<<

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

PERCEPTION ON MARINE NATURAL PRODUCTS FROM AND ITS PHARMACOLOGICAL REVIEW

Harini. R*1, Selvakumari. E1, Gopal. V1, Arumugam. M2

1. Department of Pharmacognosy, College of Pharmacy, Mother Theresa Post Graduate & Research Institute of health sciences, Puducherry-605006, India. 2. Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai- 608502, Cuddalore Dt., Tamilnadu, India.

Abstract : Marine natural product is an untapped resource for new drug development. The complex marine metabolites of novel chemical structure with its targeted mechanism of action for various diseases and disorders will prompt the chemist for the synthesis of active pharmaceutical ingredients leads to the discovery of new lead molecules from marine source. The algae play a very important role because of its immense distribution which has to be focused in the research for discovering new chemical entity in therapy. In addition the phytoconstitutents reported in brown algae with special importance to fucoidan, fucoxanthin and are elaborately discussed along with its pharmacological action. The data mining on the brown algae address phytochemical information to the researcher to develop a lead molecule with potent pharmacophore for different disease and disorders. This review focus the compilation of the complex marine metabolites and the therapeutic uses of brown algae belongs to phaeophyceae

IndexTerms - Fucoidan, Fucoxanthin, Phlorotannins, Brown algae.

I. INTRODUCTION

Marine flora and fauna play an important role as a source of lead molecules. The oceans cover more than 70% of the earth’s surface contains over 2, 00,000 invertebrates and algal species. The oceans contain 5 billion species in about 30 phyla. Because of the diversities of marine organisms and habitats, the marine natural products has a wide range of chemical metabolites including terpenes, shikimates, polyketides, acetogenins, peptides, alkaloids, pigments and . Marine natural product is an untapped resource for new drug development. In addition, the complex marine metabolites of novel chemical structure with its targeted mechanism of action for various diseases and disorders will prompt the chemist for the synthesis of active pharmaceutical ingredients leads to the discovery of new lead molecules from marine source. The algae play a very important role because of its immense distribution which has to be focused in the research for discovering new chemical entity in therapy. Generally the marine algae are classified into four types namely Cyanophyceae- Blue green algae, Rhodophyceae- Red algae, Chlorophyceae- Green algae and Phaeophyceae- Brown algae. This review focus the compilation of the complex marine metabolites and the therapeutic uses of brown algae belongs to phaeophyceae.

II.

The taxonomical hierarchy of brown algae is given table 1

Class: Phaeophyceae (Silberfeld et al, 2014, Guiry et al, 2009)

Table: 1 Taxonomy of Brown algae

SUBCLASS ORDER FAMILY

Discosporsangiophycidae Choristocarpaceae, Discosporangiaceae

Ishigeophycidae Ishigeaceae, Petrodermataceae Dictyotaceae Onslowiales Onslowiaceae Dictyotophycidae Cladostephaceae, Lithodermataceae, Phaeostrophiaceae, Sphacelariaceae, Sphacelodermaceae, Stypocaulaceae Syrinsgodermatales Syringodermataceae Fucophycidae Ascoseirales Ascoseiraceae Asterocladales Asterocladaceae JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1011

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

Desmarestiales Arthrocladiaceae, Desmarestiaceae Acinetosporaceae, Adenocystaceae, , Ectocarpaceae, Petrospongiaceae, Scytosiphonaceae Bifurcariopsidaceae, Durvillaeaceae, Fucaceae, Himanthaliaceae,Hormosiraceae, Notheiaceae, , Seirococcaceae, Xiphophoraceae

Laminariales Agaraceae, Akkesiphycaceae, Alariaceae, Aureophycaceae, Laminariaceae, , Pseudochordaceae, Chordaceae Nemodermatales Nemodermataceae

Phaeosiphoniellales Phaeosiphoniellaceae

Ralfsiales Mesosporaceae, Neoralfsiaceae, Ralfsiaceae

Scytothamnales Asteronemataceae, Bachelotiaceae, Splachnidiaceae Sporochnales

Tilopteridales Cutleriaceae, Halosiphonaceae, Phyllariaceae, Stschapoviaceae, Tilopteridaceae

The complex phytometabolite reported in brown algae are an acid derivative alginic acid, fucoidan polysaccharide from cellulose. An inorganic salt is in calcified form aragonite needle. Chlorophyll a photosynthetic pigment, carotenoids, chlorophyll c, fucoxanthin a carotenoid from plastids and phlorotannins a compound reported in various genous of brown algae. The chemical structure given in the table 2

Table 2: Phytoconstitutent reported in Brown algae (Lee, 2008, Claire et al, 1990)

S.No PLANT PART CHEMICAL SUBCLASS CONSTITUENT

Acid

Alginic acid 1 Cellulose

Polysaccharide

Fucoidan

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1012

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

2 Calcified form along with Inorganic salts plant cells

Aragonite Needles

3 Photosynthetic pigment Chlorophyll

Chlorophyll a

4 Plastids Chlorophyll Chlorophyll c

Carotenoids Fucoxanthin

5 Tannins Phlorotannins Structure elaboratory given in table 5

III. COMPLEX MARINE METABOLITES

The complex metabolites such as fucoidan, fucoxanthin and phlorotannins have greater pharmacological significance. These complex marine metabolites with its pharmacological activity reported in various of brown algae is elaborately disused in table 3, 4 and 6.

FUCOIDAN

Fucoidan, an extra cellular matrix of brown algae which is chemically a fucose enriched sulphated polysaccharide (Damonte et al, 2004). – n number of 1-fucose units has been bonded to sulphate groups or uronic acids in fucoidans by α-1-2

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1013

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162) and α-1-4 bonds (Sakai et al, 2003).The structure of fucoidan differs from species to species and hence possess different pharmacological action (A.Cumashi et al, 2007; L.Chevolot et al, 2001; T.Teruya et al, 2007).

Table: 3 Pharmacological studies of Fucoidan reported in the various genus of Brown algae

ACTIVITY SEAWEED REFERENCE Anti-cancer navae Zhang et al, 2013, Cladosiphon okamuranus Nagamine et al, 2009, Fucoidan Kasai et al,2015

Anti-viral Kjellmaniella crassifolia Wang et al,2017

Anti-hepatitis Fucus evanescens Kujnetsova et al, 2017, Fucus vesiculosus Li, H.F et al,2017

Anti-HIV swartzii Dinesh et al, 2016, Sargassum mcclure Thanh.T.T et al, 2015 Sargassum polycystum Turbinara ornate

Anti-diabetic Fucus vesiculosus Shan et al, 2016, Cheng

Sargassum fusiforme et al, 2019

Anti-coagulant Lessonia vadosa Chandia et al,2008, Wang Lonicera japonica et al, 2010

Veterinary medicine Cladosiphon okamuranus Trejo-Avila et al, 2014 FUCOXANTHIN

Carotenoids are the natural pigments which mainly comprises of two subclasses namely non-polar hydrocarbon and polar compounds. The non-polar hydrocarbon is called carotene and polar compounds as xanthophyll (G.Van Poppel et al, 1997and S.K.Das et al, 2005). Fucoxanthin comes under the category xanthophylls which is chemically an allenic band and a 5, 6- monoepoxide (A.Asai et al, 2004). Generally Fucoxanthins are isolated from brown algae (A.Asai et al, 2004) but (Bacillariophyta) are also one of the choices for its isolation (C.Ishikawa et al, 2008).It has been reported that the composition of fucoxanthin differs from species to species (Tsukui et al, 2007) and the major metabolites of fucoxanthin are Fucoxanthinol and amarouciaxanthin A (Asai et al, 2004).

Table: 4 Pharmacological studies of Fucoxanthin reported in the various genuses of Brown algae

ACTIVITY SEAWEED REFERENCE Fucoxanthin Anti-tumor Lonicera japonica Swadesh et al, 2008, Masashi et al, 1999, Kim et al, 2010, Ishikawa et Undaria pinnatifida al, 2008

Ishige okamurae

Anti-obesity effect Undaria pinnatifida Megumi et al, 2010, Masashi et al, 2010

Anti-diabetic Undaria pinnatifida Hayato et al, 2007, Hosokawa et al, 2009

Anti-inflammatory Sargassum siliquastrum Hea et al, 2008, Kim et okamurae al, 2010, Sakai et al, Undaria pinnatifida 2009, Sakai et al, 2011 JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1014

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

Skin Protective effect Sargassum siliquastrum Heo et al, 2009, Laminaria japonica Shimoda et al, 2010, Undaria pinnatidida Urikura et al, 2011

Anti-angiogenic effect Undaria pinnatidida Sugawara et al, 2006

Cerebro vascular Undaria pinnatidida Ikeda et al, 2003 Protective effect

Bone protective effect Laminaria japonica Das et al, 2010

Ocular protective effect Hijikia fusiformis Shiratori et al,2005 Undaria pinnatifida Sargassum fulvellum

Anti-malarial effect Sargassum Afolayan et al, 2008 heterophyllum

PHLOROTANNINS

Polyphenolic compounds are the secondary metabolites which are present in both terrestrial as well as in aquatic environments and possess numerous pharmacological actions (Shibata et al, 2002; Susanto et al, 2009). Tannins are the poyphenolic compounds which exist as phlorotannins in marine mainly in brown algae. Phlorotannins are formed by polymerization of whose structure is less complex when compared to terrestrial tannins (Glombitza and Hauperich, 1997; Kang et al, 2007; Koivikko et al,2005; Wang et al, 2008).

Table: 5 Structure of Phlorotannins reported in the various genus of brown algae

CONSTITUTENT CHEMICAL STRUCTURE REPORTED IN BROWN SEAWEED Phloroglucinol

Ecklonia cava

Eckol

E.cava, Eisenia Bicyclis

Fucodiphloroethol G

E. cava

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1015

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

Phlorofucofuroeckol A

E. cava, E.stolonifera, E.kurome

Phlorofucofuroeckol B

E. bicyclis

7-Phloroeckol

E.cava, E. stolinifera

Triphloroethol A

E. cava

6,6-Bieckol -*

E. cava, ishigeokamurae

Dieckol

E. stolinifera

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1016

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

2-Phloroeckol

E. stolinifera

6,8-Bieckol

E. bicyclis

8,8-Bieckol

E. bicyclis

Table: 6 Pharmacological studies of phlorotannins reported in the various genus of Brown algae.

ACTIVITY SEAWEED REFERENCE Phlorotannins Anti-fungal stolonifera Choi et al, 2008

Anti-allergic Eisenia arborea Sugiura et al, 2007

Anti-cancer Kong et al, 2009

Anti-diabetic Ecklonia cava Lee et al, 2009, Lee

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1017

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

Ishige foliaceae et al, 2011

Anti- Neuroinflammatory Ecklonia cava Weisiger et al, 1973, Kiningham et al, 1999

Anti-HIV Ecklonia cava Finnie et al, 1985 Ishige okamurae Farber et al, 1973

Anti-oxidant Sargassum Matsubara et al, 2004, Kjellamanianum McLellan et al, 1992, Sargassum siliquastrum Bae 2011, Shibata et al, 2008

Anti-hypertensive Ecklonia cava Athukorala et al, 2005 Ecklonia stolonifera Pelvetia siliqousa Hizikia fusiforme Undaria pinnatifida

Radio protective Ecklonia cava Kim, 2010

Plant growth regulating Ecklonia maxima Kang et al, 2004

Anti-arousal Ecklonia cava Bellows et al, 1991, Yeo et al, 2012

Anti-chlolinesterase Ecklonia stolonifera Yoon et al,2009

Tyrosinase inhibition Ecklonia cava Kiminori , 2004

Anti-coagulant Sargassum thunbergii Shibata et al, 2008

Bone tissue regenerator Ecklonia cava Yeo et al, 2012

The various species of Sargassum is intensively screened pharmacologically. Table 7 shows the detailed compilation of different species of Sargassum. The active metabolite and its various pharmacological screening method.

Table: 7 Pharmacological studies on the various species of sargassum genus

ACTIVITY SEAWEED ACTIVE METHOD REFERENCE METABOLITE Anti-oxidant S.fulvellum Sulphate polysaccharide NO scavenging, DPPH Kim et al, 2007 scavenging

S.hemiphyllum Total phenolic DPPH scavenging, Hwang et al, 2010 compound Superoxide anion scavenging

S.thunbergii Tetraprenyltoluquinol, DPPH scavenging Seo et al, 2006 Sargothunbergol Seo et al, 2007

S.siliquastrum Sargachromanols DPPH scavenging, Jung et al, 2008 Superoxide sacvenging Lim et al, 2002

S.micracanthum Plastiquinones DPPH scavenging, Iwashim et al, 2005 Deoxyribose scavenging, Mori et al, 2005 Hydroxy radical Chandini et al, 2008, scavenging Park et al, 2005

Cholinesterase S.sagamianum Farnesylacetone Acetylcholinesterase Ryu et al, 2003 inhibitory derivative, inhibitory activity, Choi et al, 2007 JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1018

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

Plastoquinones Butyrylcholinesterase Natarajan et al, 2010 inhibitory activity

Neuroprotective S.fulvellum Pheophylin A Ina et al, 2007 activity Nerve growth factor

Trang et al, 2005 S.macrocarpum Sargaquinoic acid Kamei et al, 2003 Tsang et al, 2004

Anti-Cancer S.oligocystum Polysaccharide Hep G2 cells Chenx et al, 2012

S.pallidum Polysaccharide A549 cells, MGC 803 Ye et al, 2008 cells

S.swartzii Meroterpenoids Ca CO-2 cells, T47 cells Khanani et al, 2010

S.turtile Hydroy sargaquinone P-388 Lymphocytic Numata et al, 1992 Sargasals I and II leukemia cells fraction

S.latifolium Polysaccharide E3 Lymphoblastic, leukemia Gamal-Eldeen et al, 1301 cells 2009

Anti-pyretic, S.wightii - Carrageenan induced Dar et al, 2007 Analgesic and Anti- edema Kang et al, 2008 inflammatory activities Hwang et al, 2011 S.fulvellum - Mouse ear edema

S.thunbergii - Yeast induced pyrexia, Kang et al, 2008,Hong Tail flick test, Phorbol et al, 2011 myristate acetate induced inflammation

S.swartzii - Acetic acid induced writhing, Hot plate induced pain models, Carragenan and peritonitis model, Amiant induced granuloma in mice

S.hemiphyllum Fucoidan Invitro and in vivo anti Hwang et al, 2011 inflammatory

Hepatoprotective S.polycystum - Acetaminophen induced Raghavendran et al, activity toxic hepatitis 2005

S.wightii Sulphate polysaccharide Cyclosporine A induced oxidative liver injury Josephine A et al, 2008

Anti viral activity S.micracanthum Plastoquinones Cytomegalo virus, Iwashima et al, 2005 Measles virus Zhu et al, 2004 S.patens Sulphated Acyclovir sensitive and polysaccharide resistant stains of Herpes virus type 1 Lee et al, 2011 S.trichophyllum Fucoidan Herpes simplex virus type

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1019

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

2 Sinha et al, 2010

S.tenerrimum Fucoidan, Guluronic Herpes simplex virus type acid rich alginate 1

Anti-coagulant S.fulvellum Polysaccharide De Zoysa et al, 2008 activity Activated partial thromboplastin time Athukorala et al, 2007 S.borneri -

Immunomodulatory S.ilicifolium Terpenes,Steroids Stimulation of Chemotatic Chandraraj et al, 2010 activity and Phagocytic, Intracellular killing of human neutrophils

S.hemiphyllum - Cell proliferation, IgM Wu et al, 2009 secretion, Phagocytosis in HB4C5 cells and J774 cell lines

Fibrinolytic activity S.Fluvellum 1-()-palmitoyl-2-()- Pro-U-PA and Wu et al, 2007 oleoyl-3-()-(α-D- Plasminogen glucopyranosyl)-lycerol, 1-()-myristoyl-2-()- oleoyl_3_()-(α-D- glucopyranosyl)-glycerol

Diabetes and S.yezoense Sargaquinoic acid PPARs α/γ Kin et al, 2008 dyslipidemia treatment Sargahydroquinoic acid

Anti-ulcer S.polycystum - Maintance of acidity of Raghavendran et al, gastric juice, Gastric 2004 mucosal injury improvement

Skin whitenning S.polycystum - Tyrosinase and melanin Cha et al, 2011 activity S.silquastrum - production inhibition Chan et al, 2011

IV. CONCLUSION

It is concluded that the marine natural products is complex structure which is an untapped resources for new drug development. The biomolecules such as fucoidan, fucoxanthin and phlorotannins have wide pharmacological action due to its complex unique structure. This review article will address a key for the researcher to develop a lead molecule with potent pharmacophore for different diseases and disorders for benefit of suffering mankind.

V. ACKNOWLEDGMENT

We thank Dr. S. Kanchana, Senior Research Fellowship, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University,Parangipettai, Cuddalore, Tamilnadu, India for her kind help and support.

REFERENCE

[1] Afolayan, A,F. Bolton, J,J. Lategan, C,A. Smith, P,J. and Beukes, D,R. 2008. Fucoxanthin, tetraprenylated toluquinone and toluhydroquinone metabolites from Sargassum heterophyllum inhibit the in vitro growth of the malaria parasite Plasmodium falciparum. A Journal of Biosciences, 63:848 - 852. [2] Asai, A. Sugawara, T. Ono, H. and Nagao, A.2004. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and HepG2 cells: formation and cytotoxicity of fucoxanthin metabolites. Journal of Drug Metabolism and Disposition, 32(2):205- 211. [3] Athukorala, Y. And Jeon, Y,J. 2005. Screening for Angiotensin 1-converting enzyme inhibitory activity of Ecklonia cava. International journal of food sciences and food nutrition, 10:134–9.

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1020

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

[4] Athukorala, Y. Lee, K,W. Kim, S,K. and Jeon, Y,J. 2007. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Journal of Bioresource technology, 98:1711-1716. [5] Bae, J,S. 2011. Antithrombotic and profibrinolytic activities of phloroglucinol. Journal of Food and Chemical Toxicology, 49:1572–1577. [6] Bellows, C,G. Aubin, J,E. and Heersche, N,M. 1991. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Journal of Bone and Mineral Metabolism, 14:27–40. [7] Cha, S,H. Ko, S,C. Kim, D. and Jeon, Y,J. 2011. Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. Journal of Dermatological Science, 38:354-363. [8] Chan, Y,Y. Kim, K,H. and Cheah, S,H. 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. Journal of Ethnopharmacology, 137:1183-8. [9] Chandia, N,P. and Matsuhiro, B. 2008. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. International Journal of Biological Macromolecules, 42:235–240. [10] Chandini, S,K. Ganesan, P. and Bhaskar, N. 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Journal of Food chemistry, 107:707‑713. [11] Chandraraj, S. Prakash, B. and Navanath, K. 2010. Immunomodulatory activities of ethyl acetate extracts of two marine sponges Gelliodes fibrosa and Tedania anhelans and brown algae Sargassum ilicifolium with reference to phagocytosis. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 1:302-307. [12] Chen, X. Nie, W. Yu, G. Li, Y. Hu, Y. and Lu, J. 2012. Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme. Journal of Food and Chemical Toxicology, 50:695-700. [13] Cheng, Y. Luthuli, S. Hou, L,F. Jiang, H,J. Chen, P,C. Zhang, X. Wu, M. and Tong, H,B. 2019. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. International journal of biological macromolecules, 131:1162–1170. [14] Chevolot, L. Mulloy, B. Ratiskol, J. Foucault, A. and Colliec, J,S. 2001. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Journal of Carbohydrate Research, 330(4):529–535. [15] Choi, B,W. Ryu, G. Park, S,H. Kim, E,S. Shin, J. and Roh, S,S. 2007. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: Lead compounds for Alzheimer’s disease therapy. International Journal of Phytotherapy Research, 21:423-426. [16] Choi, J,S. and Kim, Y,M. 2008. Synergistic effect between from Ecklonia stolonifera and b-lactams against methicillin-resistant Staphylococcus aureus. Lournal of Biotechnology and Bioprocess Engineering, 13:758–764. [17] Ckitikela, P,P. Vinod, K,N. and Narasimha Kumar, G,V. 2018. Phlorotannins and their Biological significances. Journal of Global Trends in Pharmaceutical Sciences, 9(1):4893-4904. [18] Claire, B. Lise, C. and Bernard, R. 1990. Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis. Journal of the International Society of Photosynthesis Research, 2(23):181-193. [19] Cumashi, A. Ushakova, N,A. and Preobrazhenskaya , M,E. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Journal of Glycobiology, 17(5):41–552. [20] Damonte, E,D. Matulewicz, M,C. and Cerezo, A,S. 2004. Sulfated seaweed polysaccharides as antiviral agents. Journal of Current Medicinal Chemistry, 11(18):2399–2419. [21] Dar, A. Baig, H,S. Saifullah, S,M. Ahmad, V,U. Yasmeen, S. and Nizamuddin, M. 2007. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. Journal of Experimental Marine Biology and Ecology, 351:1-9. [22] Das, S,K. Hashimoto, T. and Kanazawa, K. 2008. Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Journal of Biochimica et Biophysica Acta, 1780:743 - 749. [23] Das, S,K. Hashimoto, T. and Shimizu, K. 2005. Fucoxanthin induce cell cycle arrest at G0/G1 phase in human colon carcinoma cells through up-regulation of 푝21 WAF1/Cip1. Journal of Biochimica et Biophysica Acta, 1726(3):328–335. [24] Das, S,K. Ren, R,D. Hashimoto, T. and Kanazawa, K.2010. Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264.7 cells. Journal of Agricultural and Food Chemistry, 58:6090 - 6095. [25] De, Z,M. Nikapitiya, C. Jeon, Y,J. Jee, Y. and Lee, J. 2008. Anticoagulant activity of sulfated polysaccharide isolated from fermented brown seaweed Sargassum fulvellum. Journal of Applied Phycology, 20:67-74. [26] Dinesh, S. Menon, T. Hanna, L,E. Suresh, V. Sathuvan, M. and Manikannan, M,M. 2016. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. International journal of biological macromolecules, 82:83–88. [27] Farber, E. 1973. Carcinogenesis— cellular evolution as a unifying thread: presidential address. Journal of Cancer Research and Therapeutics, 33(11): 2537–2550. [28] Finnie, J,F. VanStaden, J. 1985. Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. Journal of Plant Physiology, 120: 215–222. [29] Gamal-Eldeen, A,M. Ahmed, E,F. Abo-Zeid, M,A. 2009. In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Journal of Food and Chemical Toxicology, 47:1378-84. [30] Guiry, M,D. and Guiry, G,M. 2009. Algae base. National University of Ireland, Retrieved 2012:12-31. [31] Hagio, M. Shinoki, A. Nishimukai, M. Miyashita, K. Yajima, T. and Hara, H. 2010. Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. European Journal of Nutrition, 49:243 - 249. [32] Heo, S,J. and Jeon, Y,J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. Journal of photochemistry and photobiology b-biology, 95:101 - 107.

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1021

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

[33] Heo, S,J. Ko, S,C. Kang, S,M. Kang, H,S. Kang, H,S. Kim, J,P. Kim, S,H. Lee, K,W. Cho, M,G. and Jeon, Y,J. 2008. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2- induced cell damage. Journal of European Food Research and Technology, 228:145 - 151. [34] Hong, D,D. Hien, H,M. and Anh, H,T. 2011. Studies on the analgesic and anti-inflammatory activities of Sargassum swartzii (Turner) C. Agardh (Phaeophyta) and Ulva reticulata Forsskal (Chlorophyta) in experiment animal models. African Journal of Biotechnology, 10:2308-2314. [35] Hosokawa, M. Miyashita, T. Nishikawa, S. Emi, S. Tsukui, T. Beppu, F. Okada, T. and Miyashita, K. 2010. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Journal of Archives of Biochemistry and Biophysics, 504:17-25. [36] Hosokawa, M. Miyashita, T. Nishikawa, S. Emi, S. Tsukui, T. Beppu, F. Okada, T. and Miyashita, K. 2010. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Journal of Archives of Biochemistry and Biophysics, 504:17- 25. [37] Hosokawa, M. Wanezaki, S. Miyauchi, K. Kurihara, H. Kohno, H. Kawabata, J. Kawabata, J. Odashima, S. and Takahashi K. 1999. Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Journal of Food Science and Technology Research, 5:243 - 246. [38] Hwang, P,A. Wu, C,H. Gau, S,Y. Chien, S,Y. Hwang, D,F. 2010. Antioxidant and immune‑stimulating activities of hot‑water extract from seaweed Sargassum hemiphyllum. Journal of Marine Science and Technology, 18:41‑46. [39] Hwang, P,A. Chien, S,Y. Chan, Y,L. Lu, M,K. Wu, C,H. and Kong, Z,L. 2011. Inhibition of lipopolysaccharide (LPS) -induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. Journal of Agricultural and Food Chemistry, 59:2062-2068. [40] Ikeda, K. Kitamura, A. Machida, H. Watanabe, M. Negish, H. Hiraoka, J. and Nakano, T. 2003. Effect of Undaria pinnatifida () on the development of cerebrovascular diseases in stroke- rone spontaneously hypertensive rats. Journal of Clinical and Experimental Pharmacology, 30: 44 -48. [41] Ina, A. Hayashi, K,I. Nozaki, H. and Kamei, Y. 2007. Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. International journal of developmental neuroscience, 25:63-68. [42] Ishikawa, C. Tafuku, S. and Kadekaru, T. 2008. Antiadult T-cell leukemia effects of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. International Journal of Cancer, 123(11):2702–2712. [43] Ishikawa, C. Tafuku, S. Kadekaru, T. Sawada S, Tomita M, Okudaira T, Nakazato T, Toda T, Uchihara, J,N. Taira, N. Ohshiro, K. Yasumoto, T. Ohta, T. and Mori, N. 2008. Antiadult Tcell leukemia effects of brown algae fucoxanthin and its deacetylated product fucoxanthinol. International Journal of Cancer, 123:2702– 2712. [44] Iwashima, M. Mori, J. Ting, X. Matsunaga, T. Hayashi, K. and Shinoda, D. 2005. Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Journal of Biological and Pharmaceutical Bulletin, 28:374-377. [45] Josephine, A. Nithya, K. Amudha, G. Veena, C,K. Preetha, S,P. and Varalakshmi, P. 2008. Role of sulphated polysaccharides from Sargassum Wightii in Cyclosporine A-induced oxidative liver injury in rats. Journal of BMC Pharmacology and Toxicology , 8:1-9. [46] Jung, M. Jang, K,H. Kim, B. Lee, B,H. Choi, B,W. and Oh, K,B. 2008. Meroditerpenoids from the brown alga Sargassum siliquastrum. Journal of Natural Products, 71:1714‑1719. [47] Kamei, Y. and Tsang, C,K. 2003. Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. International Journal of Developmental Neuroscience, 21:255-262. [48] Kang, H,S. Kim, H,R. Byun, D,S. Son, B,W. Nam, T,J. and Choi, J,S. 2004. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Journal of Archives of Pharmacal Research, 7:1226–32. [49] Kang, J,Y. Khan, M,N. Park, N,H. Cho, J,Y. Lee, M,C. Fujii, H. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. Journal of Ethnopharmacology, 116:187-190. [50] Kasai, A. Arafuka, S. Koshiba, N. Takahashi, D. and Toshima, K. 2015. Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Org. Biomol. Chem, 13:10556–10568. [51] Khanavi, M. Nabavi, M. Sadati, N. Shams, A,M. Sohrabipour, J. Nabavi, S,M. 2010. Cytotoxic activity of some marine brown algae against cancer cell lines. International Journal of Biological Research, 43:31-7. [52] Kim, S,N. Choi, H,Y. Lee, W. Park, G,M. Shin, W,S. Kim, Y,K. 2008. Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPAR α/γ activation in 3T3-L1 cells. Journal of FEBS letters, 582:3465-72. [53] Kim, K,C. 2010. Up-regulation of Nrf2-mediated heme oxygenase-1 expression by , a compound, through activation of Erk and PI3K/Akt. International Journal of Biochemistry & Cell Biology, 42:297-305. [54] Kim, K,N. Heo, S,J. Kang, S,M. Ahn, G. and Jeon, Y. 2010. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. European Journal of Pharmacology Environmental Toxicology, 24:1648 - 1654. [55] Kim, K,N. Heo, S,J. Yoon, W,J. Kang, S. Ahn, G. Yi, T,H. and Jeon, Y,J. 2010. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. European Journal of Pharmacology, 649:369 - 375. [56] Kim, S,H. Choi, D,S. Athukorala, Y. Jeon, Y,J. Senevirathne, M. and Rha, C,K. 2007. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. International Journal of Food Sciences and Nutrition, 12:65‑73.

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1022

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

[57] Kiminori, M. 2004. Recent Advances in Marine Algal Anticoagulants. Journal of Cardiovascular & Hematological Agents in Medicinal Chemistry, 2(13):19-13. [58] Kiningham. 1999. Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly (ADP-ribose) polymerase-mediated cell death. Journal of Federation of American Societies for Experimental Biology, 13:1601-1610. [59] Kong, C,S. Kim, J,A. Yoon, N,Y. and Kim, S,K. 2009. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Journal of Food and Chemical Toxicology, 47:1653–8. [60] Kuznetsova, T. Ivanushko, L. Persiyanova, E,V. Shutikova, A,L. Ermakova, S,P. Khotimchenko, M,Y. and Besednova, N,N. 2017. Evaluation of adjuvant e ects of fucoidane from brown seaweed Fucus evanescens and its structural analogues for the strengthening vaccines effectiveness. Journal of Biomedical Informatics, 63:553–558. [61] Lee, J,B. Takeshita, A. Hayashi, K. and Hayashi, T. 2011. Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Journal of Carbohydrate polymers, 86:995-999. [62] Lee, R,E. 2008. Phycology (4th ed.). Cambridge University Press, ISBN 978-0-521-63883-8. [63] Lee, S,H. Kang, S,M. Ko, S,C. Lee, D,H. and Jeon, Y,J. 2012. Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishiga foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Journal of Biochemical and Biophysical Research Communications, 420:576–81. [64] Lee, S,H. Karadeniz, F. Kim, M,M. and Kim, S,K. 2009. α –Glucosidase and α- amylase inhibitory activites of phloroglucinol derivatives from edible marine brown algae, Ecklonia cava. Journal of Journal of the Science of Food and Agriculture, 89: 1552–1558. [65] Li, H,F. Li, J. Tang, Y. Lin, L. and Xie, Z. 2017. Fucoidan from Fucus vesiculosus suppresses hepatitis B virus replication by enhancing extracellular signal-regulated kinase activation. Journal of Virology, 14:178. [66] Lim, S,N. Cheung, P,C. Ooi, V,E. Ang, P,O. 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50:3862‑3866. [67] Maeda, H. Hosokawa, M. Sashima, T. and Miyashita, K. 2007. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Journal of Agricultural and Food Chemistry, 55:7701 – 7706 [68] Maeda, H. Hosokawa, M. Sashima, T. Murakami, F,K. and Miyashita, K. 2009. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Journal of Molecular Medicine Reports, 2:897–902. [69] Matsubara, K. 2004. Recent advances in marine algal anticoagulants. Journal of Current Medicinal Chemistry, 2:13-19. [70] McLellan, D,S. and Jurd, K.M. (1992) Anticoagulants from marine algae. Journal of Blood Coagulation & Fibrinolysis, 3:69–80. [71] Mori, J. Iwashima, M. Wakasugi, H. Saito, H. Matsunaga, T. and Ogasawara, M. 2005. New plastoquinones isolated from the brown alga, Sargassum micracanthum. Journal of Chemical and Pharmaceutical Bulletin, 53:1159‑1163. [72] Nagamine, T. Hayakawa, K. Kusakabe, T. Takada, H. Nakazato, K. Hisanaga, E. and Iha, M. 2009. Inhibitory effect of fucoidan on Huh7 hepatoma cells through down regulation of CXCL12. International journal Nutrition and cancer, 61:340–347. [73] Natarajan, S. Shanmugiahthevar, K,P. and Kasi, P,D. 2009. Cholinesterase inhibitors from Sargassum and Gracilaria gracilis: Seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Journal of Asian natural products research, 23:355-369. [74] Numata, A. Kanbara, S. Takahashi, C. Fujiki, R. Yoneda, M. Usami, Y. 1992. A cytotoxic principle of the brown alga Sargassum tortile and structures of chromenes. Journal of Phytochemistry, 31:1209-1213. [75] Park, P,J. Heo, S,J. Park, E,J. Kim, S,K. Byun, H,G. and Jeon, B,T. 2005. Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. Journal of Agricultural and Food Chemistry, 53:6666‑6672. [76] Raghavendran, H,R. Sathivel, A. and Devaki, T. 2004. Efficacy of brown seaweed hot water extract against HCl-ethanol induced gastric mucosal injury in rats. Journal of Archives of Pharmacal Research, 27:449-53. [77] Raghavendran, B,H. Sathivel, A. and Devaki, T. 2005. Antioxidant effect of Sargassum polycystum (Phaeophyceae) against acetaminophen induced changes in hepatic mitochondrial enzymes during toxic hepatitis. Journal of Chemosphere, 61:276-281. [78] Ryu, G. Park, S,H. Kim, E,S. Choi, B,W. Ryu, S,Y. and Lee, B,H. 2003. Cholinesterase inhibitory activity of two farnesyl acetone derivatives from the brown alga Sargassum sagamianum. Journal of Archives of Pharmacal Research, 26:796-799. [79] Sakai, S. Sugawara, T. and Hirata, T. 2011. Inhibitory effect of dietary carotenoids on dinitrofluorobenzene-induced contact hypersensitivity in mice. Journal of Bioscience, Biotechnology, and Biochemistry, 75:1013 - 1015. [80] Sakai, S. Sugawara, T. Matsubara, K. and Hirata, T. 2009. Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptor. Journal of Biological Chemistry, 284:28172–28179. [81] Sakai, T. Ishizuka, K. Shimanaka, K. Ikai, K. and Kato, I. 2003. Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Journal of Marine Biotechnology, 5(6):536–544. [82] Seo, Y. Park, K, E. and Nam, T,J. Isolation of a new chromene from the brown alga Sargassum thunbergii. Bulletin of the Korean Chemical Society, 28:1831‑1833. [83] Seo, Y. Park, K,E. Kim, Y,A. Lee, H,J. Yoo, J,S. and Ahn, J,W. 2006. Isolation of tetraprenyltoluquinols from the brown alga Sargassum thunbergii. Chemical and Pharmaceutical Bulletin, 54:1730‑1733. JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1023

© 2020 JETIR February 2020, Volume 7, Issue 2 www.jetir.org (ISSN-2349-5162)

[84] Shan, X,D. Liu, X. Hao, J,J. Cai, C. Fan, F. Dun, Y,L. Zhao, X,L. Liu, X,X. Li, C,X. and Yu, G,L. 2016. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. International journal of biological macromolecules, 82:249–255. [85] Shibata, T. Ishimaru, K. Kawaguchi, S. Yoshikawa, H. and Hama, Y. 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 20:705−711. [86] Shibata, T. Ishimaru, K. Kawaguchi, S. Yoshikawa, H. and Hama, Y. 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 20:705−711. [87] Shimoda, H. Tanaka, J. Shan, S,J. and Maoka, T. 2010. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. Journal of Pharmacy and Pharmacology, 62:1137 - 1145. [88] Shiratori, K. Ohgami, K. Ilieva, I. Jin, X,H. Koyama, Y. Miyashita, K. Yoshida, K. Kase, S. and Ohno, S. 2005. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Journal of Experimental eye research, 81:422–428. [89] Silberfeld, T. Rousseau, F. and Rruno. 2014. An updated classification of Brown Algae(Orchrophyta, Phaeophyceae). Cryptogamie Algologie, 35(2):117-156. [90] Sinha, S. Astani, A. Ghosh, T. Schnitzler, P. and Ray, B. 2010. Polysaccharides from Sargassum tenerrimum: Structural features, chemical modification and anti-viral activity. Journal of Phytochemistry, 71:235-242. [91] Sugawara, T. Matsubara, K. Akagi, R. Mori, M. and Hirata, T. 2006. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Journal of Agricultural and Food Chemistry, 54:9805 - 9810. [92] Sugiura, Y. Matsuda, K. Yamada, Y. Nishikawa, M. Shioya, K. and Katsuzaki, H. (2007). Anti allergic phlorotannins from the edible brown alga: Eisenia arborea. Food Science and Technology Research, 13(1):54–60. [93] Teruya, T. Konishi, T. Uechi, S. Tamaki, H. and Tako, M. 2007. Antiproliferative activity of over sulfated fucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937cells. International Journal of Biological Macromolecules, 41(3):221–226. [94] Thanh, T,T,T. Bui, M,L. Tran, T,T,V. Ngo, V,Q. Ho, C,T. Yue, Z. Carole, S,D. and Bilan, M,U,A. 2015. Anti-HIV activity of fucoidans from three brown seaweed species. Journal of Carbohydrate Polymer, 115:122–128. [95] Trejo-Avila, L.M. Morales-Martínez, M.E. Ricque-Marie, D. Cruz-Suarez, L.E. Zapata-Benavides, P. Morán- Santibañez, K. and . 2014. Rodríguez-Padillan, C. In-vitro anti-canine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. Journal of VirusDisease, 25: 474–480. [96] Tsang, C,K. and Kamei, Y. 2004. Sargaquinoic acid supports the survival of neuronal PC12D cells in a nerve growth factor-independent manner. European Journal of Pharmacology, 488:11-8. [97] Tsang, C,K. Ina, A. Goto, T. and Kamei, Y. 2005. Sargachromenol, a novel nerve growth factor-potentiating substance isolated from Sargassum macrocarpum, promotes neurite outgrowth and survival via distinct signaling pathways in PC12D cells. Journal of Neuroscience, 132:633-643. [98] Tsukui, T. Konno, K. Hosokawa, M. Maeda, H. Sashima, T. and Miyashita, K. 2007. Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. Journal of Agricultural and Food Chemistry, 55:5025–5029. [99] Urikura, I. Sugawara, T. and Hirata, T. 2011. Protective effect of fucoxanthin against UVBinduced skin photoaging in hairless mice. Journal of Bioscience, Biotechnology, and Biochemistry, 75:757 -760. [100] Van Poppel, G. and van den Berg, H. 1997. Vitamins and cancer. Cancer Letters, 11:195–202. [101] Wang, J. Zhang, Q, B. Zhang, Z, S. Song, H, F. and Li, P, C. 2010. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International journal of biological macromolecules. 46:6–12. [102] Wang, W. Wu, J. Zhang, X. Hao, C. Zhao, X. Jiao, G. Shan, X. Tai, W. and Yu, G. 2017. Inhibition of influenza A virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Scientific reports, 7:40760. [103] Weisiger, R,A. and Fridovich, I. 1973. Superoxide dismutase. Organelle specificity. Journal of Biological Chemistry, 248(10):3582-3592. [104] Wu, W. Hasumi, K. Peng, H. Hu, X. Wang, X. and Bao, B. 2009. Fibrinolytic compounds isolated from a brown alga, Sargassum fulvellum. Marine Drugs, 7:85-94. [105] Ye, H. Wang, K. Zhou, C. Liu, J. and Zeng, X. 2008. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chemistry, 111:428-32. [106] Yeo, M. Jung, W,K. and Kim, G,H. 2012. Fabrication, characterisation and biological activity of phlorotannin conjugated PCL/b-TCP composite scaffolds for bone tissue regeneration. Journal of Materials Chemistry, 22:3568. [107] Yoon, N,Y. Eom, T,K. Kim, M,M. Kim, S,K. 2009. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry, 57:4124–4129. [108] Zhang, Z. Teruya, K. Hiroshi Eto, H. and Shirahata,S. 2013. Induction of apoptosis by low-molecular-weight fucoidan through calcium- and caspase-dependent mitochondrial pathways in MDA-MB-231 breast cancer cells. Bioscience, Biotechnology, and Biochemistry, 77: 235–242. [109] Zhu, W. Chiu, L,C. Ooi, V,E. Chan, P,K. and Ang, P,O. 2004. Antiviral property and mode of action of a sulphated polysaccharide from Sargassum patens against herpes simplex virus type 2. International Journal of Antimicrobial Agents, 24:279-283.

JETIR2002357 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1024