Horizontal Gene Transfer to Bacteria of an Arabidopsis Thaliana ABC Transporter That Confers Kanamycin Resistance in Transgenic Plants

Total Page:16

File Type:pdf, Size:1020Kb

Horizontal Gene Transfer to Bacteria of an Arabidopsis Thaliana ABC Transporter That Confers Kanamycin Resistance in Transgenic Plants University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 Horizontal Gene Transfer to Bacteria of an Arabidopsis Thaliana ABC Transporter That Confers Kanamycin Resistance in Transgenic Plants Kellie Parks Burris University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Plant Sciences Commons Recommended Citation Burris, Kellie Parks, "Horizontal Gene Transfer to Bacteria of an Arabidopsis Thaliana ABC Transporter That Confers Kanamycin Resistance in Transgenic Plants. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1518 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Kellie Parks Burris entitled "Horizontal Gene Transfer to Bacteria of an Arabidopsis Thaliana ABC Transporter That Confers Kanamycin Resistance in Transgenic Plants." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Plant Sciences. C. N. Stewart, Jr., Major Professor We have read this thesis and recommend its acceptance: Steve Ripp, Janice Zale Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Kellie Parks Burris entitled “Horizontal gene transfer to bacteria of an Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Plant Sciences. C. N. Stewart, Jr.______ Major Professor We have read this thesis and recommend its acceptance: Steve Ripp________________ Janice Zale________________ Accepted for the council: Linda Painter __ Interim Dean of Graduate Studies (Original signatures are on file with official student records). Horizontal gene transfer to bacteria of an Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants A Thesis presented for the Masters of Science degree The University of Tennessee, Knoxville Kellie Parks Burris December, 2006 Acknowledgements I would like to offer my sincere thanks and appreciation to Dr. Neal Stewart, my major professor, who provided me the opportunity to gain new skills and knowledge in the area of Plant Biotechnology. It is through his dedication and support that my research was completed. I would also like to thank Dr. Steve Ripp, who was helpful and encouraging with anything in projects relating to microbiology and to Dr. Janice Zale, who served as a committee member and provided suggestions on my research and writing. I would like to especially thank my husband, friend and colleague, Jason Burris, who with his love, support, understanding and patience guided me through the most difficult times. Without his help and encouragement, I would not have been able to complete this project. Also, I would like to thank my parents, Tom and Gail Parks, who with their love and support encouraged me to fulfill my educational goals, and to my very special sister, Kim Parks, who I looked to for advice and support and who I could count on for the comfort and encouragement I so needed. And a special thanks to my fellow colleagues for their assistance and advice: Mentewab Ayalew, Laura Good, Reggie Millwood, Hong-Seok Moon, Jaime Shockley, Joshua Yuan, and all other members of the Stewart lab. ii Abstract The use of antibiotic resistance markers is an important tool in the production and selection of transgenic plants. There have been increased concerns about the potential horizontal gene transfer (HGT) from transgenic plants to bacteria of medical and environmental importance. Until recently all antibiotic resistance genes used in transgenic studies have been bacterial in origin. An Arabidopsis thaliana ABC transporter, Atwbc19, was the first plant gene shown to confer kanamycin resistance when overexpressed in transgenic plants. The Atwbc19 gene was evaluated for its ability to transfer antibiotic resistance to Escherichia coli, which are found in the human gut and environment. Simulated HGT was staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming the bacteria and assessing if resistance was conferred as compared to the same treatment of the E. coli nptII gene. The nptII gene provided greater resistance to kanamycin in E. coli than that of the Atwbc19 gene and was significantly different from the no-plasmid control at higher concentrations of kanamycin (e.g., over 10 mg L-1) (p < 0.05). The Atwbc19 gene was not significantly different from the no-plasmid control at higher concentrations of kanamycin (e.g., over 25 mg L-1) (p < 0.05). E. coli transformed with Atwbc19 conferred little resistance to kanamycin at 100 mg L-1. Results from Northern gel blot analysis indicated that expression levels for nptII were similar to that of Atwbc19 for the two concentrations of the antibiotic kanamycin tested. However, there was a slightly apparent decrease in the level of expression for Atwbc19 compared to the nptII gene that was most likely the result to the plant codon usage of the ABC gene or its large size (over two-fold greater than nptII). This research iii supports the use of the Atwbc19 gene in transgenic plants as a selectable marker and potential replacement of the nptII gene for kanamycin selection systems. iv Table of Contents 1. Introduction.................................................................................................................1 2. Literature Review........................................................................................................6 2.1 Aminoglycoside antibiotics................................................................................ 6 2.1.1 Introduction................................................................................................. 6 2.1.2 Prevalence of antibiotic resistance in nature............................................... 7 2.1.3 Aminoglycosidic antibiotics and their uses ................................................ 8 2.1.4 Resistance mechanisms............................................................................. 10 2.1.5 Importance in human health...................................................................... 11 2.2 ABC transporters.............................................................................................. 12 2.2.1 Introduction............................................................................................... 12 2.2.2 White-Brown Complex subfamily............................................................ 13 2.2.3 Discovery and functional characterization of Arabidopsis thaliana WBC transporters................................................................................................................ 13 2.3 Horizontal gene transfer.................................................................................... 15 2.3.1 Introduction............................................................................................... 15 2.3.2 Mechanisms of HGT................................................................................. 16 2.3.3 Barriers to HGT........................................................................................ 18 2.3.4 HGT detection and its limitations............................................................. 20 2.4 Markers used in plant biotechnology................................................................ 23 2.4.1 Introduction............................................................................................... 23 2.4.2 Antibiotic resistance markers.................................................................... 24 2.4.3 Alternative markers to antibiotic resistance genes.................................... 26 2.4.4 Implications of ARMs on human and animal health ................................ 27 2.4.5 Regulations regarding the use of ARMs in transgenic plants................... 28 3. Objectives ................................................................................................................. 30 4. Materials and Methods.............................................................................................. 31 4.1 Bacterial strains and plasmids........................................................................... 31 4.2 Determining susceptibility of Escherichia coli to kanamycin.......................... 31 4.3 Determining potential usage of other bacteria in HGT studies......................... 32 4.4 Transformation.................................................................................................. 32 4.5 Assessment of new antibiotic resistance through natural transformation......... 32 4.6 Statistical analysis............................................................................................. 33 4.7 Reverse transcription polymerase chain
Recommended publications
  • Double Stage Activity in Aminoglycoside Antibiotics
    VOL.53 NO. 10, OCT.2000 THE JOURNAL OF ANTIBIOTICS pp.1168 - 1174 Double Stage Activity in Aminoglycoside Antibiotics Kunimoto Hotta, Atsuko Sunada, Yoko Ikeda1" and Shinichi Kondo1" National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan f Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan (Received for publication July 5, 2000) Fourteen different aminoglycoside antibiotics (AGs) were challenged with aminoglycoside acetyltransferases (AACs) of actinomycete origin in order to examine their 'double stage activity' that is arbitrarily defined as antibiotic activity retainable after enzymatic modification. In kanamycin (KM)-group AGs tested [KM, dibekacin (DKB), amikacin and arbekacin (ABK)], ABKretained activity after acetylations by AAC(3), AAC(2') and AAC(6'). DKBalso retained a weak activity after acetylation by AAC(2'). In gentamicin (GM)-group AGs tested [GM, micronomicin, sisomicin (SISO), netilmicin (NTL) and isepamicin], GM, SISO and NTL retained activites after acetylation by AAC(2'). In neomycin (NM)-group AGs tested [ribostamycin, NM,paromomycin], NMretained activity after acetylation by AAC(6') and AAC(2'). None of astromicin (ASTM)-group AGs tested (ASTMand istamycin B) retained activity after acetylation by AAC(2') and AAC(6'). The activities of acetylated ABK derivatives by AAC(3) and AAC(2') were distinctively high, compared to the others. Streptomyces lividans TK21containing the cloned aac genes were markedly sensitive to AGs that retained activities after acetylation, indicating the substantial effect of 'double stage activity'. Aminoglycoside (AG) antibiotics are generally resistant bacteria was developed by introducing (S)-4- inactivated by acetylation, phosphorylation and adenylyl- amino-2-hydroxybutyryl (AHB) side chain at 1-NH2 of ation due to AG acetyltransferases (AACs), AG KM.
    [Show full text]
  • Prospects for Circumventing Aminoglycoside Kinase Mediated Antibiotic Resistance
    REVIEW ARTICLE published: 25 June 2013 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2013.00022 Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance Kun Shi 1, Shane J. Caldwell 1, Desiree H. Fong 1* and Albert M. Berghuis 1,2* 1 Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, QC, Canada 2 Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Edited by: Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Marcelo Tolmasky, California state Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides University Fullerton, USA ineffective. The most widely disseminated means of resistance to this class of antibiotics Reviewed by: is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two Sylvie Garneau-Tsodikova, University of Michigan, USA principal strategies to overcoming the effects of AMEs. The first approach involves the Maria S. Ramirez, IMPaM design of novel aminoglycosides that can evade modification. Although this strategy has (UBA-CONICET), Argentina yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in *Correspondence: the long term. The second approach entails the development of molecules that interfere Desiree H. Fong, Groupe de with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Recherche Axé sur la Structure des Protéines, Department of Although such a molecule has yet to enter clinical development, the search for AME Biochemistry, McGill University, inhibitors has been greatly facilitated by the wealth of structural information amassed 3649 Promenade Sir William Osler, in recent years.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors
    molecules Review Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors Sandra G. Zárate 1, M. Luisa De la Cruz Claure 2, Raúl Benito-Arenas 3, Julia Revuelta 3, Andrés G. Santana 3,* and Agatha Bastida 3,* 1 Facultad de Tecnología-Carrera de Ingeniería Química, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B, Sucre, Bolivia; [email protected] 2 Facultad de Ciencias Químico Farmacéuticas y Bioquímicas, Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Dalence 51, Casilla 497, Sucre, Bolivia; [email protected] 3 Departmento de Química Bio-Orgánica, Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; [email protected] (R.B.-A.); [email protected] (J.R.) * Correspondence: [email protected] (A.G.S.); [email protected] (A.B.); Tel: +34-915-612-800 (A.B.) Received: 7 November 2017; Accepted: 26 January 2018; Published: 30 January 2018 Abstract: Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes.
    [Show full text]
  • Characterization of Impurities in Commercial Spectinomycin by Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry
    The Journal of Antibiotics (2014) 67, 511–518 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja ORIGINAL ARTICLE Characterization of impurities in commercial spectinomycin by liquid chromatography with electrospray ionization tandem mass spectrometry Yan Wang, Mingjuan Wang, Jin Li, Shangchen Yao, Jing Xue, Wenbo Zou and Changqin Hu Analysis of commercial spectinomycin samples with ion-pairing reversed-phase LC coupled with electrospray ionization tandem MS (LC/ESI-MS/MS) indicates that eight additional compounds are present, including actinamine, (4R)-dihydrospectinomycin, (4S)-dihydrospectinomycin and dihydroxyspectinomycin, as well as four new impurities reported, to our knowledge, for the first time. The structures of these compounds were elucidated by comparing their fragmentation patterns with known structures, and NMR was employed to characterize and distinguish (4R)-dihydrospectinomycin and (4S)-dihydrospectinomycin. Identification of dihydrospectinomycin isomers is necessary because (4R)-dihydrospectinomycin is a minor active pharmaceutical ingredient of spectinomycin, whereas (4S)-dihydrospectinomycin is considered to be an impurity (impurity C) by the European Pharmacopoeia (Ph. Eur.). The Journal of Antibiotics (2014) 67, 511–518; doi:10.1038/ja.2014.32; published online 16 April 2014 Keywords: (4R)-dihydrospectinomycin; (4S)-dihydrospectinomycin; liquid chromatography with tandem MS; spectinomycin; structural characterization INTRODUCTION electrochemical detection that has no volatile
    [Show full text]
  • Synthesis and Antibacterial Activity of 1-N-&Lsqb
    The Journal of Antibiotics (2015) 68, 421–423 & 2015 Japan Antibiotics Research Association All rights reserved 0021-8820/15 www.nature.com/ja NOTE Synthesis and antibacterial activity of 1-N-[(S)-ω-amino-2-hydroxyalkyl] derivatives of dibekacin, 5-deoxydibekacin, 3′-deoxykanamycin A and gentamicin B Eijiro Umemura, Yukou Sakamoto, Yoshiaki Takahashi and Toshiaki Miyake The Journal of Antibiotics (2015) 68, 421–423; doi:10.1038/ja.2015.6; published online 25 February 2015 Aminoglycoside antibiotics are highly potent, broad-spectrum aminoalkyl analogs is of interest. We selected arbekacin (1a), 5- agents for the treatment of life-threatening infections. From 1971– deoxyarbekacin9 (1b), 3′-deoxyamikacin10 (1c) and isepamicin (1d) 1978, semisynthetic aminoglycosides such as dibekacin,1 amikacin for further study (Scheme 1). Compounds 1a–c have superior (AMK),2 netilmicin,3 isepamicin (1d)4 and arbekacin (1a)5 were antibacterial activity to AMK and 1d is known to be less toxic developed. Among them, AMK, isepamicin and arbekacin have an than AMK. (S)-ω-amino-2-hydroxyalkanoyl residue on the 1-amino group, The trifluoroacetate salts of each antibiotic were used to improve making them more resistant to the action of aminoglycoside- their solubilities because their respective free bases or inorganic modifying enzymes such as aminoglycoside acetyltransferase salts were only minimally soluble in the reaction solvent tetra- (AAC), aminoglycoside phosphotransferase (APH) and aminoglyco- hydrofuran. First, arbekacin (1a)trifluoroacetate was reduced with side adenylyltransferase (AAD). For example, arbekacin is stable diborane in tetrahydrofuran, and following treatment with aqueous against the bifunctional enzyme AAC(6′)-APH(2″)containedin sodium hydroxide, 1-N-[(S)-4-amino-2-hydroxybutyl]dibekacin (2a) methicillin-resistant Staphylococcus aureus and effective against was obtained in moderate yield after purification by column almost all resistant bacteria that produce aminoglycoside-modifying chromatography with ion-exchange resin.
    [Show full text]
  • 16S Ribosomal Methylation: Emerging Aminoglycoside Resistance
    Yohei Doi, MD, PhD Division of Infectious Diseases University of Pittsburgh School of Medicine Background on aminoglycosides Resistance mechanisms New aminoglycosides Streptomycin, produced by a species of Streptomyces, was the first aminoglycoside discovered All subsequent aminoglycosides were derived from Streptomyces spp. (-mycin) or from Micromonospora spp. (-micin) Active against various groups of bacteria . Not active against anaerobes Mandell: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th ed. Amino-glycoside amino-containing or non- amino-containing sugars six-membered ring with amino group substituents = aminocyclitol kanamycin Generic Name Source Year Reported Streptomycin Streptomyces griseus 1944 Neomycin Streptomyces fradiae 1949 Kanamycin Streptomyces kanamyceticus 1957 Paromomycin Streptomyces fradiae 1959 Gentamicin Micromonospora purpurea and Micromonospora echinospora 1963 Tobramycin Streptomyces tenebrarius 1967 Amikacin Streptomyces kanamyceticus 1972 Netilmicin Micromonospora inyoensis 1975 Spectinomycin Streptomyces spectabilis 1961 Sisomicin Micromonospora inyoensis 1970 Dibekacin Streptomyces kanamyceticus 1971 Isepamicin Micromonospora purpurea 1978 Mandell: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th ed. Aminoglycosides are used for treatment of various conditions: . Streptomycin – tuberculosis . Paromomycin – cryptosporidiosis, amoebiasis, leishmaniasis . Spectinomycin – gonorrhea . Gentamicin/streptomycin – synergy with β-lactams
    [Show full text]
  • Summary Report on Antimicrobials Dispensed in Public Hospitals
    Summary Report on Antimicrobials Dispensed in Public Hospitals Year 2014 - 2016 Infection Control Branch Centre for Health Protection Department of Health October 2019 (Version as at 08 October 2019) Summary Report on Antimicrobial Dispensed CONTENTS in Public Hospitals (2014 - 2016) Contents Executive Summary i 1 Introduction 1 2 Background 1 2.1 Healthcare system of Hong Kong ......................... 2 3 Data Sources and Methodology 2 3.1 Data sources .................................... 2 3.2 Methodology ................................... 3 3.3 Antimicrobial names ............................... 4 4 Results 5 4.1 Overall annual dispensed quantities and percentage changes in all HA services . 5 4.1.1 Five most dispensed antimicrobial groups in all HA services . 5 4.1.2 Ten most dispensed antimicrobials in all HA services . 6 4.2 Overall annual dispensed quantities and percentage changes in HA non-inpatient service ....................................... 8 4.2.1 Five most dispensed antimicrobial groups in HA non-inpatient service . 10 4.2.2 Ten most dispensed antimicrobials in HA non-inpatient service . 10 4.2.3 Antimicrobial dispensed in HA non-inpatient service, stratified by service type ................................ 11 4.3 Overall annual dispensed quantities and percentage changes in HA inpatient service ....................................... 12 4.3.1 Five most dispensed antimicrobial groups in HA inpatient service . 13 4.3.2 Ten most dispensed antimicrobials in HA inpatient service . 14 4.3.3 Ten most dispensed antimicrobials in HA inpatient service, stratified by specialty ................................. 15 4.4 Overall annual dispensed quantities and percentage change of locally-important broad-spectrum antimicrobials in all HA services . 16 4.4.1 Locally-important broad-spectrum antimicrobial dispensed in HA inpatient service, stratified by specialty .
    [Show full text]
  • AN EXPANDING VIEW of AMINOGLYCOSIDE–NUCLEIC ACID RECOGNITION the Origin of Aminoglycoside Antibiotics Began with Streptomycin
    ADVANCES IN CARBOHYDRATE CHEMISTRY AND BIOCHEMISTRY, VOL. 60 AN EXPANDING VIEW OF AMINOGLYCOSIDE–NUCLEIC ACID RECOGNITION BY BERT WILLIS AND DEV P. ARYA Department of Chemistry, Clemson University, Clemson, SC 29634, USA I. Introduction 263 1. Early Years 264 II. Mechanism of Action 265 1. Pre-Ribosomal Binding: Cellular Membrane Permeation 265 2. Ribosomal RNA Binding 267 III. Major Issues in Aminoglycoside Therapeutic Applications 272 1. Toxicity 272 2. Combating Toxicity 275 3. Aminoglycoside Resistance 275 4. Fighting Resistance with Aminoglycoside Derivatives 277 IV. Experimental Techniques for Probing Aminoglycoside–RNA Interactions 281 1. NMR 282 2. X-Ray Crystallography 283 3. Isothermal Titration Calorimetry 284 4. Surface Plasmon Resonance 286 V. Novel Targets for Aminoglycoside Recognition 286 1. RNA 287 2. DNA Triplex 295 3. DNA/RNA Hybrids 296 4. A-Form Nucleic Acids 298 5. B-DNA 298 6. Aminoglycosides as Cleaving Agents 300 7. Other Aminoglycoside Targets: The Anthrax Lethal Factor 301 VI. Conclusion 303 I. INTRODUCTION The origin of aminoglycoside antibiotics began with streptomycin 60 years ago.1 Isolated from Actinomyces griseus, streptomycin immediately found applications ISBN: 0-12-007260-2 DOI: 10.1016/S0065-2318(06)60006-1 263 r 2006 Elsevier Inc. All rights reserved 264 B. WILLIS AND D. P. ARYA TABLE I Aminoglycoside Antibiotic Classes and their Source Organism3 Aminoglycoside Organism Kanamycin Streptomyces kanamyceticus Streptomycin S. griseus Gentamicin Micromonospora purpurea Spectinomycin S. spectabilis Butirosin Bacillus circulans Tobramycin S. tenebrarius Neomycin S. fradiae Amikacin Semisynthetic derivative of kanamycin Netilmicin Semisynthetic derivative of sisomicin Isepamicin Semisynthetic derivative of gentamicin B Note: Reprinted with permission, Copyright 1997 Elsevier.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,383,154 B2 Bar-Shalom Et Al
    USOO8383154B2 (12) United States Patent (10) Patent No.: US 8,383,154 B2 Bar-Shalom et al. (45) Date of Patent: Feb. 26, 2013 (54) SWELLABLE DOSAGE FORM COMPRISING W W 2.3. A. 3. 2. GELLAN GUMI WO WOO1,76610 10, 2001 WO WOO2,46571 A2 6, 2002 (75) Inventors: Daniel Bar-Shalom, Kokkedal (DK); WO WO O2/49571 A2 6, 2002 Lillian Slot, Virum (DK); Gina Fischer, WO WO 03/043638 A1 5, 2003 yerlosea (DK), Pernille Heyrup WO WO 2004/096906 A1 11, 2004 Hemmingsen, Bagsvaerd (DK) WO WO 2005/007074 1, 2005 WO WO 2005/007074 A 1, 2005 (73) Assignee: Egalet A/S, Vaerlose (DK) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 JECFA, “Gellangum”. FNP 52 Addendum 4 (1996).* U.S.C. 154(b) by 1259 days. JECFA, “Talc”, FNP 52 Addendum 1 (1992).* Alterna LLC, “ElixSure, Allergy Formula', description and label (21) Appl. No.: 111596,123 directions, online (Feb. 6, 2007). Hagerström, H., “Polymer gels as pharmaceutical dosage forms'. (22) PCT Filed: May 11, 2005 comprehensive Summaries of Uppsala dissertations from the faculty of pharmacy, vol. 293 Uppsala (2003). (86). PCT No.: PCT/DK2OOS/OOO317 Lin, “Gellan Gum', U.S. Food and Drug Administration, www. inchem.org, online (Jan. 17, 2005). S371 (c)(1), Miyazaki, S., et al., “In situ-gelling gellan formulations as vehicles (2), (4) Date: Aug. 14, 2007 for oral drug delivery”. J. Control Release, vol. 60, pp. 287-295 (1999). (87) PCT Pub. No.: WO2005/107713 Rowe, Raymond C.
    [Show full text]
  • Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies
    Arrhythmogenic potential of drugs FP7-HEALTH-241679 http://www.aritmo-project.org/ Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies V 1.3 Draft Lead beneficiary: EMC Date: 03/01/2010 Nature: Report Dissemination level: D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 2/85 Mazzaglia (F-SIMG) Draft TABLE OF CONTENTS DOCUMENT INFOOMATION AND HISTORY ...........................................................................4 DEFINITIONS .................................................... ERRORE. IL SEGNALIBRO NON È DEFINITO. ABBREVIATIONS ......................................................................................................................6 1. BACKGROUND .................................................................................................................7 2. STUDY OBJECTIVES................................ ERRORE. IL SEGNALIBRO NON È DEFINITO. 3. METHODS ..........................................................................................................................8 3.1.STUDY DESIGN ....................................................................................................................8 3.2.DATA SOURCES ..................................................................................................................9 3.2.1. IPCI Database .....................................................................................................9
    [Show full text]
  • Comparative Bactericidal Activities of Daptomycin, Glycopeptides, Linezolid and Tigecycline Against Blood Isolates of Gram-Positive Bacteria in Taiwan Y.-T
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ORIGINAL ARTICLE 10.1111/j.1469-0691.2007.01888.x Comparative bactericidal activities of daptomycin, glycopeptides, linezolid and tigecycline against blood isolates of Gram-positive bacteria in Taiwan Y.-T. Huang1,2, C.-H. Liao1, L.-J. Teng3,4 and P.-R. Hsueh2,3 1Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei County, 2Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, 3Departments of Laboratory Medicine and 4School of Medical Technology, National Taiwan University College of Medicine, Taipei, Taiwan ABSTRACT In-vitro MICs and minimum bactericidal concentrations (MBCs) of daptomycin, linezolid, tigecycline, vancomycin and teicoplanin against Gram-positive bacteria were determined using the broth microdilution method for ten blood isolates each of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), including two vancomycin-intermediate S. aureus (VISA), vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. One strain of VISA was tested in a time-kill synergism assay of daptomycin combined with oxacillin, imipenem, rifampicin and isepamicin. Daptomycin showed excellent in-vitro bactericidal activity against all the isolates tested, with no tolerance or synergism effects when combined with other agents, except with rifampicin against VISA. Vancomycin had better bactericidal activity against MRSA and MSSA than did teicoplanin. Linezolid had the poorest bactericidal activity against the isolates tested, with 100% tolerance by the MSSA and VRE isolates, and 80% tolerance by the MRSA isolates. Tolerance towards tigecycline was exhibited by 40% of the MRSA isolates, 100% of the MSSA and vancomycin-resistant E.
    [Show full text]