THE FUTURE of NUCLEAR ENERGY to 2030 and ITS IMPLICATIONS for SAFETY, SECURITY and NONPROLIFERATION Part 1 – the Future of Nuclear Energy to 2030

Total Page:16

File Type:pdf, Size:1020Kb

THE FUTURE of NUCLEAR ENERGY to 2030 and ITS IMPLICATIONS for SAFETY, SECURITY and NONPROLIFERATION Part 1 – the Future of Nuclear Energy to 2030 THE FUTURE OF NUCLEAR ENERGY TO 2030 AND IT’S IMPLICATIONS FOR SAFETY, SECURITY AND NON PROLIFERATION: PART 2 – THE FUTURE OF NUCLEAR ENERGY TO 2030 TO THE FUTURE OF NUCLEAR ENERGY 2 – PART AND NON PROLIFERATION: SECURITY FOR SAFETY, AND IT’S IMPLICATIONS 2030 TO THE FUTURE OF NUCLEAR ENERGY THE FUTURE OF NUCLEAR ENERGY TO 2030 AND ITS IMPLICATIONS FOR SAFETY, SECURITY AND NONPROLIFERATION Part 1 – The Future of Nuclear Energy to 2030 57 Erb Street West TREVOR FINDLAY Waterloo, Ontario N2L 6C2, Canada tel +1 519 885 2444 fax +1 519 885 5450 www.cigionline.org CIGIONLINE.ORG Addressing International Governance Challenges The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation Part 1 – The Future of Nuclear Energy to 2030 Trevor Findlay CIGI’s Nuclear Energy Futures Project is conducted in partnership with the Canadian Centre for Treaty Compliance (CCTC) at the Norman Paterson School of International Affairs, Carleton University, Ottawa. The project is chaired by CIGI Distinguished Fellow Louise Fréchette and directed by CIGI Senior Fellow Trevor Findlay, director of CCTC. CIGI gratefully acknowledges the Government of Ontario’s contribution to this project. The opinions expressed in this report are those of the author(s) and do not necessarily reflect the views of The Centre for International Governance Innovation, its Board of Directors and/or Board of Governors, or the Government of Ontario. Copyright © 2010 The Centre for International Governance Innovation (CIGI), Waterloo, Ontario, Canada (www.cigionline.org). This work is licensed under a Creative Commons Attribution — Noncommercial — No Derivatives License. To view this license, visit (www.creativecommons.org/ licenses/by-nc-nd/3.0/). For re-use or distribution, please include this copyright notice. The Centre for International Governance Innovation Table of Contents List of Tables and Figures 5 Technical Glossary 6 Foreword 7 Preface to the Final Report of the Nuclear Energy Futures Project: Parts 1 to 4 8 Part 1: The Future of Nuclear Energy to 2030 9 The Drivers 10 Growing Energy Demand 10 The Problem with Global Demand Projections 12 Energy Security 15 Uranium 16 Thorium 17 Mixed Oxide (MOX) Fuel 17 Nuclear Technology Dependence 19 Climate Change 20 The Promise of Nuclear Technology – Current and Future 24 Improvements in Current Power Reactors (Generation II) 24 Generation III and Generation III+ Reactors 25 Small, Medium, Miniaturized and Other Novel Reactors 27 Generation IV Reactors 29 Fast Neutron and Breeder Reactors 30 Fusion Power 32 Political and Promotional Drivers 32 Political Drivers 32 Nuclear Promotion Internationally 33 Nuclear Promotion Domestically 37 The Constraints 39 Nuclear Economics 39 The Effects of Deregulation of Electricity Markets 40 The (Rising) Cost of Nuclear Power Plants 41 Cost Comparisons with Other Baseload Power Sources 42 Cost Comparisons with Non-Baseload Alternatives: Conservation, Efficiency and Renewable 48 Construction Delays and Cost Overruns 50 The Impact of the 2008-2009 Current Financial Crisis 53 The Impact of Government Subsidies 54 The Impact of Carbon Pricing 56 Costs of Nuclear Waste Management and Decommissioning 57 Industrial Bottlenecks 57 Personnel Constraints 61 Nuclear Waste 62 Interim Storage 63 Long-Term Disposition 63 Safety, Security and Proliferation 66 The “Revival” so Far 66 Current “New Build” 67 “New Build” by Existing Nuclear Energy States 68 Aspiring Nuclear Energy States 72 Institutional Capacity 75 Physical Infrastructure 77 Financial Indicators 79 The Most Likely New Entrants 81 Conclusions 85 4 Part 1: The Future of Nuclear Energy to 2030 The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation Endnotes 86 Works Cited 89 About the Author 102 Nuclear Energy Futures Project Publications 103 Acronyms and Abbreviations 104 About CIGI 106 List of Tables and Figures Global Nuclear Energy Projections at 2030 11 IAEA Projections of World Nuclear Power Capacity (High Estimates) 13 Global Nuclear Generating Capacity 14 Box: Predictions for Developing Countries 14 Predicted versus Actual Additions to Nuclear Generation Capacity, 1980-1989 15 World’s Major Uranium Producers (tonnes U) 16 Coal-Fired CO2 Emissions Displaced Per Dollar Spent on Electrical Services 23 Progression of Nuclear Reactor Technologies 26 The International Nuclear Industry 27 Box: The South African Pebble Bed Reactor 28 Box: Generation IV Reactors Being Studied By GIF 30 Fast Breeder Reactors by Status and Country, 2009 31 GNEP Members, January 2010 34 Results of Recent Studies on the Cost of Nuclear Power 44 Costs of Electricity Generation Alternatives 47 Levelized Cost of Low Carbon Options to Meet Electricity Needs 49 Overnight Cost of Completed Nuclear Reactors Compared to Projected Costs of Future Reactors 51 Box: The Olkiluoto-3 Project in Finland 52 Box: The French Example―Exemplar or Sui Generis? 58 Box: Yucca Mountain 65 Nuclear Reactor Numbers and Share of Global Electricity Production Since 2000 67 Global Annual Grid Connections on Five-year Moving Average 67 Nuclear Power Plants Currently under Construction by Country 68 Current and Aspiring Nuclear Energy States 73 Nuclear Infrastructure Development Programme (IAEA) 74 Governance Indicators for SENES States, 2008 76 Installed Electricity Generation Capacity for SENES States, 2005 78 GDP and Credit Ratings for SENES States, 2007 and 2009 80 Part 1: The Future of Nuclear Energy to 2030 cigionline.org 5 The Centre for International Governance Innovation Technical Glossary Units BTU British thermal unit g gram kWh kilowatt hour – a unit of electrical energy equal to the work done by one kilowatt acting for one hour SWU separative work unit – a measure of work done by a machine or plant in separating uranium into higher or lower fractions of U-235 t tonne We watt (electric) Wth watt (thermal) Elements and Compounds C carbon CO2 carbon dioxide Pu plutonium U uranium UF6 uranium hexafluoride Metric Prefixes k kilo 103 M mega 106 G giga 109 T tera 1012 All dollar values in this report, unless otherwise noted, are in US dollars. 6 Part 1: The Future of Nuclear Energy to 2030 cigionline.org The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation Foreword one in Sydney, Australia, and one in Waterloo, Ontario; and participated in conferences and workshops held By Louise Fréchette by others. The project has assembled what is probably the most comprehensive and up-to-date information on possible additions to the list of countries that have 2010 will be a pivotal year for nuclear issues. In April, nuclear power plants for civilian purposes. Along with President Obama will host a special summit on nuclear this Survey of Emerging Nuclear Energy States (SENES), security. In May, parties to the Nuclear Non-proliferation the project has produced a compendium of all the nuclear Treaty will gather in New York for a review conference global governance instruments in existence today which and in June, at the G8 Summit hosted by Canada, nuclear will, I believe, prove to be a valuable reference tool for proliferation issues will occupy a prominent place on the researchers and practioners alike. agenda. New challenges to the nuclear nonproliferation The project was generously funded and supported by regime by countries such as North Korea and Iran and The Centre for International Governance Innovation and growing concerns about the possible appropriation of was carried out in partnership with the Canadian Centre nuclear material by terrorist groups arise at a time when for Treaty Compliance (CCTC) at Carleton University, there is much talk about a major increase in the use of Ottawa. I was very fortunate to have found in Dr. Trevor nuclear energy for civilian purposes. Findlay, director of the CCTC, the perfect person to This so-called “nuclear renaissance” was the starting point oversee this ambitious project. I am very grateful to him of the Nuclear Energy Futures project which was initiated and his small team of masters students at the Norman in May 2006. The purpose of this project was three-fold: Paterson School of International Affairs, especially Justin Alger, Derek de Jong, Ray Froklage and Scott Lofquist- • to investigate the likely size, shape and nature of the Morgan, for their hard work and dedication. purported nuclear energy revival to 2030 – not to make a judgement on the merits of nuclear energy, Nuclear issues are quintessential global issues. Their but rather to predict its future; effective management requires the collaboration of a • to consider the implications for global governance broad range of actors. Canada, with its special expertise in the areas of nuclear safety, security and in nuclear technology and its long history of engagement nonproliferation; and in the construction of effective global governance in this • to make recommendations to policy makers in area, is particularly well placed to help deal with the new Canada and abroad on ways to strengthen global challenges on the horizon. My colleagues and I hope governance in these areas. that the findings and recommendations of the Nuclear The project commissioned more than a dozen research Energy Futures Project will be of use to policy makers as papers, most of which have been published in CIGI’s they prepare for the important meetings which will be Nuclear Energy Futures Papers series; held several held later this year. workshops, consultations and interviews with key Louise Fréchette Canadian and foreign stakeholders, including industry, Chair of the Nuclear Energy Futures Project government, academia and non-governmental Distinguished Fellow, organizations; convened two international conferences, The Centre for International Governance Innovation Part 1: The Future of Nuclear Energy to 2030 cigionline.org 7 The Centre for International Governance Innovation Preface to the Final Report of the Nuclear Energy Futures Project: Parts 1 to 4 This report culminates three-and-a-half years’ work Part 1, The Future of Nuclear Energy to 2030, provides on the Nuclear Energy Futures (NEF) project.
Recommended publications
  • Introduction to GE Hitachi
    Overview of ABWR Safety Features INPRO Dialogue Forum November 19-23, 2013 J. Alan Beard Principal Engineer Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved GE Hitachi nuclear alliance and businesses Wilmington, NC Tokyo, Japan Wilmington, NC Wilmington, NC Peterborough, ON USA USA Yokosuka, Japan Canada •Nuclear Power Plants: ABWR, •Uranium •Nuclear Fuel Fabrication ESBWR and PRISM Enrichment ….BWR and CANDU •Nuclear Services … Third •CANDU Services •Advanced Programs … Generation •Fuel Engineering and Support Recycling Technology Services •GENUSA European Fuel Joint Venture Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 2 BWR legacy around the world Dodewaard - Netherlands KKM - Switzerland K6/K7 - Japan Dresden 1 – USA KRB - Germany Lungmen - Taiwan Santa María de Garoña - Spain Vallecitos – USA Garigliano - Italy Laguna Verde - Mexico Tarapur 1&2 – India Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 3 Recent project experience Kashiwazaki-Kariwa 6/7 ABWR COD 1996/1997 Hamaoka-5 ABWR COD 2005 Shika-2 ABWR Continuously building for 58 years COD 2006 Images copyright TEPCO, Hokuriku Electric Power, Chugoku Electric Power, and J-Power; Provided by Hitachi GE Nuclear Energy Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 4 Current project status Ohma ABWR Ohma 1 • 38% complete Shimane 3 • 94% complete Under Construction • Approaching fuel load Shimane-3 ABWR Lungmen 1&2 • 94% complete • Startup and Pre-Op
    [Show full text]
  • D:\Governmental Organizations\State\Oregon\LEG\2021\Nuclear\Small Modular Reactors\SB 360\21-03-23
    The Oregon Conservancy Foundation 19140 SE Bakers Ferry Rd., Boring Oregon 97009-9158 P. O. Box 982, Clackamas, Oregon 97015 Email: [email protected] Phone: (503) 637- 6130 Before the Senate Committee on Energy and Environment Testimony of Lloyd K. Marbet Oregon Conservancy Foundation March 23, 2021 Mr. Chair, members of the Committee, and the public, my name is Lloyd K, Marbet and I am the Executive Director of the Oregon Conservancy Foundation (OCF). I am testifying in opposition to SB 360. In 2017 we gave testimony in opposition to SB 990, an early version of Senator Boquist’s reoccurring legislation. What is striking is how relevant this attached testimony still is four years later. (Attachment 1) I also attach a recent Deutsche Welle article that shows how nuclear power worsens the climate crisis, (Attachment 2) along with an Executive Summary of a RethinkX study showing how inaccurate cost estimates for conventional energy generating facilities, including nuclear, are being turned into overpriced stranded assets by the rapidly decreasing costs of solar, wind and battery storage. (Attachment 3) In its testimony, NuScale/Fluor, has given all the bells and whistles of its modular reactor design. Yet these reactor modules will produce the same kind of high level radioactive waste temporarily stored outdoors at the Trojan Nuclear Plant site, in Rainier, Oregon, at a storage facility licensed in 1999, and recently given a license extension to March 31, 2059. When will this waste be taken away, no one knows? Nuclear radiation is not restricted to boundaries of cities or counties. Even with the public relations of NuScale/Fluor representatives, the promises of safety and the so called imperviousness to a multitude of disasters – high level nuclear waste will reside at each NuScale reactor facility with the need for transport and permanent disposal.
    [Show full text]
  • CHAPTER 13 Reactor Safety Design and Safety Analysis Prepared by Dr
    1 CHAPTER 13 Reactor Safety Design and Safety Analysis prepared by Dr. Victor G. Snell Summary: The chapter covers safety design and safety analysis of nuclear reactors. Topics include concepts of risk, probability tools and techniques, safety criteria, design basis accidents, risk assessment, safety analysis, safety-system design, general safety policy and principles, and future trends. It makes heavy use of case studies of actual accidents both in the text and in the exercises. Table of Contents 1 Introduction ............................................................................................................................ 6 1.1 Overview ............................................................................................................................. 6 1.2 Learning Outcomes............................................................................................................. 8 1.3 Risk ...................................................................................................................................... 8 1.4 Hazards from a Nuclear Power Plant ................................................................................ 10 1.5 Types of Radiation in a Nuclear Power Plant.................................................................... 12 1.6 Effects of Radiation ........................................................................................................... 12 1.7 Sources of Radiation ........................................................................................................
    [Show full text]
  • In the Red: the Green Behind Nuclear Power
    In the Red: The Green Behind Nuclear Power By Heath Packman Saskatchewan Office Suite G – 2835 13th Avenue Regina, SK S4T 1N6 www.policyalternatives.ca In the Red: The Green Behind Nuclear Power By Heath Packman July 2010 About the Author i>Ì Ê*>V>Ê `ÃÊ`i}ÀiiÃÊvÀÊÌ iÊ1ÛiÀÃÌÞÊvÊ,i}>ÊÊ VVÃÊ>`ÊÃÌÀÞ°ÊÊÜÀÌiÀÊ>`Ê ÀiÃi>ÀV iÀÊvÊ«ÕLVÊ«VÞ]Êi>Ì ÊëiÌÊÃÝÊÞi>ÀÃÊÜÀ}Ê>}Ã`iÊÌ iÊiÞÊÃÌiÀÃÊvÊÌ iÊ >ÛiÀÌÊ >`ÃÌÀ>ÌÊÊÌ iÊÃÌÀiÃÊvÊ`ÕÃÌÀÞ]Ê>Vi]Ê>`Ê`Û>Vi`Ê `ÕV>ÌÊ>`Ê/À>}° Acknowledgements / iÊ>ÕÌ ÀÊÃÊÃViÀiÞÊ}À>ÌivÕÊÌÊÌ iÊ >>`>Ê iÌÀiÊvÀÊ*VÞÊÌiÀ>ÌÛiÃÊvÀÊÃÕ««ÀÌ}ÊÌ iÊ ÊÜÀÌ}ÊvÊÌ ÃÊÀi«ÀÌ°Ê/ >ÃÊÌÊ-Ê V ]Ê ÀiVÌÀÊvÊÌ iÊ >>`>Ê iÌÀiÊvÀÊ*VÞÊÌiÀ>ÌÛi]Ê ->Ã>ÌV iÜ>]ÊvÀÊ ÃÊ>ÃÃÃÌ>ViÊÊ«ÀÛ`}Ê}Õ`>Vi]ÊÌÀiiÃÃÊvii`L>VÊ>`ÊÛiÀ>Ê`ÀiVÌ°Ê-«iV>Ê Ì >ÃÊÌÊÌ iÊ>ÞÕÃÊ«iiÀÀiÛiÜiÀÊvÀÊ>}Ê>ÞÊÕÃivÕÊÃÕ}}iÃÌÃÊÌÊvÀÌvÞÊÌ iÊ«>«iÀÊ>`Ê ÃÌÀi}Ì iÊÌÃÊ>ðÊ/ iÊ>ÕÌ ÀÊÜÕ`Ê>ÃÊiÊÌÊ«iÀÃ>ÞÊÌ >ÊÀ>ÃiÀÊ ii` >Ê>`Ê>ÀÊ «iÀÊ vÀÊÌ iÀÊ«>ÀÌ>ÊÀiÛiÜÊ>`Ê>>ÞÃÃÊvÊ`À>vÌÃ]Ê>`Êw>ÞÊÌ iÊ i«vÕÊ}Õ`>ViÊvÊ*iÌiÀÊ*ÀiLLi° / ÃÊ«ÕLV>ÌÊÃÊ>Û>>LiÊÕ`iÀÊÌi`ÊV«ÞÀ} ÌÊ«ÀÌiVÌ°Ê9ÕÊ>ÞÊ`Ü>`]Ê`ÃÌÀLÕÌi]Ê« Ì V«Þ]ÊVÌiÊÀÊiÝViÀ«ÌÊÌ ÃÊ`VÕiÌÊ«ÀÛ`i`ÊÌÊÃÊ«À«iÀÞÊ>`ÊvÕÞÊVÀi`Ìi`Ê>`ÊÌÊÕÃi`ÊvÀÊViÀV>Ê Ê«ÕÀ«ÃiðÊ/ iÊ«iÀÃÃÊvÊ *ÊÃÊÀiµÕÀi`ÊvÀÊ>ÊÌ iÀÊÕÃiÃ°Ê *ÀÌi`ÊV«iÃ\Êf£x°ää - ÊÇn£ÓÈnnnäÇ£ *i>ÃiÊ>iÊ>Ê`>ÌÊiÊ>ÌÊwww.policyalternatives.ca ÀÊV>ÊÌ iÊ *Ê >Ì>Ê"vwViÊÈ£ÎxÈΣÎ{£Ê ÀÊÎäÈÓ{ÎÎÇÓÊ->Ã>ÌV iÜ>Ê *°Ê>}Ê>Ê`>ÌÊÀÊLiV}Ê>ÊiLiÀÊvÊ *Ê i«ÃÊÕÃÊÌÊ VÌÕiÊÌÊ«ÀÛ`iÊ«i«iÊÜÌ Ê>VViÃÃÊÌÊÕÀÊÀiÃi>ÀV ÊvÀiiÊvÊV >À}i° ÓÊUÊ *ÊqÊ->Ã>ÌV iÜ>Ê"vwViÊ ÊÌ iÊ,i`\Ê/ iÊÀiiÊ i `Ê ÕVi>ÀÊ*ÜiÀ]ÊÕÞÊÓä£ä Contents ÌÀ`ÕVÌÊ°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° { ÊÌ iÊ,i`\Ê/ iÊÀiiÊ i `Ê ÕVi>ÀÊ*ÜiÀÊ°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
    [Show full text]
  • The Progress Report on G7 Energy Sector Support for Ukraine
    The Progress Report on G7 Energy Sector Support for Ukraine Foreword The Energy Ministers of Canada, France, Germany, Italy, Japan, the United Kingdom, the United States, and the EU Commissioner for Energy met in Rome in May 2014. They discussed ways to strengthen collective energy security and issued the Rome Energy Security Initiative, which provided for a number of immediate actions to be taken. On the basis of this initiative, Italy compiled “Rome G7 Energy Initiative for Energy Security Implementation Report” and submitted to the Hamburg G7 Energy Ministerial Meeting in May 2015. At the Hamburg meeting in May 2015, G7 Energy Ministers discussed progress since the meeting in Rome in strengthening collective energy security and decided on a further initiative to effectively improve sustainable energy security of G7 countries and beyond, taking into account recent market developments. In the G7 Hamburg Initiative for Sustainable Energy Security, G7 Energy Ministers declared concrete joint actions with non-G7 countries to further strengthen sustainable energy security. In the G7 Elmau Summit Communiqué published in June 2015, the G7 leaders welcomed the Hamburg Initiative and announced their commitment to continue to support vulnerable countries, including Ukraine, in its efforts to reform and liberalize energy systems and aimed to further diversify its energy mix, fuels, energy sources and routes. This paper aims to report to the G7 Energy Ministers about the outcomes of support for Ukraine by G7 member countries, EU and the IEA after the “Rome G7 Energy Initiative for Energy Security Implementation Report”. Given that our support for reforming and liberalizing energy systems in most vulnerable countries including Ukraine, is one of the concrete actions described in the Hamburg G7 Initiative, this paper organizes the current state and progress of reforming Ukraine’s energy system and identifies unsolved issues.
    [Show full text]
  • The World Nuclear Industry Status Report 2009 with Particular Emphasis on Economic Issues
    The World Nuclear Industry Status Report 2009 With Particular Emphasis on Economic Issues By Mycle Schneider Independent Consultant, Mycle Schneider Consulting, Paris (France) Project Coordinator Steve Thomas Professor for Energy Policy, Greenwich University (UK) Antony Froggatt Independent Consultant, London (UK) Doug Koplow Director of Earth Track, Cambridge (USA) Modeling and Additional Graphic Design Julie Hazemann Director of EnerWebWatch, Paris (France) Paris, August 2009 Commissioned by German Federal Ministry of Environment, Nature Conservation and Reactor Safety (Contract n° UM0901290) About the Authors Mycle Schneider is an independent international consultant on energy and nuclear policy based in Paris. He founded the Energy Information Agency WISE-Paris in 1983 and directed it until 2003. Since 1997 he has provided information and consulting services to the Belgian Energy Minister, the French and German Environment Ministries, the International Atomic Energy Agency, Greenpeace, the International Physicians for the Prevention of Nuclear War, the Worldwide Fund for Nature, the European Commission, the European Parliament's Scientific and Technological Option Assessment Panel and its General Directorate for Research, the Oxford Research Group, and the French Institute for Radiation Protection and Nuclear Safety. Since 2004 he has been in charge of the Environment and Energy Strategies lecture series for the International MSc in Project Management for Environmental and Energy Engineering Program at the French Ecole des Mines in Nantes. In 1997, along with Japan's Jinzaburo Takagi, he received the Right Livelihood Award, also known as the ―Alternative Nobel Prize‖. Antony Froggatt works as independent European energy consultant based in London. Since 1997 Antony has worked as a freelance researcher and writer on energy and nuclear policy issues in the EU and neighboring states.
    [Show full text]
  • Canadawest in the International Arena FOUNDAT ION GOING for GOLD Western Canada’S Economic Prosperity Is Not Only Good for the West, but for Canada As a Whole
    GOING FOR GOLD The Western Canadian Economy Prairiein the International Atoms: Arena The Opportunities and Challenges of Nuclear Power in Alberta and Saskatchewan Duane Bratt, PhD September 2008 GOING FOR GOLD The Western Canadian Economy CanadaWest in the International Arena FOUNDAT ION GOING FOR GOLD Western Canada’s economic prosperity is not only good for the West, but for Canada as a whole. But the West can not rest on its laurels. Like the athletes training for the forthcoming Winter Olympics in Vancouver, western Canada needs to be at the top of its game if it is to continue to compete successfully in the international economic arena, especially as its competitors step up their games. If we are not successful, our standard of living will fall. The Going For Gold Project is examining how best to position western Canada in the global economy through a series of research papers, provincial research roundtables, public opinion and expert surveys, and will end with a seminal international economic conference in Vancouver in the fall of 2009. Funding for the Going for Gold Project has been provided by the Provinces of British Columbia (Economic Development), Alberta (Employment, Immigration and Industry), Saskatchewan (Enterprise and Innovation), and Manitoba (Competitiveness, Training and Trade). This paper was prepared by Dr. Duane Bratt, Department of Policy Studies, Mount Royal College. The paper is part of the Canada West Foundation’s Going for Gold Project Research Paper Series. A total of 12 research papers have been commissioned. Each paper examines a key issue related to improving western Canada’s ability to compete and win in the global economy over the long-term.
    [Show full text]
  • Research Branch
    CA9600028 Background Paper BP-365E THE CANADIAN NUCLEAR POWER INDUSTRY Alan Nixon Science and Technology Division December 1993 Library of Parliament Research Bibliothèque du Parlement Branch The Research Branch of the Library of Parliament works exclusively for Parliament conducting research and providing information for Committees and Members of the Senate and the House of Commons. This service is extended without partisan bias in such forms as Reports, Background Papers and Issue Reviews. Research Officers in the Branch are also available for personal consultation in their respective fields of expertise. ©Minister of Supply and Services Canada 1994 Available in Canada through your local bookseller or by mail from Canada Communication Group -- Publishing Ottawa, Canada K1A 0S9 Catalogue No. YM32-2/365E ISBN 0-660-15639-3 CE DOCUMENT EST AUSSI PUBUÉ EN FRANÇAIS LIBRARY OF PARLIAMENT BIBLIOTHÈQUE OU PARLEMENT TABLE OF CONTENTS Page EARLY CANADIAN NUCLEAR DEVEOPMENT 2 THE CANDU REACTOR 4 NUCLEAR POWER GENERATION IN CANADA 5 A. Background 5 B. Performance 6 C. Pickering Nuclear Generating Station 8 D. Bruce Nuclear Generating Station 9 1. Retubing 9 2. Pressure Tube Frets 10 3. Shut Down System Design Flaw 12 4. Steam Generators 12 E. Darlington 13 1. Start-up Problems 13 2. Costs 14 AECL 15 A. Introduction 15 B. CANDU-Design and Marketing 16 1. Design 16 2. Marketing 17 a. Export Markets 17 b. Domestic Market ! 18 C. AECL Research 19 D. Recent Developments 20 OUTLOOK 21 * CANADA LIBRARY OF PARLIAMENT BIBLIOTHÈQUE DU PARLEMENT THE NUCLEAR POWER INDUSTRY IN CANADA Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry.
    [Show full text]
  • Nuclear in Canada NUCLEAR ENERGY a KEY PART of CANADA’S CLEAN and LOW-CARBON ENERGY MIX Uranium Mining & Milling
    Nuclear in Canada NUCLEAR ENERGY A KEY PART OF CANADA’S CLEAN AND LOW-CARBON ENERGY MIX Uranium Mining & Milling . Nuclear electricity in Canada displaces over 50 million tonnes of GHG emissions annually. Electricity from Canadian uranium offsets more than 300 million tonnes of GHG emissions worldwide. Uranium Processing – Re ning, Conversion, and Fuel Fabrication Yellowcake is re ned at Blind River, Ontario, PELLETS to produce uranium trioxide. At Port Hope, Ontario, Nuclear Power Generation and Nuclear Science & uranium trioxide is At plants in southern Technology TUBES converted. URANIUM DIOXIDE Ontario, fuel pellets are UO2 is used to fuel CANDU loaded into tubes and U O UO URANIUM Waste Management & Long-term Management 3 8 3 nuclear reactors. assembled into fuel YUKON TRIOXIDE UO2 Port Radium YELLOWCAKE REFINING URANIUM bundles for FUEL BUNDLE Shutdown or Decommissioned Sites TRIOXIDE UF is exported for 6 CANDU reactors. UO enrichment and use Rayrock NUNAVUT 3 CONVERSION UF Inactive or Decommissioned Uranium Mines and 6 in foreign light water NORTHWEST TERRITORIES Tailings Sites URANIUM HEXAFLUORIDE reactors. 25 cents 400 kg of COAL Beaverlodge, 2.6 barrels of OIL Gunnar, Lorado NEWFOUNDLAND AND LABRADOR McClean Lake = 3 Cluff Lake FUEL PELLET Rabbit Lake of the world’s 350 m of GAS BRITISH COLUMBIA Cigar Lake 20% McArthur River production of uranium is NVERSION Key Lake QUEBEC CO mined and milled in northern FU EL ALBERTA SASKATCHEWAN MANITOBA F Saskatchewan. AB G R University of IN IC ONTARIO P.E.I. IN A Saskatchewan The uranium mining F T E IO 19 CANDU reactors at Saskatchewan industry is the largest R N TRIUMF NEW BRUNSWICK Research Council NOVA SCOTIA private employer of Gentilly-1 & -2 Whiteshell Point Lepreau 4 nuclear power generating stations Rophton NPD Laboratories Indigenous people in CANDU REACTOR Chalk River Laboratories Saskatchewan.
    [Show full text]
  • Nuclear Security in the Black Sea Region: Contested Spaces
    SIPRI Policy Paper NUCLEAR SECURITY 49 IN THE BLACK SEA December 2018 REGION Contested Spaces, National Capacities and Multinational Potential vitaly fedchenko and ian anthony STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Jean-Marie Guéhenno (France) Dr Radha Kumar (India) Dr Patricia Lewis (Ireland/United Kingdom) Dr Jessica Tuchman Mathews (United States) DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: + 46 8 655 9700 Email: [email protected] Internet: www.sipri.org Nuclear Security in the Black Sea Region Contested Spaces, National Capacities and Multinational Potential SIPRI Policy Paper No. 49 vitaly fedchenko and ian anthony December 2018 © SIPRI 2018 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, without the prior permission in writing of SIPRI or as expressly permitted by law. ISBN 978-91-85114-95-5 Contents Preface iv Acknowledgements v Summary vi Abbreviations viii 1. Introduction 1 2. The evolution of nuclear security in the Black Sea region 4 The circumstances facilitating nuclear security threats: materials, 4 poverty and conflicts The evolution of nuclear security assistance 5 3.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Know Your Power
    NUCLEAR CANDU reactors use enriched Uranium as fuel, and Nuclear Fast Facts heavy water (deuterium) as the moderator. Nuclear power is derived from a nuclear fission reaction There is ample uranium in the world to fuel nuclear through a process in which large amounts of heat power plants today and in the future. are generated. The heat produced from the nuclear Eight pellets of uranium (smaller than an average reaction is used to generate the steam which rotates adult thumb), contains enough energy to power an the turbines to generate electricity. average home for about one year. In order for the nuclear fission reaction in a CANDU There were 438 operable nuclear power reactors in system to sustain a chain reaction, an atom com- 30 countries and 54 nuclear reactors under con- prised of Uranium, U-235, is required. The CANDU struction as of February 1, 2010. system can be described as a tank which contains tubes of uranium fuel, covered with heavy water that Nuclear power produced 12.9 per cent of global moderates the speed of neutrons thereby enabling a electricity in 2010. chain reaction of splitting atoms. As the fuel con- The Canada Deuterium Uranium (CANDU) reactor is tained in the tubes is heated, the heat is pumped also used in Argentina, Romania, Pakistan, India, through an external pipe using heavy water. The re- China, and the Republic of Korea. sult is hot heavy water which enters a boiler and converts to steam, thus producing electricity. Canadian Nuclear Uranium which is used to ignite the fission reaction in the nuclear power process is a common and Power Process abundant metal found in most rocks, soil, rivers, oceans and food.
    [Show full text]