SMI Physics Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Almost Forgotten Anniversaries in 2019 Introduction
Almost Forgotten Anniversaries in 2019 Katharina Lodders Department of Earth and Planetary Sciences and Mc Donnell Center for the Space Sciences, Campus Box 1169, Washington University, Saint Louis MO 63130, USA Keywords: history, chemical elements, abundances Abstract: As we celebrate the International Year of the Periodic Table, the 50th anniversary of Apollo 11 and the meteorite falls of Allende and Murchison in 1969, other noteworthy science events with round birthdays seem to be overlooked and almost forgotten Several scientific organizations celebrate the birthdays of their foundation; and key events and discoveries related to meteoritics, astronomy, geo- and cosmochemistry, and nuclear sciences can be commemorated this year, including the anniversaries of the discoveries of eleven chemical elements, and the advancements of our knowledge of the elemental and isotopic abundances. Introduction. Introduction The 150th anniversary of the discovery of the periodic system of the elements by Dmitri Ivanovich Mendeleev (8 Feb. 1834 – 2 Feb. 1907) and independently by Julius Lothar Meyer (19 August 1830 – 11 April 1895) is the reason for celebrating the International Year of the Periodic Table in 2019. Not only that, but several scientific organizations celebrate the birthdays of their foundation: The Astronomical Society of the Pacific (1889), The American Astronomical Society (1899), the American Geophysical Union (1919), the Mineralogical Society of America (1919), and the International Astronomical Union IAU (1919). The anniversaries in 2019 give us reasons to reflect on the major impacts of space exploration. In 1969, the first men landed on the moon and Apollo 11 safely returned with lunar rocks for study. The same year was blessed by the fall of the important carbonaceous chondrites Allende and Murchison. -
Historical Development of the Periodic Classification of the Chemical Elements
THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence -
A Brief History of Nuclear Astrophysics
A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. -
Chapter 1 the Biography of a Trafficking Material
Trafficking Materials and Maria Rentetzi Gendered Experimental Practices Chapter 1 The Biography of a Trafficking Material In 1904, an article titled "Radium and Radioactivity" appeared in Century 1 Magazine, a monthly popular magazine published from 1881 to 1930. The article presents Marie Curie's personal account of the discovery of radium and radioactivity. In the article, Curie discusses in depth her arduous attempts to study the radiation of the compounds of uranium and that of known chemical elements, hoping to discover more which are endowed with atomic radioactivity. She revels that it was the chemists who supplied her with the materials she needed. "As I desired to make a very thorough investigation, I had resource to different chemists, who put at my disposal specimens—in some cases the only ones in existence—containing very rare elements." Her next step was to examine different minerals, especially the oxide of uranium 2 ore (pitchblende). To her great surprise, this specimen was found to be four times more active than oxide of uranium itself. The explanation was more than obvious. "The ore must contain a substance more radioactive than uranium and thorium, and this substance must necessarily be a chemical element as yet unknown."1 Her attempts to isolate the new element would lead Marie and Pierre Curie, who joined her research shortly after, to the discovery of both polonium and radium, to the Nobel Prize in Physics in 1903, and to a second Nobel Prize in 1911, this time in chemistry. This chapter attempts to present a cultural -
Kerne, Kooperation Und Konkurrenz. Kernforschung In
Wissenschaft, Macht und Kultur in der modernen Geschichte Herausgegeben von Mitchell G. Ash und Carola Sachse Band 3 Silke Fengler Kerne, Kooperation und Konkurrenz Kernforschung in Österreich im internationalen Kontext (1900–1950) 2014 Böhlau Verlag Wien Köln Weimar The research was funded by the Austrian Science Fund (FWF) : P 19557-G08 Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Datensind im Internet über http://dnb.d-nb.de abrufbar. Umschlagabbildung: Zusammentreffen in Hohenholte bei Münster am 18. Mai 1932 anlässlich der 37. Hauptversammlung der deutschen Bunsengesellschaft für angewandte physikalische Chemie in Münster (16. bis 19. Mai 1932). Von links nach rechts: James Chadwick, Georg von Hevesy, Hans Geiger, Lili Geiger, Lise Meitner, Ernest Rutherford, Otto Hahn, Stefan Meyer, Karl Przibram. © Österreichische Zentralbibliothek für Physik, Wien © 2014 by Böhlau Verlag Ges.m.b.H & Co. KG, Wien Köln Weimar Wiesingerstraße 1, A-1010 Wien, www.boehlau-verlag.com Alle Rechte vorbehalten. Dieses Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist unzulässig. Lektorat: Ina Heumann Korrektorat: Michael Supanz Umschlaggestaltung: Michael Haderer, Wien Satz: Michael Rauscher, Wien Druck und Bindung: Prime Rate kft., Budapest Gedruckt auf chlor- und säurefrei gebleichtem Papier Printed in Hungary ISBN 978-3-205-79512-4 Inhalt 1. Kernforschung in Österreich im Spannungsfeld von internationaler Kooperation und Konkurrenz ....................... 9 1.1 Internationalisierungsprozesse in der Radioaktivitäts- und Kernforschung : Eine Skizze ...................... 9 1.2 Begriffsklärung und Fragestellungen ................. 10 1.2.2 Ressourcenausstattung und Ressourcenverteilung ......... 12 1.2.3 Zentrum und Peripherie ..................... 14 1.3 Forschungsstand ........................... 16 1.4 Quellenlage ............................. -
In Honour of Marie Sklodowska-Curie
health and prosperity throughout the world". It will continue to "ensure, so far as it is able, that assistance provided by it or at its request or under its super vision or control is not used in such a way as to further any military purpose". IN HONOUR OF MARIE SKLODOWSKA-CURIE This year marks the hundredth anniversary of the birth in Poland of Marie Sklodowska-Curie, originator of the word "radioactivity", whose early research in the subject has had far-reaching consequences for the nuclear sciences. The Government of Poland's arrangements for marking the occasion include an international symposium, restoration of her house in Warsaw, publications and films, and the Agency is happy to collaborate. This article from a distinguished Austrian scientist indicates how her work was carried out in an atmosphere of co-operation between scientists of many nations. By Dr. Berta Karlik (The author has been since 1945 Director of the Institute for Radium Research and Nuclear Physics, Austrian Academy of Sciences, where she succeeded Professor Stefan Meyer. A graduate of Vienna Uni versity and member of a number of learned societies, she has produced many scienti fic papers, including one published in 1944 dealing with the occurrence in nature of element 85, Astatine. This element was the last in the atomic table to be identified and occurs naturally only in minute quantities. It was first produced artificially by E.C.Segre, D.R.Corson and K.R.Mac- Kenzie in 1940 at the University of Cali fornia). The fact that the International Atomic Energy Agency has established its headquarters in Vienna prompts one to consider briefly, on the occasion of the 100th anniversary of Marie Curie's birth, the important part played by 18 Austria, and particularly by the Academy of Sciences in Vienna, in the dis coveries of this great scientist and in the further development of her work. -
SMI) for Subatomic Physics
AAAuuussstttrrriiiaaannn AAAcccaaadddeeemmmyyy ooofff SSSccciiieeennnccceeesss Annual Report 2008 Stefan Meyer Institute (SMI) for Subatomic Physics REPORTING PERIOD: 1.1.2008 – 31.12.2008 DIRECTOR OF THE REPORTING Prof. Dr. Eberhard Widmann RESEARCH INSTITUTION: ADDRESS: Boltzmanngasse 3, 1090 Wien Contents Mission Statement ...................................................................................................................................... 1 1. Scientific Activity 2008 ..................................................................................................................... 3 1.1. Zusammenfassung des wissenschaftlichen Berichts 2008 ............................................................................................. 3 1.2. Summary of the scientific report 2008 .................................................................................................................................... 5 1.3. Report on the scientific activity during 2008 ........................................................................................................................ 7 1.3.1. FS1_A: Kaon‐Nucleon Interaction: Kaonic atoms and kaonic nuclei .................................................................. 8 1.3.1.1. FS1_b_A: Kaonic hydrogen and deuterium: SIDDHARTA ................................................................................ 9 1.3.1.2. FS1_b_b: SIDDHARTA: Joint Research Activity 10 in I3 Hadron Physics .............................................. 11 1.3.1.3. FS1_c: Deeply bound kaonic -
24 August 2013 Seminar Held
PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening. -
Karl Przibram: Radioactivity, Crystals, and Colors
Phys. Perspect. 21 (2019) 163–193 Ó 2019 The Author(s) This article is an open access publication 1422-6944/19/030163-31 https://doi.org/10.1007/s00016-019-00242-z Physics in Perspective Karl Przibram: Radioactivity, Crystals, and Colors Wolfgang L. Reiter* Karl Przibram is one of the pioneers of early solid state physics in the field of the inter- dependence of coloration effects and luminescence in solids (crystals, minerals) induced by radiation. In 1921 Przibram discovered the effect of radio-photoluminescence, the light- stimulated phosphorescence in activated crystals induced by gamma rays. In 1926 Przibram was the first to use the term, Farbzentrum (color center, F-center), and in 1923 he advanced the view of atomic centers as carriers of coloration. Being a pupil of Ludwig Boltzmann and Franz S. Exner, he dedicated his early work to condensation and conductivity phenomena in gases and Brownian motion. Under the influence of Stefan Meyer, he began his lifelong interest in mineralogy, setting up his own research group at the Vienna Radium Institute, which pioneered investigations on thermoluminescence and gave a first description of glow curves. Being of Jewish descent, Przibram had to leave Austria after the Nazis took power; he found shelter in Belgium and returned to Austria in 1946 as professor for experimental physics at the University of Vienna. This paper is a first attempt to give an overview of the cultural and scientific background of Przibram’s life and science in context of the cultural and political developments from 1900 to 1950 in Austria. Key words: Biography; mineral physics; coloration effects and luminescence in solids; Ludwig Boltzmann; Franz S. -
A Brief History of Nuclear Astrophysics
A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS Stellar Origin of Energy the Elements Nuclear Astrophysics Astrophysics Nuclear Physics A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF STARS Thermodynamics: the age of the Earth and the energy of the Sun 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of protosolar nebula turns into kinetic energy of meteors Time ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My A gaseous, contracting and heating Sun Mean solar density : ~1.35 g/cc Sun liquid Incompressible 1860s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Lane -Ritter A gaseous, contracting and heating Sun Mean solar density : ~1.35 g/cc Sun liquid Incompressible 1860s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Lane -Ritter A gaseous, contracting and heating Sun Mean solar density : ~1.35 g/cc Sun liquid Incompressible 1860s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Lane -Ritter A gaseous, contracting and heating Sun Mean solar density : ~1.35 g/cc Sun liquid Incompressible 1860s: J. -
Dynamis-7 29.Indd
Making isotopes matter: Francis Aston and the mass-spectrograph Jeff Hughes Centre for the History of Science, Technology and Medicine. University of Manchester. [email protected] Dynamis Fecha de recepción: 22 de febrero de 2008 [0211-9536] 2009; 29: 131-165 Fecha de aceptación: 23 de julio de 2008 SUMMARY: 1.―Introduction. 2.―From bottlewasher to gentleman-researcher: Francis Aston at the Cavendish laboratory. 3.―Negotiating the nuclear atom: Rutherford, Bohr and Soddy. 4.―From positive rays to mass-spectrograph: Aston and the element of surprise. 5.―Ruther- ford, Aston and the constitutive role of the mass-spectrograph. 6.―The Nobel Prizes and the history of isotopes. 7.―Conclusion. ABSTRACT: Francis Aston «discovered» the isotopes of the light elements at the Cavendish Laboratory in 1919 using his newly devised mass-spectrograph. With this device, a modi- fication of the apparatus he had used as J.J. Thomson’s lab assistant before the war, Aston was surprised to find that he could elicit isotopes for many of the elements. This work was contested, but Rutherford, recently appointed to head the Cavendish, was a strong supporter of Aston’s work, not least because it supported his emergent programme of re- search into nuclear structure. This paper will explore Aston’s work in the context of skilled practice at the Cavendish and in the wider disciplinary contexts of physics and chemistry. Arguing that Aston’s work was made significant by Rutherford ―and other constituencies, including chemists and astrophysicists― it will explore the initial construction of isotopes as scientific objects through their embodiment in material practices. -
Prix Nobel De Chimie
Physique Secondaire Prix Nobel de Chimie 1901 Jacobus Henricus van't Hoff 1902 Hermann Emil Fischer 1903 Svante August Arrhenius 1904 Sir William Ramsay 1905 Johann Friedrich Wilhelm Adolf von Baeyer 1906 Henri Moissan 1907 Eduard Buchner 1908 Ernest Rutherford 1909 Wilhelm Ostwald 1910 Otto Wallach 1911 Marie Skłodowska-Curie 1912 Victor Grignard et Paul Sabatier 1913 Alfred Werner 1914 Theodore William Richards 1915 Richard Martin Willstätter 1916 Non décerné 1917 Non décerné 1918 Fritz Haber 1919 Non décerné 1920 Walther Hermann Nernst 1921 Frederick Soddy 1922 Francis William Aston 1923 Fritz Pregl 1924 Non décerné 1925 Richard Adolf Zsigmondy 1926 Theodor Svedberg 1927 Heinrich Otto Wieland 1928 Adolf Otto Reinhold Windaus 1929 Arthur Harden et Hans Karl August Simon von Euler-Chelpin 1930 Hans Fischer 1931 Carl Bosch, Friedrich Bergius 1932 Irving Langmuir 1933 Non décerné 1934 Harold Clayton Urey 1935 Frédéric Joliot et Irène Joliot-Curie 1936 Petrus (Peter) Josephus Wilhelmus Debye 1937 Walter Norman Haworth et Paul Karrer 1938 Richard Kuhn 1939 Adolf Friedrich Johann Butenandt et Leopold Ruzicka 1940 Non décerné 1941 Non décerné 1942 Non décerné 1943 George de Hevesy 1944 Otto Hahn 1945 Artturi Ilmari Virtanen 1946 James Batcheller Sumner, John Howard Northrop et Wendell Meredith Stanley 1947 Sir Robert Robinson 1948 Arne Wilhelm Kaurin Tiselius 1949 William Francis Giauque www.physiquechimie.org Page 1 sur 3 Document Physique Secondaire 1950 Otto Paul Hermann Diels et Kurt Alder 1951 Edwin Mattison McMillan et Glenn Theodore Seaborg 1952 Archer John Porter Martin, Richard Laurence Millington Synge 1953 Hermann Staudinger 1954 Linus Carl Pauling 1955 Vincent du Vigneaud 1956 Sir Cyril Norman Hinshelwood et Nikolay Nikolaevich Semenov 1957 Lord Alexander R.