resistant polypropylene screw cap lined with an induction activated aluminium foil liner. Active substance Adefovir dipivoxil is an ester prodrug of the nucleotide analogue, adefovir. A structural modification of the parent drug has been carried out in order to increase the lipophilicity and to enhance the oral bioavailability of adefovir. The active substance is a white to off-white crystalline powder. It is soluble in ethanol, sparingly soluble in 0.1N HCl and very slightly soluble in water adjusted to pH 7.2 but relatively highly soluble at physiological pH. The active substance does not contain any chiral center and does not exhibit any optical isomerism. In laboratory studies the anhydrate crystal form has been observed to convert gradually into a dihydrate crystal form when adefovir dipivoxil was exposed to high humidity conditions (75% R.H., 25ºC) over an approximately one-month period. However, the only crystal form produced during the active substance synthesis and utilised in non-clinical and clinical studies has been the anhydrous crystal form. Adefovir dipivoxil undergoes also hydrolysis in aqueous solution and to a smaller degree in the solid state after exposure to humidity and heat for extended periods.
    [Show full text]
  • Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep
    animals Article Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep Shashwati Mathurkar 1,*, Preet Singh 2 ID , Kavitha Kongara 2 and Paul Chambers 2 1 1B, He Awa Crescent, Waikanae 5036, New Zealand 2 School of Veterinary Sciences, College of Sciences, Massey University, Palmerston North 4474, New Zealand; [email protected] (P.S.); [email protected] (K.K.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +64-221-678-035 Received: 13 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Simple Summary: Scarcity of non-steroidal anti-inflammatory drugs (NSAID) to minimise the pain in sheep instigated the current study. The aim of this study was to know the pharmacokinetic parameters of salicylic acid in New Zealand sheep after administration of multiple intravenous and oral doses of sodium salicylate (sodium salt of salicylic acid). Results of the study suggest that the half-life of the drug was shorter and clearance was faster after intravenous administration as compared to that of the oral administration. The minimum effective concentration required to produce analgesia in humans (16.8 µL) was achieved in sheep for about 0.17 h in the current study after intravenous administration of 100 and 200 mg/kg body weight of sodium salicylate. However, oral administration of these doses failed to achieve the minimum effective concentration as mentioned above. This study is of significance as it adds valuable information on pharmacokinetics and its variation due to breed, species, age, gender and environmental conditions.
    [Show full text]
  • Topical Budesonide for Treating Giant Rectal Pseudopolyposis
    ANTICANCER RESEARCH 25: 2961-2964 (2005) Topical Budesonide for Treating Giant Rectal Pseudopolyposis CHARALAMPOS PILICHOS1, ATHENA PREZA1, MARIA DEMONAKOU2, DIMITRIOS KAPATSORIS1 and CONSTANTINOS BOURAS1 1First Department of Internal Medicine and 2Department of Pathology, Sismanogleion Hospital, Athens, Greece Abstract. Pseudopolyps are a frequent finding in the course of Case Report inflammatory bowel disease. They are non-neoplastic lesions resulting from a regenerative and healing process that leaves A 45-year-old male patient was admitted to our service in July inflamed colonic mucosa in polypoid configuration. Data about 2002 for acute rectal bleeding. All laboratory tests were their management is lacking. "Giant" pseudopolyps can be normal, except an increase of aminotransferases level (>10 N) mistaken for adenocarcinomas and, as they rarely regress with and a serological profile consistent with acute hepatitis B or a medical management alone, a surgical resection is often required. flare of chronic hepatitis B (HbsAg +, HbsAb –, HbeAg –, A case of giant pseudopolyposis treated non-surgically, in a patient HbeAb +, HbcAb-IgM +). The patient underwent lower with concomitant ulcerative colitis and chronic hepatitis B, is gastro-intestinal endoscopy and multiple biopsies were taken reported, representing a co-morbidity complicating an eventual from a bulky rectal mass lesion (Figure 1). Histological study conservative treatment. The clinical implementation of topical revealed alterations compatible with inflammatory bowel budesonide was originally tested, resulting in clinical, endoscopic disease (IBD) with no dysplasia (Figure 2). Because of the and histological remission. Budesonide seems a promising therapy atypical macroscopic features and the high suspicion of rectal for IBD, particularly when a comorbidity with viral hepatitis exist.
    [Show full text]
  • Practice Parameters for the Surgical Treatment of Ulcerative Colitis Howard Ross, M.D
    PRACTICE PARAMETERS Practice Parameters for the Surgical Treatment of Ulcerative Colitis Howard Ross, M.D. • Scott R. Steele, M.D. • Mika Varma, M.D. • Sharon Dykes, M.D. Robert Cima, M.D. • W. Donald Buie, M.D. • Janice Rafferty, M.D. Prepared by the Standards Practice Task Force of the American Society of Colon and Rectal Surgeons he American Society of Colon and Rectal Surgeons the most common surgical indication for UC. Whether is dedicated to assuring high-quality patient care it is secondary to an inability to control symptoms, poor Tby advancing the science, prevention, and manage- quality of life, risks/side effects of chronic medical therapy ment of disorders and diseases of the colon, rectum, and (especially long-term corticosteroids), noncompliance, or anus. The Standards Committee is composed of Society growth failure, patients may opt for surgery in the elective members who are chosen because they have demonstrat- or semielective setting.3 Complete removal of all the poten- ed expertise in the specialty of colon and rectal surgery. tial disease-bearing tissue is theoretically curative in UC. This Committee was created to lead international efforts Operative options include an abdominal colectomy or total in defining quality care for conditions related to the co- proctocolectomy with either a permanent end ileostomy or lon, rectum, and anus. This is accompanied by develop- surgical construction of a “new” rectum through an IPAA ing Clinical Practice Guidelines based on the best available that restores GI continuity.4,5 All these procedures may evidence. These guidelines are inclusive, and not prescrip- be performed by using open or minimally invasive tech- tive.
    [Show full text]
  • 204684Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 204684Orig1s000 OFFICE DIRECTOR MEMO Deputy Office Director Decisional Memo Page 2 of 17 NDA 204,684 Miltefosine Capsules 1. Introduction Leishmania organisms are intracellular protozoan parasites that are transmitted to a mammalian host by the bite of the female phlebotomine sandfly. The main clinical syndromes are visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). VL is the result of systemic infection and is progressive over months or years. Clinical manifestations include fever, hepatomegaly, splenomegaly, and bone marrow involvement with pancytopenia. VL is fatal if untreated. Liposomal amphotericin B (AmBisome®) was FDA approved in 1997 for the treatment of VL. CL usually presents as one or more skin ulcers at the site of the sandfly bite. In most cases, the ulcer spontaneously resolves within several months, leaving a scar. The goals of therapy are to accelerate healing, decrease morbidity and decrease the risk of relapse, local dissemination, or mucosal dissemination. There are no FDA approved drugs for the treatment of CL. Rarely, CL disseminates from the skin to the naso-oropharyngeal mucosa, resulting in ML. ML can also develop some time after CL spontaneous ulcer healing. The risk of ML is thought to be highest with CL caused by the subgenus Viannia. ML is characterized in the medical literature as progressive with destruction of nasal and pharyngeal structures, and death may occur due to complicating aspiration pneumonia. There are no FDA approved drugs for the treatment of ML. Paladin Therapeutics submitted NDA 204, 684 seeking approval of miltefosine for the treatment of VL caused by L.
    [Show full text]
  • Candida Auris
    microorganisms Review Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities Suhail Ahmad * and Wadha Alfouzan Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-2463-6503 Abstract: Candida auris, a recently recognized, often multidrug-resistant yeast, has become a sig- nificant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently re- sulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris Citation: Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new Diagnosis, Pathogenesis, Antifungal infections in healthcare facilities, including the screening of susceptible patients for colonization; the Susceptibility, and Infection Control cleaning and decontamination of the environment, equipment, and colonized patients; and successful Measures to Combat the Spread of approaches to identify and treat infected patients, particularly during outbreaks.
    [Show full text]
  • Double Stage Activity in Aminoglycoside Antibiotics
    VOL.53 NO. 10, OCT.2000 THE JOURNAL OF ANTIBIOTICS pp.1168 - 1174 Double Stage Activity in Aminoglycoside Antibiotics Kunimoto Hotta, Atsuko Sunada, Yoko Ikeda1" and Shinichi Kondo1" National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan f Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan (Received for publication July 5, 2000) Fourteen different aminoglycoside antibiotics (AGs) were challenged with aminoglycoside acetyltransferases (AACs) of actinomycete origin in order to examine their 'double stage activity' that is arbitrarily defined as antibiotic activity retainable after enzymatic modification. In kanamycin (KM)-group AGs tested [KM, dibekacin (DKB), amikacin and arbekacin (ABK)], ABKretained activity after acetylations by AAC(3), AAC(2') and AAC(6'). DKBalso retained a weak activity after acetylation by AAC(2'). In gentamicin (GM)-group AGs tested [GM, micronomicin, sisomicin (SISO), netilmicin (NTL) and isepamicin], GM, SISO and NTL retained activites after acetylation by AAC(2'). In neomycin (NM)-group AGs tested [ribostamycin, NM,paromomycin], NMretained activity after acetylation by AAC(6') and AAC(2'). None of astromicin (ASTM)-group AGs tested (ASTMand istamycin B) retained activity after acetylation by AAC(2') and AAC(6'). The activities of acetylated ABK derivatives by AAC(3) and AAC(2') were distinctively high, compared to the others. Streptomyces lividans TK21containing the cloned aac genes were markedly sensitive to AGs that retained activities after acetylation, indicating the substantial effect of 'double stage activity'. Aminoglycoside (AG) antibiotics are generally resistant bacteria was developed by introducing (S)-4- inactivated by acetylation, phosphorylation and adenylyl- amino-2-hydroxybutyryl (AHB) side chain at 1-NH2 of ation due to AG acetyltransferases (AACs), AG KM.
    [Show full text]
  • Novel Derivatives of Bio-Affecting Phenolic Compounds and Pharmaceutical Composition Containing Them
    Europaisches Patentamt European Patent Office © Publication number: 0046 270 A1 Office europeen des brevets ™ EUROPEAN PATENT APPLICATION @ Application number: 81106277.7 © Int. CI.3: C 07 C 103/78, C 07 C 93/26, C 07 C 69/24, C 07 C 1 53/07, @ Date of filing: 12.08.81 C07C 69/28 // C07C1 25/065 <§) Priority: 13.08.80 US 177825 © Applicant: INTERx RESEARCH CORPORATION, 2201 West 21 st Street, Lawrence Kansas 66044 (US) © I nventor : Bodor, Nicholas S., 31 5 Southwest 91 st Street, ® Dateofpublicationofapplication:24.02.82 S^^S^mHariMBM Bulletin m/b Terrace, Gainesville, Florida 32605 (US) Inventor: Pogany, Stefano A., 520 Louisiana Street, Lawrence Kansas 66044 (US) @ Designated Contracting States : AT BE CH DE FR GB IT ® Representative: Abitz, Walter, Dr.-lng. et al, Abitz, Mori, LI LU NL SE Gritschneder P.O. Box 86 01 09, D-8000 Munchen 86 (DE) Novel derivatives of bio-affecting phenolic compounds and pharmaceutical composition containing them. Novel@ Novel transient prodrug forms of bio-affecting phe- amyl, CH2ONO2,CH2ON02, -CH2OCOR2 or any non-heterocyclic nolic compounds are selected from the group consisting of member of the group defined by R2Rz above; and n.isn is at least those having the structural formula (I): one and equals the total number of phenolic hydroxyl functions comprising the non-steroidal bioaffecting phenol o etherified via a R2COXCH(R3)0-moiety; those having the structural formula (II): R2-C-X-CH-0- (I) I O R, II R2-C-X-CH-0- -RM-i-O-C-R2 (II) wherein X is O, S or NR5 wherein R5 is hydrogen or lower alkyl;alky!;
    [Show full text]
  • Final Decisions & Reasons for Decisions by Delegates of the Secretary to the Department of Health
    Final decisions & reasons for decisions by delegates of the Secretary to the Department of Health 29 June 2017 (ACMS and ACCS meetings – March 2017) Notice under subsections 42ZCZS/42ZCZX of the Therapeutic Goods Regulations 1990 (the Regulations) The delegates of the Secretary to the Department of Health hereby give notice of delegates’ final decisions for amending the Poisons Standard (commonly referred to as the Standard for the Uniform Scheduling of Medicines and Poisons - SUSMP) under subsections 42ZCZS/42ZCZX of the Therapeutic Goods Regulations 1990 (the Regulations). This notice also provides the reasons for each decision and the date of effect (implementation date) of the decision. The delegates’ final decisions and reasons relate to: · scheduling proposals initially referred to the March 2017 meeting of the Advisory Committee on Medicines Scheduling (ACMS#20); · scheduling proposals initially referred to the March 2017 Joint meeting of the Advisory Committees on Chemicals and Medicines Scheduling (ACCS-ACMS#15); · scheduling proposals initially referred to the March 2017 meeting of the Advisory Committee on Chemicals Scheduling (ACCS#19); and · scheduling proposals considered as delegate-only matters, i.e. not referred to an expert advisory committee. Scheduling proposals referred to the expert advisory committees. Pre-meeting public notices On 22 December 2016 and 3 February 2017, under subsection 42ZCZK of the Therapeutic Goods Regulations 1990 (the Regulations), the delegate published pre-meeting public notices on the TGA website which specified the proposed amendments to the current Poisons Standard. The notices also invited public comment on the scheduling proposals referred to the expert advisory committees. The pre-meeting consultation periods were open for public comment for 20 business days and closed on 10 February 2017 and 3 March 2017, respectively.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]