Draft Roadmap for Production and Use of Hydrogen in Ukraine

Total Page:16

File Type:pdf, Size:1020Kb

Draft Roadmap for Production and Use of Hydrogen in Ukraine Draft Roadmap for production and use of hydrogen in Ukraine March 2021 Contents Executive Summary ....................................................................................................................... 6 Introduction ...................................................................................................................................... 8 1. Analysis of best international practices and plans for the use of hydrogen....... 9 2. Analysis of the importance of hydrogen technologies and the potential for their use in Ukraine ...................................................................................................................... 15 2.1. Use of hydrogen in the energy sector .......................................................................... 15 2.2. Use of hydrogen in the transport sector ..................................................................... 19 2.3. Use of hydrogen in the industry sector ....................................................................... 21 2.4. Use of hydrogen in the natural gas industry .............................................................. 24 3. Analysis of hydrogen production methods and their cost-effectiveness .......... 27 3.1. Mass production of hydrogen using steam methane reforming (SMR) .............. 27 3.2. Hydrogen production by electrolysis ........................................................................... 28 3.3. Other technological options for hydrogen production ............................................ 29 3.4. Economic analysis of various hydrogen production methods ............................. 30 4. Analysis of infrastructure for hydrogen storage and transportation .................. 31 5. Analysis of potential to produce renewable hydrogen domestically .................. 34 6. Roadmap for the introduction of hydrogen technologies in Ukraine .................. 38 6.1. Actions and measures at the national level ................................................................ 38 6.2. Actions and measures at the oblast and municipal level ....................................... 69 6.3. Identification of pilot projects......................................................................................... 69 6.4. Implementation of the Roadmap tasks – monitoring and verification ................ 71 7. Conclusions and recommendations ............................................................................. 73 Bibliography ................................................................................................................................... 80 ANNEX 1 - Economic analysis of various hydrogen production methods ................... 82 ANNEX 2 - Hydrogen storage technologies ........................................................................... 84 ANNEX 3 - Innovative solutions ................................................................................................ 87 ANNEX 4 - Ukrainian norms and regulations applicable to hydrogen technologies.. 88 2 Acknowledgments Stanislav Dubko is the main author of this report. Oleg Dzioubinski, Branko Milicevic, and Harikrishnan Tulsidas of the UNECE Sustainable Energy Division, Léa Bigot and Jürgen Keinhorst of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety of Germany contributed to the report through their review and comments. Valuable contributions to the report were provided by respondents to project surveys and interview participants, in particular: Yaroslav Demchenkov and Yulia Rybak, Ministry of Energy; Kostiantyn Gura, SAEE; Oleksandr Repkin and Oksana Tarasyuk, Ukrainian Hydrogen Council; and Oleksandra Gumeniuk, EUEA. Participants of the Capacity-building workshop on development of hydrogen infrastructure held in Kyiv and online on 25 February 2021 also contributed to the report. Comments received during and after the workshop were taken into account to the extent possible. Cut-off date of this report is 9 March 2021. 3 List of Acronyms AEL Alkaline Electrolyzers AEM Alkaline Exchange Membrane AMC Anti-Monopoly Committee atm Standard Atmosphere (unit of pressure) ATR Autothermal Reforming CAES Compressed Air Energy Storage CAPEX Capital Expenditures CCS Carbon Capture and Storage CO2 Carbon Dioxide CoM Cabinet of Ministers ESU Energy Strategy of Ukraine EU European Union FCEV Fuel Cell Electric Vehicle FCH Fuel Cell and Hydrogen FCH JU Fuel Cell and Hydrogen Joint Undertaking GDP Gross Domestic Product GHG Greenhouse Gases GTS Gas Transportation System GW Gigawatt IEA International Energy Agency IPCEI Important Projects of Common European Interest IPHE International Partnership for Hydrogen and Fuel Cells in the Economy IRENA International Renewable Energy Agency KPIs Key Performance Indicators LOHC Liquid Organic Hydrogen Carrier MCTD Ministry for Communities and Territories Development MENR Ministry of Ecology and Natural Resources MoE Ministry of Energy MoF Ministry of Finance NASU National Academy of Science (of Ukraine) NEEAP National Energy Efficiency Action Plan NEURC National Commission for State regulation of Energy and Public Utilities NGO Non-Government Organizations NO Nitrogen Oxide Nm3 Normal cubic meter NPP Nuclear Power Plant NREAP National Renewable Energy Action Plan OPEX Operational Expenditures 4 PEC Photoelectrochemical Cell PEM Proton Exchange Membrane POX Partial Oxidation PPE Programmation pluriannuelle de l’énergie (Multi-Year Energy Plan) PSPS Pumped Storage Power Stations R&D Research and development RES Renewable Energy Sources RPTC Regular Programme for Technical Cooperation SAEE State Agency on Energy Efficiency and Energy Saving SMR Steam Methane Reforming SMSS Semiconductor Magnetic Storage Systems SOEC Solid Oxide Electrolyzer Cell SOFC Solid Oxide Fuel Cell SPP Solar Power Plant toe Tonnes oil equivalent TPES Total Primary Energy Supply TPP Thermal Power Plant TRL Technology Research Level TWh Terawatt hour UPS United Power System (of Ukraine) UNECE United Nations Economic Commission for Europe USF Underground Storage Facilities WPP Wind Power Plant 5 Executive Summary Energy transition is an ambitious strategic choice of Ukraine, which will determine the main trends and directions of development of the national economy over the next 30 years. In order to realize this transition Ukrainian government will face many challenges: - How to reduce the dependence on fossil fuels? - How to decarbonize industry which is highly dependent on fossil fuels? - How to decarbonize the transport sector? - How to develop mobility on the basis of renewable energy? - How to improve energy efficiency and energy storage? - How to integrate flexibility options in order to match the generation of renewable electricity with demand? All these questions and many more could be addressed with the help of many new technologies which will be needed to replace the current reliance on conventional energy. One of the most promising modern technologies to deliver the scaled up renewable energy to the economy are hydrogen technologies due to unique hydrogen chemical properties as the carrier of energy. Combined with comprehensive energy efficiency measures and development of renewable energy sources, large scale production and use of hydrogen in Ukraine will allow to decarbonize its energy sector, as well as transport and many other industries. This will contribute to strengthening intersectoral ties and forming sustainable clusters in the economy, intensifying innovation and investment activities, creating new job opportunities, increasing the competitiveness of Ukrainian enterprises, promoting Ukraine in the world rankings to significantly improve the investment climate. Implementation of recommendations outlined in this Report is meant to significantly improve energy efficiency of the economy with the aim to approximate the average level of the EU countries in terms of energy capacity of GDP, as well as to achieve the increase of the share of RES in the energy mix accompanied by the reduction of greenhouse gas emissions, aligning them to the average level of EU countries in terms of GDP carbon intensity. Given the size and anticipated growth of the existing hydrogen market, the development of renewable hydrogen projects could present a significant investment opportunity in Ukraine. Not only does Ukraine enjoy some of the most abundant renewable resources in Europe, but it also is the country that is most in need of new and clean forms of energy to support economic development. Ensuring that the alternative fuels create zero emissions, are affordable, and are convenient to use is essential to avoid locking Ukraine (and ultimately global CO2 emissions) into a trajectory that leads to significant climatic warming by the middle of the century. But hydrogen applications do not come without challenges. Hydrogen is a gas difficult to contain, with properties that require careful consideration to ensure safe usage. Although technologies and procedures do exist to minimize leaks and to ensure that, where necessary, hydrogen is released in a controlled manner, they are not understood well outside the petrochemical industry. Indeed, where there have been safety incidents involving hydrogen, the cause has often been a fault in the assembly of the units, demonstrating the importance of having access to experienced installers and engineers. Access to such skills is also important for the ongoing maintenance of fuel cell systems, notably those operating at higher temperatures for which suppliers are advising some
Recommended publications
  • The Role and Status of Hydrogen and Fuel Cells Across the Global Energy System
    The role and status of hydrogen and fuel cells across the global energy system Iain Staffell(a), Daniel Scamman(b), Anthony Velazquez Abad(b), Paul Balcombe(c), Paul E. Dodds(b), Paul Ekins(b), Nilay Shah(d) and Kate R. Ward(a). (a) Centre for Environmental Policy, Imperial College London, London SW7 1NE. (b) UCL Institute for Sustainable Resources, University College London, London WC1H 0NN. (c) Sustainable Gas Institute, Imperial College London, SW7 1NA. (d) Centre for Process Systems Engineering, Dept of Chemical Engineering, Imperial College London, London SW7 2AZ. Abstract Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive.
    [Show full text]
  • The Progress Report on G7 Energy Sector Support for Ukraine
    The Progress Report on G7 Energy Sector Support for Ukraine Foreword The Energy Ministers of Canada, France, Germany, Italy, Japan, the United Kingdom, the United States, and the EU Commissioner for Energy met in Rome in May 2014. They discussed ways to strengthen collective energy security and issued the Rome Energy Security Initiative, which provided for a number of immediate actions to be taken. On the basis of this initiative, Italy compiled “Rome G7 Energy Initiative for Energy Security Implementation Report” and submitted to the Hamburg G7 Energy Ministerial Meeting in May 2015. At the Hamburg meeting in May 2015, G7 Energy Ministers discussed progress since the meeting in Rome in strengthening collective energy security and decided on a further initiative to effectively improve sustainable energy security of G7 countries and beyond, taking into account recent market developments. In the G7 Hamburg Initiative for Sustainable Energy Security, G7 Energy Ministers declared concrete joint actions with non-G7 countries to further strengthen sustainable energy security. In the G7 Elmau Summit Communiqué published in June 2015, the G7 leaders welcomed the Hamburg Initiative and announced their commitment to continue to support vulnerable countries, including Ukraine, in its efforts to reform and liberalize energy systems and aimed to further diversify its energy mix, fuels, energy sources and routes. This paper aims to report to the G7 Energy Ministers about the outcomes of support for Ukraine by G7 member countries, EU and the IEA after the “Rome G7 Energy Initiative for Energy Security Implementation Report”. Given that our support for reforming and liberalizing energy systems in most vulnerable countries including Ukraine, is one of the concrete actions described in the Hamburg G7 Initiative, this paper organizes the current state and progress of reforming Ukraine’s energy system and identifies unsolved issues.
    [Show full text]
  • Strategy for the Integration of Hydrogen As a Vehicle Fuel Into the DE-AC36-99-GO10337 Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate 5B
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Strategy for the Integration of Subcontract Report NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 — August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Subcontract Report NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 — August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California NREL Technical Monitor: R. Parish Prepared under Subcontract No. LCM-4-44175-01 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Hydrogen and Fuel Cells in Japan
    HYDROGEN AND FUEL CELLS IN JAPAN JONATHAN ARIAS Tokyo, October 2019 EU-Japan Centre for Industrial Cooperation ABOUT THE AUTHOR Jonathan Arias is a Mining Engineer (Energy and Combustibles) with an Executive Master in Renewable Energies and a Master in Occupational Health and Safety Management. He has fourteen years of international work experience in the energy field, with several publications, and more than a year working in Japan as an energy consultant. He is passionate about renewable energies, energy transition technologies, electric and fuel cell vehicles, and sustainability. He also published a report about “Solar Energy, Energy Storage and Virtual Power Plants in Japan” that can be considered the first part of this document and is available in https://lnkd.in/ff8Fc3S. He can be reached on LinkedIn and at [email protected]. ABOUT THE EU-JAPAN CENTRE FOR INDUSTRIAL COOPERATION The EU-Japan Centre for Industrial Cooperation (http://www.eu-japan.eu/) is a unique venture between the European Commission and the Japanese Government. It is a non-profit organisation established as an affiliate of the Institute of International Studies and Training (https://www.iist.or.jp/en/). It aims at promoting all forms of industrial, trade and investment cooperation between the EU and Japan and at improving EU and Japanese companies’ competitiveness and cooperation by facilitating exchanges of experience and know-how between EU and Japanese businesses. (c) Iwatani Corporation kindly allowed the use of the image on the title page in this document. Table of Contents Table of Contents ......................................................................................................................... I List of Figures ............................................................................................................................ III List of Tables ..............................................................................................................................
    [Show full text]
  • Autonomous Hydrogen Fueling Station Project ID TA029
    2020 DOE Hydrogen and Fuel Cells Program Review Autonomous Hydrogen Fueling Station Project ID TA029 PI: Dustan Skidmore Plug Power Inc. June 12, 2020 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers Addressed Project Start Date: Oct 2018 • Hydrogen Delivery I. Low cost, rugged, Award Received: Mar 2019 reliable dispensers (work started at this time) • Market Transformation B. High Project End Date: Apr 2022* hydrogen fuel infrastructure capital *Project continuation and end date costs determined annually by DOE • Market Transformation F. Inadequate user experience for many hydrogen and fuel cell applications Budget Partners Total Federal Share: $1,797,216 National Renewable Energy Laboratory Total Recipient Share: $549,547 On-Road Fueling Research and Testing Total Project Budget: $2,346,763 Lead: Sam Sprik Total DOE Funds Spent: $226,378* Center for Future Energy Systems at Rensselaer Polytechnic Institute *as of 3/31/2020 Vision System, Control Algorithms Lead: Stephen J. Rock, PhD 2 Overview • Budget Period 1 (2019-2020) ▪ Design, assemble and test prototype fueling dispenser for Autonomous Guided Vehicles in a material handling application (primarily Rensselaer, Plug Power) ▪ Research requirements and specifications for automotive fueling (primarily NREL) • Budget Period 2 (2020-2021) ▪ Design, assemble and test commercial-intent fueling dispenser for Autonomous Guided Vehicles in a material Robot attempting connection to fuel cell mockup handling application.
    [Show full text]
  • Nuclear Security in the Black Sea Region: Contested Spaces
    SIPRI Policy Paper NUCLEAR SECURITY 49 IN THE BLACK SEA December 2018 REGION Contested Spaces, National Capacities and Multinational Potential vitaly fedchenko and ian anthony STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Jean-Marie Guéhenno (France) Dr Radha Kumar (India) Dr Patricia Lewis (Ireland/United Kingdom) Dr Jessica Tuchman Mathews (United States) DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: + 46 8 655 9700 Email: [email protected] Internet: www.sipri.org Nuclear Security in the Black Sea Region Contested Spaces, National Capacities and Multinational Potential SIPRI Policy Paper No. 49 vitaly fedchenko and ian anthony December 2018 © SIPRI 2018 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, without the prior permission in writing of SIPRI or as expressly permitted by law. ISBN 978-91-85114-95-5 Contents Preface iv Acknowledgements v Summary vi Abbreviations viii 1. Introduction 1 2. The evolution of nuclear security in the Black Sea region 4 The circumstances facilitating nuclear security threats: materials, 4 poverty and conflicts The evolution of nuclear security assistance 5 3.
    [Show full text]
  • Developing Hydrogen Fueling Infrastructure for Fuel Cell Vehicles: a Status Update
    www.theicct.org BRIEFING OCTOBER 2017 Developing hydrogen fueling infrastructure for fuel cell vehicles: A status update This briefing provides a synthesis of information regarding the global development of hydrogen fueling infrastructure to power fuel cell vehicles. The compilation includes research on hydrogen infrastructure deployment, fuel pathways, and planning based on developments in the prominent fuel cell vehicle growth markets around the world. INTRODUCTION Governments around the world continue to seek the right mix of future vehicle technologies that will enable expanded personal mobility and freight transport with near-zero emissions. This move toward zero emissions is motivated by the simultaneous drivers of improving local air quality, protecting against increased climate change impacts, and shifting to local renewable fuel sources. Electricity-powered plug-in vehicles and hydrogen-powered fuel cell electric vehicles offer great potential to displace the inherently high emissions associated with the combustion of petroleum- based gasoline and diesel fuels. Hydrogen fuel cell electric vehicles offer a unique combination of features as a zero-emission alternative to conventional vehicles. Fuel cell powertrains, converting hydrogen to electric power to propel the vehicle, tend to be about twice as efficient as those on conventional vehicles. Hydrogen fuel cell vehicles are typically capable of long trips (i.e., over 500 kilometers or 300 miles) and a short refueling time that is comparable to conventional vehicles. Furthermore, fuel cell vehicles are expected to be less expensive than conventional vehicles in the long run. The Prepared by: Aaron Isenstadt and Nic Lutsey. BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ICCT BRIEFING diversity of fuel pathways to produce hydrogen allows for the use of lower-carbon, renewable, and nonimported sources.
    [Show full text]
  • The Norwegian Hydrogen Highway
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Juelich Shared Electronic Resources HyNor – The Norwegian Hydrogen Highway B. Simonsen, A.M. Hansen This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 6: Stationary Applications / Transportation Applications Proceedings of the WHEC, May 16.-21. 2010, Essen Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-6 Institute of Energy Research - Fuel Cells (IEF-3) Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010 ISBN: 978-3-89336-656-9 Proceedings WHEC2010 241 HyNor – The Norwegian Hydrogen Highway Bjørn Simonsen, Lillestrøm Centre of Expertise, Norway Anne Marit Hansen, Statoil, Norway 1 Introduction Hydrogen is one of the most promising energy carriers which can make the transport sector emission-free. The challenges related to hydrogen as an energy carrier are however not only technical. Due to the nature and purpose of transport, a number of refueling points or hydrogen stations are needed for it to be attractive as a fuel. The cliché “chicken and egg”- situation is often used to describe the dilemma of implementing new fuels such as hydrogen. Without hydrogen stations where people can refuel the cars, it is not profitable to produce the few cars that will be needed. Without many customers asking for hydrogen fuel and very few customers actually using the existing stations, the operators of the station will not want to build more stations due to the economical loss it presents. Hydrogen has many years been looked upon as an alternative to conventional fuels, either because of energy security and/or environmental reasons.
    [Show full text]
  • Solar Powered Residential Hydrogen Fueling Station
    Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2011 Solar powered residential hydrogen fueling station Aanchal Shah Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Mechanical Engineering Commons Department: Recommended Citation Shah, Aanchal, "Solar powered residential hydrogen fueling station" (2011). Masters Theses. 5007. https://scholarsmine.mst.edu/masters_theses/5007 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SOLAR POWERED RESIDENTIAL HYDROGEN FUELING STATION by AANCHAL SHAH A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN MECHANICAL ENGINEERING 2011 Approved by John W. Sheffield Scott E. Grasman Frank Liou 2011 Aanchal Shah All Rights Reserved iii PUBLICATION THESIS OPTION This thesis consists of following papers that have been published as follows, and the papers were formatted in the style used by the university. The first paper presented in pages 3 – 16 entitled “SOLAR POWERED RESIDENTIAL HYDROGEN FUELING STATION” has been accepted to be published in the proceedings of the International Journal of Hydrogen Energy. The second paper presented in pages 17 – 33 entitled “SOLAR ENERGY POWERED RESIDENTIAL FILLING STATION FOR FUEL CELL PLUG-IN HYBRID ELECTRIC VEHICLE” has been presented at 2011 Fuel Cell and Hydrogen Energy Association, Washington DC.
    [Show full text]
  • Volume 64, Issue 3, July 2020 Published by Johnson Matthey © Copyright 2020 Johnson Matthey
    ISSN 2056-5135 Johnson Matthey’s international journal of research exploring science and technology in industrial applications Volume 64, Issue 3, July 2020 Published by Johnson Matthey www.technology.matthey.com © Copyright 2020 Johnson Matthey Johnson Matthey Technology Review is published by Johnson Matthey Plc. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. You may share, copy and redistribute the material in any medium or format for any lawful purpose. You must give appropriate credit to the author and publisher. You may not use the material for commercial purposes without prior permission. You may not distribute modifi ed material without prior permission. The rights of users under exceptions and limitations, such as fair use and fair dealing, are not aff ected by the CC licenses. www.technology.matthey.com www.technology.matthey.com Johnson Matthey’s international journal of research exploring science and technology in industrial applications Contents Volume 64, Issue 3, July 2020 234 Guest Editorial: Johnson Matthey Technology Review Special Edition on Clean Mobility By Andy Walker 236 Powering the Future through Hydrogen and Polymer Electrolyte Membrane Fuel Cells By Bo Ki Hong, Sae Hoon Kim and Chi Myung Kim 252 Exploring the Impact of Policy on Road Transport in 2050 By Huw Davies 263 Sustainable Aviation Fuels By Ausilio Bauen, Niccolò Bitossi, Lizzie German, Anisha Harris and Khangzhen Leow 279 Hydrogen Fuel Cell Vehicle Drivers and Future Station Planning By Scott Kelley, Michael Kuby, Oscar Lopez Jaramillo, Rhian Stotts, Aimee Krafft and Darren Ruddell 287 Battery Materials Technology Trends and Market Drivers for Automotive Applications By Sarah Ball, Joanna Clark and James Cookson 298 Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation (ADREM) By Emmanouela Korkakaki, Stéphane Walspurger, Koos Overwater, Hakan Nigar, Ignacio Julian, Georgios D.
    [Show full text]
  • Ukraine Chornobyl Chronology
    Chornobyl Chronology Last update: December 2008 This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation. Nuclear Waste: 2008-1995 OVERVIEW Spent fuel is generally stored on site in cooling ponds at the nuclear power plants at which the fuel assemblies were used. Ukraine previously sent its spent fuel to Russia to be reprocessed, but this course became a contentious issue after Russia passed a law in 1992 prohibiting the import of radioactive material into Russia. This action resulted in storage crisis at Ukrainian power plants. In 6/93, however, Russia passed a new law that allows Ukrainian spent fuel to be reprocessed, but not stored, in Russia. The law does not allow the import of nuclear waste into Russia, but allows the import of Russian-origin spent fuel as long as the resulting waste is returned to the territory of the state which delivered it.
    [Show full text]
  • Hynor – Establishing a Hydrogen Infrastructureinfrastructure 2
    Classification: Internal Status: Draft HyNor – establishing a hydrogen iinfrastructurenfrastructure 2 New energy portfolio Wind CCS Biofuel Hydrogen Tidal Energy systems Wave Kyoto CDM/JI 3 StatoilHyyydro delivers hydrogen solutions for Europe • ECTOS/HyFLEET:CUTE– Hydrogen station Reykjavik • CUTE/HyFLEET:CUTE – Hydrogen station Hamburg Reykjavik • CEP Berlin Hydrogen production Messedamm • Utsira Wind-Hydrogen plant Hamburg • HyNor – Grenland Hydrogen station Oslo, Drammen, Stavanger II Berlin 4 HyNor Objective • Established 2003 with the vision “In 2009 it shall be possible to drive hyygdrogen fuelled vehicles between Stavanger and Oslo ” • This is to be achieved by establishing local nodes along the 580 km long road – ”The hydrogen road of Norway” 5 The HyNor nodes Bergen Romerike Plans for Plans for station in station in phase II (2010) phase II (2010) H from 2 H2 from refinery by- electrolysis product Stavanger Oslo 2006: trucked-in Car station (2Q09) 2. station (3Q09) Bus station (4Q09) H2 from biogas H2 from reforming electrolysis (3Q09) Kristiansand Grenland Drammen 2007: Trucked-in TkTrucked in Pipeline hydrogen hydrogen supply (2Q09) By-product or H2 from by- H2 reformed electrolysis product from local landfill 6 EVS Vikinggy Rally 11-13 May 2009 • The Event A 570 km rallyyg starting in Oslo the 11th of May 2009 and arriving two days later in Stavanger at the opening day of the 24 th Electric, Fuel Cell and Hybrid Vehicle Syypmposium • www. Evs24.org • The rally is also the official opening of the HyNor – The hydrogen road of
    [Show full text]