Validation of the Pss/E Model for the Gotland Network
Total Page:16
File Type:pdf, Size:1020Kb
The Royal Institute of Technology Department of Electrical Engineering Electric Power Engineering VALIDATION OF THE PSS/E MODEL FOR THE GOTLAND NETWORK HRAG MARGOSSIAN Master Thesis at KTH Supervisor: Robert Eriksson Examiner: Mehrdad Ghandhari XR-EE-ES 2010:008 Abstract The aim of the project is to revise the load flow and dynamic PSS/E models of the Gotland network and validate them against a set of measurements collected during a major disturbance, a three phase short circuit in the 70 kV system. The main task in revising the model is to convert the induction machine models of the wind turbines into user and manufacturer wind turbine models. The validation of the model is divided into two phases. The first is to use the measurements as well as some assumptions on the wind power generation and load distribution from the time of the fault to validate the dynamic behaviour of the system. The second is to use new measurements during a normal operation day. The latter would not be very helpful to illustrate the dynamic behaviour of the system, because of the lack of a major fault that would drastically affect the system, but it would nevertheless be useful to validate the load flow with greater accuracy. Key Words: PSS/E, Gotland, Dynamic simulation of power system, model validation Acknowledgements I am very thankful to my supervisor at KTH, Robert Eriksson and my thesis examiner, Mehrdad Ghandhari for their constant support and guidance throughout the span of this project. It is a pleasure to thank my supervisors at Vattenfall: Urban Axelsson and Daniel Wall, who went out of their ways to help me in every step of the project and without whom this thesis would not have been possible. I would also like to show my gratitude to Per-Olof Lindström, who in more than one occasion helped me through some difficult situations with PSS/E, to all the people working at the R&D department at Vattenfall who made working there a truly enjoyable experience and to all the people at GEAB who provided me with as much information as they could to make the validation process a success. Finally, I would like to dedicate this thesis to my parents and my sister for their unconditional love and support without which it would have been impossible for me to come this far. Hrag Table of Contents 1 INTRODUCTION 1 1.1 Background 1 1.2 Project Organization 1 1.3 Project Tasks 1 1.4 Introduction to PSS/E 2 1.5 Prior Work 2 1.6 The Gotland Network 3 1.7 Report Structure 4 The report structure is as follows: 4 1.7.1 Chapter 2 – Validating the Dynamic Behaviour of the Model 4 1.7.2 Chapter 3 – Validating the Load Flow Model 5 1.7.3 Chapter 4 – Conclusions and Future Work 5 2 VALIDATING THE DYNAMIC BEHAVIOUR OF THE MODEL 7 2.1 Wind Turbines in Gotland 7 2.1.1 Wound Rotor Induction Generator Model with Variable Resistance 8 2.1.2 Doubly Fed Induction Generator Model 9 2.1.3 Full converter Turbines 11 2.1.4 Danish Concept Turbines 12 2.1.5 Vestas V47 Turbines 14 2.1.6 Vestas V90 Turbines with FRT 14 2.1.7 Kenersys Turbine 15 2.2 Wind Power Generation and Load Distribution 16 2.3 Capacitive Banks 19 2.4 The Three phase Fault 20 2.4.1 The fault 20 2.4.2 Clearing of the fault 23 2.4.3 Disconnection of 2 Transformers in Näs2 25 2.4.4 Disconnection of 2 Lines in Storugns 27 2.4.5 Opening of Breaker that disconnects HVDC converter at Näs 28 2.4.6 Wind Turbines disconnection 29 2.4.7 Load Disconnection 29 2.4.8 Summary of Events 30 2.5 Results of the Simulation 31 2.5.1 Comparison with Measurements 32 2.5.2 Fault Location 35 2.5.3 Disconnection Time of HVDC Light in Näs 39 2.5.4 Load Disconnection at Cementa 40 2.5.5 Frequency Analysis of the System 42 2.5.6 Conclusion 46 3 VALIDATING THE LOAD FLOW MODEL 48 4 CONCLUSION AND FUTURE WORK 51 BIBLIOGRAPHY 52 List of Tables Table 1: Gotland Regions....................................................................................................................... 16 Table 2: Lines Separating Regions......................................................................................................... 16 Table 3: Pgen-Pload for all Regions ...................................................................................................... 18 Table 4: Status of Capacitor Banks ........................................................................................................ 19 Table 5: Arc Resistance Calculation ...................................................................................................... 23 Table 6: Three-Phase Fault Event List ................................................................................................... 30 Table 7: Load Flow Validation .............................................................................................................. 49 List of Figures Figure 1: The Gotland Power Network .................................................................................................... 3 Figure 2: WRIG with Variable Resistance Control ................................................................................. 8 Figure 3: Block Diagram for WRIG with Variable Resistance Control Model ....................................... 9 Figure 4: DFIG ....................................................................................................................................... 10 Figure 6: Full Converter ......................................................................................................................... 11 Figure 5: Block Diagram of DFIG Model .............................................................................................. 11 Figure 7: Block Diagram for Full Converter Model .............................................................................. 12 Figure 8: DCIG ...................................................................................................................................... 13 Figure 9: Block Diagram for DCIG Model ............................................................................................ 14 Figure 10: Grid Code Curve ................................................................................................................... 15 Figure 11: Dividing Gotland into Regions ............................................................................................. 17 Figure 12: Fault Location ....................................................................................................................... 21 Figure 13: Line L8_S1 Configuration .................................................................................................... 22 Figure 14: Fault Conditions for Calculating Rarc .................................................................................. 23 Figure 15: Voltage at Hemse (Breaker Times) ...................................................................................... 24 Figure 16: Current out of the Transformer in Näs2 ............................................................................... 25 Figure 17: Voltage at the 10kV side of the transformer in Näs2 ........................................................... 25 Figure 18: Unipower diagram for voltage at Näs2 (10 kV) ................................................................... 26 Figure 19: Current in Line2 in Storugns ................................................................................................ 27 Figure 20: Current in Line1 in Storugns ................................................................................................ 27 Figure 21: Näs1 substation ..................................................................................................................... 28 Figure 22: Current Flowing through Transformer Connected to HVDC Light ..................................... 28 Figure 23: Measurements Used for Validation ...................................................................................... 31 Figure 24: Voltage at Hemse (meas. vs results) ..................................................................................... 32 Figure 25: Voltage at Storugns (meas. vs results) .................................................................................. 33 Figure 26: Voltage at Bäcks (meas. vs results) ...................................................................................... 34 Figure 27: Multiple Source Line ............................................................................................................ 35 Figure 28: The Infeed Effect .................................................................................................................. 36 Figure 29: Fault Locations - Sensitivity Analysis .................................................................................. 36 Figure 30: Voltage at Hemse (Fault Locations) ..................................................................................... 37 Figure 31: Voltage at Storugns (Fault Locations) .................................................................................. 38 Figure 32: Voltage at Bäcks (Fault Locations) ...................................................................................... 38 Figure 33: Voltage at Hemse (HVDC Disconnection) ........................................................................... 39 Figure 34: Voltage at Hemse (Cementa Load) ....................................................................................... 40 Figure 36: Voltage at Storugns (Cementa Load) ................................................................................... 41 Figure