Double Stage Activity in Aminoglycoside Antibiotics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of Arbekacin and Vancomycin in Treatment of Chronic Suppurative Otitis Media by Methicillin Resistant Staphylococcus Aureus
ORIGINAL ARTICLE Infectious Diseases, Microbiology & Parasitology http://dx.doi.org/10.3346/jkms.2015.30.6.688 • J Korean Med Sci 2015; 30: 688-693 Comparison of Arbekacin and Vancomycin in Treatment of Chronic Suppurative Otitis Media by Methicillin Resistant Staphylococcus aureus Ji-Hee Hwang,1 Ju-Hyung Lee,2,4 Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of ear infections. We Jeong-Hwan Hwang,3 Kyung Min Chung,5 attempted to evaluate the clinical usefulness of arbekacin in treating chronic suppurative Eun-Jung Lee,6 Yong-Joo Yoon,4,6 otitis media (CSOM) by comparing its clinical efficacy and toxicity with those of Mi-Kyoung Moon,1 Ju-Sin Kim,1 vancomycin. Efficacy was classified according to bacterial elimination or bacteriologic 1 3,4 Kyoung-Suk Won, and Chang-Seop Lee failure and improved or failed clinical efficacy response. Ninety-five subjects were diagnosed with CSOM caused by MRSA. Twenty of these subjects were treated with 1Department of Pharmacy, Chonbuk National University Hospital, Jeonju; Departments of arbekacin, and 36 with vancomycin. The bacteriological efficacy (bacterial elimination, 2Preventive Medicine and 3Internal Medicine, arbekacin vs. vancomycin: 85.0% vs. 97.2%) and improved clinical efficacy (arbekacin vs. Chonbuk National University Medical School, vancomycin; 90.0% vs. 97.2%) were not different between the two groups. However, the 4 Jeonju; Research Institute of Clinical Medicine of rate of complications was higher in the vancomycin group (33.3%) than in the arbekacin Chonbuk National University-Chonbuk National University Hospital, Jeonju; Departments of group (5.0%) (P = 0.020). In addition, a total of 12 adverse reactions were observed in the 5Microbiology & Immunology, and 6Otolaryngology- vancomycin group; two for hepatotoxicity, one for nephrotoxicity, eight for leukopenia, Head and Neck Surgery, Chonbuk National two for skin rash, and one for drug fever. -
Istamycin B and Micronomicin, by a Novel Aminoglycoside 6
VOL. 53 NO. 12, DEC. 2000 THE JOURNAL OF ANTIBIOTICS pp.1416 - 1419 Acetylation of Aminoglycoside Antibiotics ORF of rac-aac(6f) gene showed similarity with those with 6?-Methylamino Group, of two AAC(6') sub families containing AAC(6')-Ie Istamycin B and Micronomicin, (unpublished). Another point to note for rac-AAC(6') was its capability by a Novel Aminoglycoside 6'-Acetyltransferase of acetylating AGs with 6'-methylamino group such as of Actinomycete Origin ISMBand MCRthat have been knownto be refractory to some AAC(6') enzymes1~4). In the present report, we therefore examined the rac-AAC(6') for acetylation of Atsuko Sunada, Yoko Ikeda1", Shinichi Kondo1 and these AGsin relation with the resistance level of S. lividans KUNIMOTO HOTTA* TK2 1/PANT-S2 containing the cloned rac-aac{6') gene. Department of Bioactive Molecules, For acetylation reaction, cell free extracts wereprepared National Institute of Infectious Diseases, from S. lividans TK21/PANT-S2containing the rac-aac(6f) 1-23- 1 Toyama, Shinjuku-ku, Tokyo 1 62-8640, Japan institute of Microbial Chemistry, gene1} and incubated at 37°C for 3 hours with AGs in the 3- 1 4-23 Kamiosaki, Shinagawa-ku, following reaction mixture; 500 /ig/ml AG, 0. 1 Mphosphate Tokyo 141-0021, Japan buffer (pH 7.0), 1% (v/v) cell free extract and 5mM (Received for publication July 1 1 , 2000) acetylCoA (sodium salt; Sigma) in a 50 jA of the reaction mixture. Formation of acetylated compounds was monitored by ninhydrin reaction after TLCusing a silica An aminoglycoside (AG) 6 '-acetyltransferase, AAC(6'), gel plate (E. -
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide -
PRODUCT INFORMATION Micronomicin (Sulfate) Item No
PRODUCT INFORMATION Micronomicin (sulfate) Item No. 27951 CAS Registry No.: 66803-19-8 Formal Name: O-2-amino-2,3,4,6-tetradeoxy-6-(methylamino)-α-D- OH H erythro-hexopyranosyl-(1→4)-O-[3-deoxy-4-C-methyl-3- NH2 OH H (methylamino)-β-L-arabinopyranosyl-(1→6)]-2-deoxy-D- O O N streptamine, sulfate H Synonyms: Antibiotic XK-62-2, Gentamicin C , Sagamicin 2b O O OH H2N NH2 MF: C20H41N5O7 • XH2SO4 FW: 463.6 Purity: ≥95% N • XH SO Supplied as: A solid 2 4 Storage: -20°C H Stability: ≥2 years Item Origin: Bacteria/Micromonospora sagamiensis Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Micronomicin (sulfate) is supplied as a solid. A stock solution may be made by dissolving the micronomicin (sulfate) in the solvent of choice, which should be purged with an inert gas. Micronomicin (sulfate) is slightly soluble in ethanol. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of micronomicin (sulfate) can be prepared by directly dissolving the solid in aqueous buffers. The solubility of micronomicin (sulfate) in PBS, pH 7.2, is approximately 2 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Micronomicin is an aminoglycoside antibiotic originally isolated from Micromonospora.1,2 It is active against S. -
Successful Combination Therapy with Vancomycin and Arbekacin Against Infective Endocarditis Caused by MRSA
Dec. 2011 THE JAPANESE JOURNAL OF ANTIBIOTICS 64—56 389 ( 45 ) ͗CASE REPORT͘ Successful combination therapy with vancomycin and arbekacin against infective endocarditis caused by MRSA KENTARO TO, NORIKO MIYAKE, YOJI NAGASAKI and NOBUYUKI SHIMONO Department of Clinical Immunology and Rheumatology/ Infectious Diseases, Kyushu University Hospital (Received for publication September 7, 2011) Infective endocarditis caused by methicillin-resistant Staphylococcus aureus (MRSA) is a serious disease and sometimes leads to poor prognosis. We should have several therapeutic options. Arbekacin is one of the aminoglycoside antibiotics, which is more active against MRSA and less nephrotoxic than gentamicin. Here we presented a successfully treated case of severe MRSA endocarditis without any adverse effect by monitoring therapeutic level of vancomycin and arbekacin. Introduction Infective endocarditis is a serious disease and sometimes leads to thrombosis and metastatic in- fections. Methicillin-resistant Staphylococcus aureus (MRSA) endocarditis has a much higher mor- tality than endocarditis caused by methicillin-susceptible Staphylococcus aureus (MSSA)1. In spite of aggressive antimicrobial therapy against MRSA, we sometimes experience the treatment failure. We should have several therapeutic options for this severe infection, however the optimal therapy has not been established yet. Here we experienced a successful MRSA infective endocarditis case treated by combination therapy of vancomycin and arbekacin. Case report A 38-year-old woman (Ht 160 cm, Wt 45 kg) was admitted to a hospital with a month-long his- tory of high fever, chills, general malaise and leukocytosis. She visited the home doctor and was di- agnosed as having upper respiratory infection, however her symptoms did not respond to several short courses of therapy with levofloxacin. -
Consideration of Antibacterial Medicines As Part Of
Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1. -
Automated Hilic-MS/MS Method for Therapeutic Drug Monitoring of Aminoglycoside Antibiotics and Vancomycin
Automated HILiC-MS/MS Method for Therapeutic Drug Monitoring of Aminoglycoside Antibiotics and Vancomycin Mikaël LEVI1, Daisuke KAWAKAMI2, Jun WATANABE1 1 SHIMADZU Corporation, MS Business Unit, Kyoto, Japan; 2 SHIMADZU Corporation, Clinical & Biotechnology Business Unit, Kyoto, Japan Area Ratio Area Ratio y = 0.005292846x² + 0.04278182x - 0.004441359 y = 0.001371438x² + 0.02132510x + 0.00002051234 6.0 4.50 1. Introduction R² = 0.9974212 R = 0.9987098 R² = 0.9990104 R = 0.9995051 4.25 5.5 Curve Fit: Default (Quadratic) Curve Fit: Default (Quadratic) Weighting: 1/C 4.00 Weighting: Default (1/C^2) Zero: Default (Not Forced) Zero: Default (Not Forced) 5.0 3.75 3.50 4.5 Aminoglycoside antibiotics are used for treatment of severe infections, especially in the case of Arbekacin 3.25 Kanamycin 4.0 3.00 2.75 3.5 Gram-negative bacilli infection. However, aminoglycosides have narrow therapeutic indexes due to 2.50 3.0 2.25 2.00 2.5 their nephrotoxicity. Therefore, the benefit of therapeutic drug monitoring (TDM) for aminoglycoside 1.75 2.0 1.50 1.25 1.5 has been well-established. Vancomycin, a glycopeptide antibiotic, often used with aminoglycosides 1.00 1.0 0.75 0.50 0.5 because of their synergism, is also nephrotoxic and need to be monitored as well. 0.25 0.0 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 Conc.Ratio (mg/L) Conc.Ratio (mg/L) While LC-MS/MS is now considered as the gold standard method for TDM, many clinical laboratories Area Ratio Area Ratio 13 y = 0.0003193042x² + 0.2404682x - 0.001638089 y = 0.00002521235x² + 0.01160575x - 0.0007537159 R² = 0.9995769 R = 0.9997884 0.65 R² = 0.9997885 R = 0.9998942 12 Curve Fit: Default (Quadratic) 0.60 Curve Fit: Quadratic still use immunoassays. -
Manual of Standard Operating Procedures for Veterinary Drug Residue Analysis
63 @ Manual of Standard Operating Procedures for Veterinary Drug Residue Analysis Drug Residue Veterinary for Procedures Operating of Standard Manual Manual of Standard Operating Procedures for Veterinary Drug Residue Analysis TRAINING COURSE SERIES TRAINING ISSN 1018–5518 VIENNA, 2016 TRAINING COURSE SERIES 63 MANUAL OF STANDARD OPERATING PROCEDURES FOR VETERINARY DRUG RESIDUE ANALYSIS TRAINING COURSE SERIES No. 63 MANUAL OF STANDARD OPERATING PROCEDURES FOR VETERINARY DRUG RESIDUE ANALYSIS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2016 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Food and Environmental Protection Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Email: [email protected] MANUAL OF STANDARD OPERATING PROCEDURES FOR VETERINARY DRUG RESIDUE ANALYSIS IAEA, VIENNA, 2016 IAEA-TCS-63 ISSN 1018–5518 © IAEA, 2016 Printed by the IAEA in Austria July 2016 FOREWORD Laboratories are crucial to national veterinary drug residue monitoring programmes. -
Prospects for Circumventing Aminoglycoside Kinase Mediated Antibiotic Resistance
REVIEW ARTICLE published: 25 June 2013 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2013.00022 Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance Kun Shi 1, Shane J. Caldwell 1, Desiree H. Fong 1* and Albert M. Berghuis 1,2* 1 Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, QC, Canada 2 Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Edited by: Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Marcelo Tolmasky, California state Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides University Fullerton, USA ineffective. The most widely disseminated means of resistance to this class of antibiotics Reviewed by: is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two Sylvie Garneau-Tsodikova, University of Michigan, USA principal strategies to overcoming the effects of AMEs. The first approach involves the Maria S. Ramirez, IMPaM design of novel aminoglycosides that can evade modification. Although this strategy has (UBA-CONICET), Argentina yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in *Correspondence: the long term. The second approach entails the development of molecules that interfere Desiree H. Fong, Groupe de with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Recherche Axé sur la Structure des Protéines, Department of Although such a molecule has yet to enter clinical development, the search for AME Biochemistry, McGill University, inhibitors has been greatly facilitated by the wealth of structural information amassed 3649 Promenade Sir William Osler, in recent years. -
Intracellular Penetration and Effects of Antibiotics On
antibiotics Review Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review Suzanne Bongers 1 , Pien Hellebrekers 1,2 , Luke P.H. Leenen 1, Leo Koenderman 2,3 and Falco Hietbrink 1,* 1 Department of Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] (S.B.); [email protected] (P.H.); [email protected] (L.P.H.L.) 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] 3 Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands * Correspondence: [email protected] Received: 6 April 2019; Accepted: 2 May 2019; Published: 4 May 2019 Abstract: Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making. -
BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department -
Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors
molecules Review Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors Sandra G. Zárate 1, M. Luisa De la Cruz Claure 2, Raúl Benito-Arenas 3, Julia Revuelta 3, Andrés G. Santana 3,* and Agatha Bastida 3,* 1 Facultad de Tecnología-Carrera de Ingeniería Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B, Sucre, Bolivia; [email protected] 2 Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Dalence 51, Casilla 497, Sucre, Bolivia; [email protected] 3 Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; [email protected] (R.B.-A.); [email protected] (J.R.) * Correspondence: [email protected] (A.G.S.); [email protected] (A.B.); Tel: +34-915-612-800 (A.B.) Received: 7 November 2017; Accepted: 26 January 2018; Published: 30 January 2018 Abstract: Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes.