Synthesis and Antibacterial Activity of 1-N-&Lsqb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Double Stage Activity in Aminoglycoside Antibiotics
VOL.53 NO. 10, OCT.2000 THE JOURNAL OF ANTIBIOTICS pp.1168 - 1174 Double Stage Activity in Aminoglycoside Antibiotics Kunimoto Hotta, Atsuko Sunada, Yoko Ikeda1" and Shinichi Kondo1" National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan f Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan (Received for publication July 5, 2000) Fourteen different aminoglycoside antibiotics (AGs) were challenged with aminoglycoside acetyltransferases (AACs) of actinomycete origin in order to examine their 'double stage activity' that is arbitrarily defined as antibiotic activity retainable after enzymatic modification. In kanamycin (KM)-group AGs tested [KM, dibekacin (DKB), amikacin and arbekacin (ABK)], ABKretained activity after acetylations by AAC(3), AAC(2') and AAC(6'). DKBalso retained a weak activity after acetylation by AAC(2'). In gentamicin (GM)-group AGs tested [GM, micronomicin, sisomicin (SISO), netilmicin (NTL) and isepamicin], GM, SISO and NTL retained activites after acetylation by AAC(2'). In neomycin (NM)-group AGs tested [ribostamycin, NM,paromomycin], NMretained activity after acetylation by AAC(6') and AAC(2'). None of astromicin (ASTM)-group AGs tested (ASTMand istamycin B) retained activity after acetylation by AAC(2') and AAC(6'). The activities of acetylated ABK derivatives by AAC(3) and AAC(2') were distinctively high, compared to the others. Streptomyces lividans TK21containing the cloned aac genes were markedly sensitive to AGs that retained activities after acetylation, indicating the substantial effect of 'double stage activity'. Aminoglycoside (AG) antibiotics are generally resistant bacteria was developed by introducing (S)-4- inactivated by acetylation, phosphorylation and adenylyl- amino-2-hydroxybutyryl (AHB) side chain at 1-NH2 of ation due to AG acetyltransferases (AACs), AG KM. -
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide -
Infant Antibiotic Exposure Search EMBASE 1. Exp Antibiotic Agent/ 2
Infant Antibiotic Exposure Search EMBASE 1. exp antibiotic agent/ 2. (Acedapsone or Alamethicin or Amdinocillin or Amdinocillin Pivoxil or Amikacin or Aminosalicylic Acid or Amoxicillin or Amoxicillin-Potassium Clavulanate Combination or Amphotericin B or Ampicillin or Anisomycin or Antimycin A or Arsphenamine or Aurodox or Azithromycin or Azlocillin or Aztreonam or Bacitracin or Bacteriocins or Bambermycins or beta-Lactams or Bongkrekic Acid or Brefeldin A or Butirosin Sulfate or Calcimycin or Candicidin or Capreomycin or Carbenicillin or Carfecillin or Cefaclor or Cefadroxil or Cefamandole or Cefatrizine or Cefazolin or Cefixime or Cefmenoxime or Cefmetazole or Cefonicid or Cefoperazone or Cefotaxime or Cefotetan or Cefotiam or Cefoxitin or Cefsulodin or Ceftazidime or Ceftizoxime or Ceftriaxone or Cefuroxime or Cephacetrile or Cephalexin or Cephaloglycin or Cephaloridine or Cephalosporins or Cephalothin or Cephamycins or Cephapirin or Cephradine or Chloramphenicol or Chlortetracycline or Ciprofloxacin or Citrinin or Clarithromycin or Clavulanic Acid or Clavulanic Acids or clindamycin or Clofazimine or Cloxacillin or Colistin or Cyclacillin or Cycloserine or Dactinomycin or Dapsone or Daptomycin or Demeclocycline or Diarylquinolines or Dibekacin or Dicloxacillin or Dihydrostreptomycin Sulfate or Diketopiperazines or Distamycins or Doxycycline or Echinomycin or Edeine or Enoxacin or Enviomycin or Erythromycin or Erythromycin Estolate or Erythromycin Ethylsuccinate or Ethambutol or Ethionamide or Filipin or Floxacillin or Fluoroquinolones -
Retention of Antibiotic Activity Against Resistant Bacteria
www.nature.com/scientificreports OPEN Retention of antibiotic activity against resistant bacteria harbouring amin ogl ycosid e‑ N‑ acetyl transferase enzyme by adjuvants: a combination of in‑silico and in‑vitro study Shamim Ahmed*, Sabrina Amita Sony, Md. Belal Chowdhury, Md. Mahib Ullah, Shatabdi Paul & Tanvir Hossain Interference with antibiotic activity and its inactivation by bacterial modifying enzymes is a prevailing mode of bacterial resistance to antibiotics. Aminoglycoside antibiotics become inactivated by aminoglycoside‑6′‑N‑acetyltransferase‑Ib [AAC(6′)‑Ib] of gram‑negative bacteria which transfers an acetyl group from acetyl‑CoA to the antibiotic. The aim of the study was to disrupt the enzymatic activity of AAC(6′)‑Ib by adjuvants and restore aminoglycoside activity as a result. The binding afnities of several vitamins and chemical compounds with AAC(6′)‑Ib of Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei were determined by molecular docking method to screen potential adjuvants. Adjuvants having higher binding afnity with target enzymes were further analyzed in‑vitro to assess their impact on bacterial growth and bacterial modifying enzyme AAC(6′)‑Ib activity. Four compounds—zinc pyrithione (ZnPT), vitamin D, vitamin E and vitamin K‑exhibited higher binding afnity to AAC(6′)‑Ib than the enzyme’s natural substrate acetyl‑CoA. Combination of each of these adjuvants with three aminoglycoside antibiotics—amikacin, gentamicin and kanamycin—were found to signifcantly increase the antibacterial activity against the selected bacterial species as well as hampering the activity of AAC(6′)‑Ib. The selection process of adjuvants and the use of those in combination with aminoglycoside antibiotics promises to be a novel area in overcoming bacterial resistance. -
Properties of Achromobacter Xylosoxidans Highly Resistant to Aminoglycoside Antibiotics
Apr. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69―2 113( 33 ) 〈Brief Report〉 Properties of Achromobacter xylosoxidans highly resistant to aminoglycoside antibiotics 1 1 2 SACHIKO NAKAMOTO , NATSUMI GODA , TATSUYA HAYABUCHI , 1 1 1 1 HIROO TAMAKI , AYAMI ISHIDA , AYAKA SUZUKI , KAORI NAKANO , 1 1 1 SHOKO YUI , YUTO KATSUMATA , YUKI YAMAGAMI , 1 3 4 NAOTO BURIOKA , HIROKI CHIKUMI and EIJI SHIMIZU 1 Department of Pathobiological Science and Technology, School of Health Science, Tottori University Faculty of Medicine 2 Matsue City Hospital 3 Department of Infection Control and Prevention, Tottori University Hospital 4 Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine (Received for publication September 10, 2015) We herein discovered a highly resistant clinical isolate of Pseudomonas aeruginosa with MICs to amikacin, gentamicin, and arbekacin of 128 μg/mL or higher in a drug sensitivity survey of 92 strains isolated from the specimens of Yoka hospital patients between January 2009 and October 2010, and Achromobacter xylosoxidans was separated from this P. aeruginosa isolate. The sensitivity of this bacterium to 29 antibiotics was investigated. The MICs of this A. xylosoxidans strain to 9 aminoglycoside antibiotics were: amikacin, gentamicin, arbekacin, streptomycin, kanamycin, neomycin, and spectinomycin, 1,024 μg/mL or ≧1,024 μg/mL; netilmicin, 512 μg/mL; and tobramycin, 256 μg/mL. This strain was also resistant to dibekacin. This aminoglycoside antibiotic resistant phenotype is very rare, and we are the first report the emergence of A. xylosoxidans with this characteristic. In the present study, we investigated the antibiotic sensitivities of 92 clinical isolates of Pseudomonas aeruginosa collected from Yoka hospital between January 2009 and October 2010. -
E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/ -
Prospects for Circumventing Aminoglycoside Kinase Mediated Antibiotic Resistance
REVIEW ARTICLE published: 25 June 2013 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2013.00022 Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance Kun Shi 1, Shane J. Caldwell 1, Desiree H. Fong 1* and Albert M. Berghuis 1,2* 1 Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, QC, Canada 2 Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Edited by: Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Marcelo Tolmasky, California state Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides University Fullerton, USA ineffective. The most widely disseminated means of resistance to this class of antibiotics Reviewed by: is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two Sylvie Garneau-Tsodikova, University of Michigan, USA principal strategies to overcoming the effects of AMEs. The first approach involves the Maria S. Ramirez, IMPaM design of novel aminoglycosides that can evade modification. Although this strategy has (UBA-CONICET), Argentina yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in *Correspondence: the long term. The second approach entails the development of molecules that interfere Desiree H. Fong, Groupe de with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Recherche Axé sur la Structure des Protéines, Department of Although such a molecule has yet to enter clinical development, the search for AME Biochemistry, McGill University, inhibitors has been greatly facilitated by the wealth of structural information amassed 3649 Promenade Sir William Osler, in recent years. -
(3H) Tobramycin Was Synthesized As Described Previously3) and Had a Specific Radioac- Tivity of 5,000 Ci/Mole
VOL. XXXIII NO. 8 THE JOURNAL OF ANTIBIOTICS 895 HAVE DEOXYSTREPTAMINE AMINOGLYCOSIDE ANTIBIOTICS THE SAME BINDING SITE ON BACTERIAL RIBOSOMES ? FRANCOIS LE GOFFIC, MARIE-LOUISE CAPMAU, EREDERIC TANGY and ELIANE CAMINADE C.N.R.S.-C.E.R.C.O.A. 2 a 8, rue Henry Dunant, 94320 Thiais, France (Received for Publication January 22, 1980) (3H) Tobramycin was used as a probe to determine the relationship between the structure of aminoglycoside antibiotics and their ability to remove this drug from its higher affinity bind- ing site on the ribosome. The dissacharide moieties (neamine, tobramine, gentamine) appeared to have a common binding site, whereas the kanosamine, garosamine and ribose moieties determined the specificity of this binding. Amikacin and butikacin behaved in an anomalous manner in spite of their close structural relationship to tobramycin. Biochemical experiments have recently demonstrated that those aminoglycoside antibiotics with deoxystreptamine and kanosamine moieties possess two types of binding sites on the bacterial ribo- some.1,2) When the binding experiments were carried out with the ribosomal subunits two types of binding sites were also found on the 50 S subunit whereas only one type of binding site was located on the 30 S particle.3) The question then arises as to whether all aminoglycoside antibiotics possessing a deoxystreptamine moiety glycosidically bound to other aminosugar residues have the same receptor site. The present study tries to answer this important question. Materials and Methods Chemicals: (3H) Tobramycin was synthesized as described previously3) and had a specific radioac- tivity of 5,000 Ci/mole. Putrescine and spermidine were from Sigma. -
BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department -
Revision of Precautions
Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Cefmenoxime hydrochloride (preparations for otic and nasal use), chloramphenicol (solution for topical use, oral dosage form), tetracycline hydrochloride (powders, capsules), polymixin B sulfate (powders), clindamycin hydrochloride, clindamycin phosphate (injections), benzylpenicillin potassium, benzylpenicillin benzathine hydrate, lincomycin hydrochloride hydrate, aztreonam, amoxicillin hydrate, ampicillin hydrate, ampicillin sodium, potassium clavulanate/amoxicillin hydrate, dibekacin sulfate (injections), sultamicillin tosilate hydrate, cefaclor, cefazolin sodium, cefazolin sodium hydrate, cephalexin (oral dosage form with indications for otitis media), cefalotin sodium, cefixime hydrate, cefepime dihydrochloride hydrate, cefozopran hydrochloride, cefotiam hydrochloride (intravenous injections), cefcapene pivoxil hydrochloride hydrate, cefditoren pivoxil, cefdinir, ceftazidime hydrate, cefteram pivoxil, ceftriaxone sodium hydrate, cefpodoxime proxetil, cefroxadine hydrate, cefuroxime axetil, tebipenem pivoxil, doripenem hydrate, bacampicillin hydrochloride, panipenem/betamipron, faropenem sodium hydrate, flomoxef sodium, fosfomycin calcium hydrate, meropenem hydrate, chloramphenicol sodium succinate, -
Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors
molecules Review Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors Sandra G. Zárate 1, M. Luisa De la Cruz Claure 2, Raúl Benito-Arenas 3, Julia Revuelta 3, Andrés G. Santana 3,* and Agatha Bastida 3,* 1 Facultad de Tecnología-Carrera de Ingeniería Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B, Sucre, Bolivia; [email protected] 2 Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Dalence 51, Casilla 497, Sucre, Bolivia; [email protected] 3 Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; [email protected] (R.B.-A.); [email protected] (J.R.) * Correspondence: [email protected] (A.G.S.); [email protected] (A.B.); Tel: +34-915-612-800 (A.B.) Received: 7 November 2017; Accepted: 26 January 2018; Published: 30 January 2018 Abstract: Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes. -
BEI Resources Product Information Sheet Catalog No. NR-51595
Product Information Sheet for NR-51595 Pseudomonas aeruginosa, Strain MRSN Note: Environmental and clinical isolates of P. aeruginosa frequently contain viruses known as prophages.2 During 20176 growth some strains from the Pseudomonas aeruginosa Diversity Panel displayed plaques resulting from the Catalog No. NR-51595 activation of their inherent prophages. Please refer to the This reagent is the tangible property of the U.S. Government. Certificate of Analysis to determine if phage plaques were observed for this strain. For research use only. Not for human use. P. aeruginosa is a Gram-negative, aerobic, rod-shaped Contributor: bacterium with unipolar motility that thrives in many diverse Multidrug-Resistant Organism Repository and Surveillance environments including soil, water and certain eukaryotic Network (MRSN), Bacterial Disease Branch, Walter Reed hosts. It is a key emerging opportunistic pathogen in animals, Army Institute of Research, Silver Spring, Maryland, USA including humans and plants. While it rarely infects healthy individuals, P. aeruginosa causes severe acute and chronic Manufacturer: nosocomial infections in immunocompromised or catheterized patients, especially in patients with cystic fibrosis, burns, BEI Resources cancer or HIV.3-5 Infections of this type are often highly antibiotic resistant, difficult to eradicate and often lead to Product Description: death. The ability of P. aeruginosa to survive on minimal Bacteria Classification: Pseudomonadaceae, Pseudomonas nutritional requirements, tolerate a variety of physical Species: Pseudomonas aeruginosa conditions and rapidly develop resistance during the course of Strain: MRSN 20176 therapy has allowed it to persist in both community and Original Source: Pseudomonas aeruginosa (P. aeruginosa), hospital settings.5,6 strain MRSN 20176 was isolated in 2013 from a human groin in Afghanistan as part of a surveillance program in the United States.1 Material Provided: Comments: P.