The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-Erbb

Total Page:16

File Type:pdf, Size:1020Kb

The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-Erbb PLoS BIOLOGY The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBb Keith I. Pardee1,2, Xiaohui Xu1,2,3, Jeff Reinking1,2,7¤a, Anja Schuetz4¤b, Aiping Dong4, Suya Liu5, Rongguang Zhang6, Jens Tiefenbach1,2, Gilles Lajoie5, Alexander N. Plotnikov4¤b, Alexey Botchkarev4, Henry M. Krause1,2*, Aled Edwards1,2,3,4* 1 Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada, 2 Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada, 3 Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada, 4 Structural Genomics Consortium, University of Toronto, Toronto, Canada, 5 Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, 6 Midwest Center for Structural Genomics, Argonne National Lab, Argonne, Illinois, United States of America, 7 Department of Biology, State University of New York at New Paltz, New Paltz, New York, United States of America Heme is a ligand for the human nuclear receptors (NR) REV-ERBa and REV-ERBb, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV- ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 A˚ crystal structure of the REV-ERBb LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBb complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions. Citation: Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, et al. (2009) The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBb. PLoS Biol 7(2): e1000043. doi:10.1371/journal.pbio.1000043 Introduction timing, acting together with the ROR orthologue Drosophila Hormone Receptor 3 (DHR3) to control ecdysone-induced The closely related REV-ERBa and REV-ERBb proteins molting, pupariation, and eclosion [18]. To perform these generally act as transcriptional repressors, either on their own, by recruiting co-repressor proteins [1–3], or by competing with the Retinoid-related Orphan Receptors Academic Editor: Ueli Schibler, University of Geneva, Switzerland (RORs) a, b,orc for the same DNA binding sites [4–6]. Received July 24, 2008; Accepted January 12, 2009; Published Feburary 24, 2009 Physiologically, the REV-ERB proteins play a number of Copyright: Ó 2009 Pardee et al. This is an open-access article distributed under the diverse and important roles ranging from the control of terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, circadian biology to the homeostasis of lipids. REV-ERBa and transmitted, modified, built upon, or otherwise used by anyone for any lawful b directly regulate circadian rhythm, both in the brain, and in purpose. peripheral tissues, by targeting the circadian clock genes Abbreviations: BMAL1, Brain, Muscle Arnt-like protein-1; CO, carbon monoxide; Bmal1 and clock [6–11]. Regulation of lipid metabolism and Deta/NO, diethylenetriamine/NO; E75, Ecdysone-induced protein 75; HEK, human embryonic kidney; HepG2, hepatocellular carcinoma; LBD, ligand-binding domain; stimulation of adipogenesis by the REV-ERBs is mediated in mPER2, mammalian Period 2; mP, millipolarization unit; NCOR, Nuclear Receptor part through repression of the apolipoprotein A1 (ApoA1) Co-repressor; NO, nitric oxide; NPAS2, Neuronal PAS domain protein; NR, nuclear and apolipoprotein C3 (ApoCIII) gene promoters, which play receptor; RIP140, Receptor Interaction Protein 140; ROR, Retinoid-related Orphan Receptor; ROS, reactive oxidant species; siRNA, small interfering RNA; SMRT, major roles in cholesterol metabolism [12–14]. REV-ERBs also Silencing Mediator for Retinoid and Thyroid hormone receptor; SNAP, S-nitroso-N- control inflammatory responses by inducing nuclear factor acetyl-l,l-penicillamine; TCEP, tris(2-carboxyethyl)phosphine; UAS, upstream acti- vating sequences kappa-light-chain-enhancer of activated B cells (NFjB), interleukin-6 (IL6), and cyclooxygenase2 (COX2) expression, * To whom correspondence should be addressed. E-mail: aled.edwards@utoronto. ca (AE); [email protected] (HMK) and by repressing IjBa expression [15,16]. In the liver, REV- ¤a Current address: Department of Structural and Chemical Biology, Ichah Medical ERBs also help regulate gluconeogenesis, consistent with an Institute, Mount Sinai School of Medicine, New York, New York, United States of overall role in energy storage and conservation [17]. America In Drosophila, the REV-ERB homologue, Ecdysone-induced ¤b Current address: Protein Sample Production Facility, Max Delbru¨ck Center for protein 75 (E75) is best known for its role in developmental Molecular Medicine, Berlin, Germany PLoS Biology | www.plosbiology.org0384 February 2009 | Volume 7 | Issue 2 | e1000043 REV-ERB Structure and Gas Regulation Author Summary Much of human biology, such as sleeping, eating, and even the prevalence of heart attacks, occurs in daily cycles. These cycles are orchestrated by a master ‘‘clock’’ located in the brain. The basic components of this clock are proteins that control the expression of important genes. In this study, we analyze one of these regulatory proteins, named REV-ERB, and show that it is regulated by the combination of heme and nitric oxide gas, both of which are important regulators of human physiology. By determining the 3-D structure of the REV-ERB protein, we were able to uncover clues as to how this regulation occurs. REV-ERB belongs to a protein family called nuclear hormone receptors, which are known to be excellent drug targets. Thus, this paper opens the door to possible gas-based therapies for diseases known to involve REV-ERB, such as diabetes, atherosclerosis, inflammation, and cancer. Figure 1. Mutagenesis of REV-ERBb Heme-Binding Residues As detemined by measurement of construct c absorption peaks (419 nm), mutation of heme binding residues reduces, but does not abolish functions, E75 appears to require heme as a requisite ligand, heme binding. bound presumably within its ligand-binding domain (LBD) doi:10.1371/journal.pbio.1000043.g001 ligand pocket. E75 is not stable in the absence of heme, nor does the bound heme dissociate readily, suggesting that heme the REV-ERB LBDs. Using crystallography and spectroscopy, is an obligate component of E75. Interestingly, the presence we determined the structure of the heme-bound REV-ERBb of heme allows E75 to also bind the diatomic gases nitric LBD from which we are able to propose a model for heme oxide (NO) and carbon monoxide (CO), which function to and gas binding. reverse E75-mediated transcription repression [19]. The REV- ERBs also bind heme but, unlike E75, the heme can readily Results dissociate from the REV-ERBs, and this reversible binding regulates REV-ERB transcription activity [17,20]. The REV- Heme Binding to REV-ERB LBD Is Reversible ERB LBDs do not appear to share the ability to bind gases or Overexpression of either of the REV-ERB LBDs in to respond to redox [20], raising the possibility that E75 and Escherichia coli produces apo forms of the repressors. The REV-ERBs have evolved two different ways to exploit heme- heme-bound form is produced only if the culture medium is binding. supplemented with hemin (Figure S1). While REV-ERBs The structural basis for heme binding in REV-ERB expressed with and without hemin supplementation appear proteins, and heme and gas binding in E75, is unknown, to be equally abundant and soluble (Figure S1), they differ although mutagenesis and transcription studies have impli- strikingly in color, with the heme-bound form intensely red, cated conserved histidine and cysteine residues in heme and the apo form colorless. Incubation of either purified binding. A crystal structure of the REV-ERBb LBD in the REV-ERBa or b apo LBD with hemin in solution, results in absence of heme has revealed a classic nuclear receptor (NR) full heme occupancy within seconds or less (unpublished fold, but the mechanisms of heme binding could not be data), while washing the heme-bound LBDs with buffer deduced from the structure, because the conserved histidine lacking heme leads to a much slower release of the bound residue points away from the putative ligand-binding pocket heme (T1/2 ;13–16 h; Figure S2). Overall a Kd of approx- and the conserved cysteine residue was not present in the imately 6 lM was observed (unpublished data). Thus, unlike construct that generated the structure. Moreover, the E75, where heme appears to act as a requisite structural putative pocket is fully occupied by hydrophobic side chains component, in the REV-ERBs it can function potentially as a [21]. The extensive structural similarities between the REV- reversible ligand. ERB and E75 LBDs coupled with the apparent mechanistic differences prompted us to explore more deeply the basis for Heme Is Coordinately Bound to Alternative His and Cys both heme binding and the potential for gas regulation.
Recommended publications
  • Study of the Role of the Adaptor Protein Myd88 in the Iron-Sensing Pathway
    Université de Montréal Study of the role of the adaptor protein MyD88 in the iron-sensing pathway and of the effect of curcumin in the development of anemia in a DSS-induced colitis mouse model By Macha Samba Mondonga Department of Microbiology and Immunology Faculty of Medicine Thesis presented to the Faculty of Graduate Studies in partial fulfillment of the Ph.D. degree in Microbiology, Immunology and Infectious Diseases 30 Aout 2018 © Macha Samba Mondonga, 2018 Université de Montréal Cette thése est intitulée: Study of the role of the adaptor protein MyD88 in the iron-sensing pathway and of the effect of curcumin in the development of anemia in a DSS-induced colitis mouse model Par Macha Samba Mondonga Department of Microbiology and Immunology Faculty of Medicine 30 Aout 2018 © Macha Samba Mondonga, 2018 RÉSUMÉ Étude du rôle de la protéine adaptatrice MyD88 dans la voie de détection du fer et de l’effet de la curcumine dans le développement de l'anémie dans un modèle murin de colite induite par le DSS L'hepcidine est l'hormone peptidique essentielle pour la régulation systémique de l'homéostasie du fer, en déclenchant la dégradation de la ferroportine et en évitant le développement d'une surcharge ou d'une carence en fer. L'expression de l'ARNm de l'hepcidine HAMP est contrôlée par deux voies principales, la voix de signalisation inflammatoire et la voie de détection en fer, BMP/SMAD4. Il a été rapporté que MyD88, la protéine adaptatrice impliquée dans l'activation des cytokines via la stimulation des récepteurs toll-like (TLRs), contribue à l'expression de l'hepcidine dans la voie inflammatoire.
    [Show full text]
  • Data-Driven Insights Into Ligands, Proteins, and Genetic Mutations
    Data-Driven Insights into Ligands, Proteins, and Genetic Mutations by Jing Lu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in the University of Michigan 2016 Doctoral Committee: Professor Heather A. Carlson, Chair Professor Charles L. Brooks III Assistant Professor Barry Grant Professor David S. Sept Professor Kerby A. Shedden © Jing Lu, 2016 Acknowledgements I would like to thank my advisor, Dr. Heather Carlson, for years of patient guidance, teaching, and support through the course of my PhD. I have learnt how to think critically and be rigorous in every step of research. I also want to express gratitude to my committee: Professor Charles L. Brooks III, Assistant Professor Barry Grant, Professor David S. Sept, Professor Kerby A. Shedden. Their advising is insightful and deepens my understanding of my research projects. I would like to thank Dr. Richard Smith for timely support for both my writing and research. For many Saturdays and Sundays, he promptly responds my requests for proofreading. Much of my work is built on his code in protein and ligand analysis. I would like to thank other members in Dr. Carlson’s lab for helping me with my work. Through the discussion with Dr. Jim Dunbar, I have learnt many critical ideas in Cheminformatics. Also, thank you to Sarah Graham and Jordan Clark for their tremendous friendship and willing to help with my writing. I would also thank previous members in Dr. Carlson’s lab. I would thank Dr. Phani Ghanakota for many late-night discussions and Dr.
    [Show full text]
  • Targeting Heme with Single Domain Antibodies
    Targeting Heme with Single Domain Antibodies Zélia Licínia Ferreira Gouveia Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, June, 2015 Targeting Heme with Single Domain Antibodies Zélia Licínia Ferreira Gouveia Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Research work coordinated by: Oeiras, Junho, 2015 Targeting Heme with Single Domain Antibodies Zélia Licínia Ferreira Gouveia Supervisor: Dr. Miguel P.Soares Instituto Gulbenkian da Ciência Co-Supervisor: Dr. Smilja Todorovic Instituto de Tecnologia Química e Biológica PhD fellowship financed by Fundação para a Ciência e Tecnologia (Apoio financeiro da FCT e do FSE no âmbito do Quadro Comunitário de apoio, BD: SFRH/BD/44828/2008) Oeiras, Junho, 2015 Acknowledgements Firstly and primarily I would like to express my most sincere gratitude to my Ph.D supervisor Dr. Miguel P. Soares for accepting me as his Ph.D student and to trust me this Ph.D project. I want to thank him for his help, advices and for non-stop teaching and extremely helpful and constructive scientific discussions. Today, I am the scientist that you help to build, thank you very much! I extremely grateful to Dr. Miguel P. Soares for his understanding and support, in a particular period of my life in which I had to take several weeks of my work time to be and support my family as we were having a extremely difficult time in our life. For all of this and more, thank you very much! I am grateful to Dr.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0098193 A1 Kingsmore Et Al
    US 2011 0098193A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0098193 A1 Kingsmore et al. (43) Pub. Date: Apr. 28, 2011 (54) METHODS AND SYSTEMS FOR MEDICAL type (such as a disease symptom) of the trait, wherein the SEQUENCING ANALYSIS association of the relevant element with the relevant compo nent phenotype identifies the relevant element as an element (76) Inventors: Stephen F. Kingsmore, St. associated with the trait, wherein the relevant component Augustine, FL (US); Callum J. phenotype is a component phenotype having a threshold Bell, Santa Fe, NM (US) value of severity, age of onset, specificity to the trait or dis ease, or a combination, wherein the relevant element is an (21) Appl. No.: 12/910,764 element having a threshold value of importance of the ele ment to homeostasis relevant to the trait, intensity of the (22) Filed: Oct. 22, 2010 perturbation of the element, duration of the effect of the element, or a combination. The disclosed methods are based Related U.S. Application Data on a model of how elements affect complex diseases. The disclosed model is based on the existence of significant (60) Provisional application No. 61/254,115, filed on Oct. genetic and environmental heterogeneity in complex dis 22, 2009. eases. Thus, the specific combinations of genetic and envi ronmental elements that cause disease vary widely among the Publication Classification affected individuals in a cohort. The disclosed model is an (51) Int. Cl. effective, general experimental design and analysis approach C4OB 30/04 (2006.01) for the identification of causal variants in common, complex C4DB 60/2 (2006.01) diseases by medical sequencing.
    [Show full text]
  • Mechanisms of Paracrine and Endocrine Actions of Angiotensin II
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2004 Mechanisms of paracrine and endocrine actions of Angiotensin II Suyeon Kim University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Kim, Suyeon, "Mechanisms of paracrine and endocrine actions of Angiotensin II. " PhD diss., University of Tennessee, 2004. https://trace.tennessee.edu/utk_graddiss/4533 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Suyeon Kim entitled "Mechanisms of paracrine and endocrine actions of Angiotensin II." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Human Ecology. Naima Moustaid-Moussa, Major Professor We have read this dissertation and recommend its acceptance: Jay Whelan, Jung Han Kim, Brynn H. Jones, John Koontz Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertationwritten by Suyeon Kim entitled "Mechanisms of paracrine and endocrineactions of Angiotensin II." I have examined the finalpaper copy of this dissertation for formand content and recommend that it be accepted in partial fulfillment of the requirements forthe degreeof Doctor of Philosophy, with a major in Human Ecology.
    [Show full text]
  • The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-27-2016 Intrinsic Disorder Where You Least Expect It: The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Bioinformatics Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Scholar Commons Citation Deforte, Shelly, "Intrinsic Disorder Where You Least Expect It: The ncI idence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank" (2016). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6219 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Intrinsic Disorder Where You Least Expect It: The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank by Shelly DeForte A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Vladimir Uversky, Ph.D. Yu Chen, Ph.D. Robert Deschenes, Ph.D. Sandy Westerheide, Ph.D. Bin Xue, Ph.D. Date of Approval: June 14, 2016 Keywords: intrinsically disordered protein, x-ray crystallography, structural biology, enzyme function Copyright © 2016, Shelly DeForte Table of Contents List of Tables ................................................................................................ iv List of Figures ...............................................................................................
    [Show full text]
  • Acronyms/Abbreviations
    NOAA Coral Reef Information System - Glossary of Terminology Coral Reef Information System Home Data & Publications Regional Portals CRCP Activities Glossary Home / Glossary Home / Glossary of Terminology and Acronyms/Abbreviations Acronyms/Abbreviations A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 20CR : 20th Century Reanalysis A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | A : Adenine A/D : Analog/Digital A3H : Activities and Attractions Association of Hawaii AA : Alien Algae AA : Assistant Administrator AA : Atomic Absorption AA : Awareness and Appreciation AA : Awareness and Appreciation Team (SEFCRI) AAAS : American Association for the Advancement of Science AACL : Aquaculture, Aquarium, Conservation and Legislation http://coralglossaryxml.s3-website-us-west-2.amazonaws.com/print-acronym.html[9/13/2015 3:46:07 PM] NOAA Coral Reef Information System - Glossary of Terminology AAFC : Agriculture and Agri-Food Canada AAG : American Association of Geographers AAL : Average Annual Loss AAPA : American Association of Port Authorities AAPG : American Association of Petroleum Geologists AAR : Amino Acid Racemization AARNet : Australian Academic and Research Network AAS : Alternate Air Source AAS : Atomic Absorption Spectrometry AATAMS : Australian Acoustic Tagging and Monitoring System AAUS : American Academy of Underwater Sciences ABC : Acceptable Biological Catch ABC : ATP Binding Cassette ABE : Autonomous Benthic Explorer
    [Show full text]
  • Ferric Heme As a CO/NO Sensor in the Nuclear Receptor Reverbβ by Coupling 2 Gas Binding to Electron Transfer 3 Anindita Sarkar1, Eric L
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.164806; this version posted June 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Ferric Heme as a CO/NO Sensor in the Nuclear Receptor Reverbβ by Coupling 2 Gas binding to Electron Transfer 3 Anindita Sarkar1, Eric L. Carter1, Jill B. Harland2, Amy L. Speelman2,3, Nicolai Lehnert2, and Stephen W. 4 Ragsdale1* 5 1Department oF Biological Chemistry, University oF Michigan, Ann Arbor, Michigan 48109. 6 2Department oF Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109. 7 3Current address: PaciFic Northwest National Laboratory, Richland, WA 99354. 8 9 Abstract 10 Rev-Erbβ is a nuclear receptor that couples circadian rhythm, metabolism, and inflammation.1-7 11 Heme binding to the protein modulates its function as a repressor, its stability, its ability to bind 12 other proteins, and its activity in gas sensing.8-11 Rev-Erbβ binds Fe3+-heme tighter than Fe2+- 13 heme, suggesting its activities may be regulated by the heme redox state.9 Yet, this critical role of 14 heme redox chemistry in defining the protein’s resting state and function is unknown. We 15 demonstrate by electrochemical and whole-cell electron paramagnetic resonance experiments that 16 Rev-Erbβ exists in the Fe3+ form within the cell essentially allowing the protein to be heme-replete 17 even at low concentrations of labile heme in the nucleus.
    [Show full text]
  • Ferric Heme As a CO/NO Sensor in the Nuclear Receptor Rev-Erbß by Coupling Gas Binding to Electron Transfer
    Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer Anindita Sarkara, Eric L. Cartera,1, Jill B. Harlandb, Amy L. Speelmanb,c,2, Nicolai Lehnertb, and Stephen W. Ragsdalea,3 aDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109; bDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109; and cDepartment of Biophysics, University of Michigan, Ann Arbor, MI 48109 Edited by John T. Groves, Princeton University, Princeton, NJ, and approved November 19, 2020 (received for review August 6, 2020) Rev-Erbβ is a nuclear receptor that couples circadian rhythm, me- are in low nanomolar concentrations (∼<2.5 nM) (20). Here, we tabolism, and inflammation. Heme binding to the protein modu- focus on the Fe3+/2+ redox couple and how this redox poise lates its function as a repressor, its stability, its ability to bind other contributes to Rev-Erb’s ability to be a gas sensor. The heme- proteins, and its activity in gas sensing. Rev-Erbβ binds Fe3+-heme binding constants for the different redox states of Rev-Erbβ range 2+ 3+ 2+ more tightly than Fe -heme, suggesting its activities may be reg- over 200-fold, from the Fe /thiolate with Kd ∼0.1 nM to Fe with ulated by the heme redox state. Yet, this critical role of heme re- Kd ∼22 nM (15). These Kd values indicate that Rev-Erb would lose dox chemistry in defining the protein’s resting state and function a significant amount of heme if it is reduced to the ferrous form, is unknown.
    [Show full text]
  • Biology Is the Most Powerful Technology on the Planet
    biology is the most powerful technology on the planet WE’RE HIRING ginkgobioworks.com/careers One source. Multiple solutions. Wherever your research takes you, whatever the latest technology, you can rely on our real-industry expertise and high quality, trusted products. Together, we can create long-lasting partnerships that stand the test of time and technology. See what we can do for you at www.idtdna.com. table of contents About ......................................................................................................... 9 Team Map ................................................................................................... 10 Contributors ............................................................................................... 12 Sponsors ..................................................................................................... 18 Exhibitors ................................................................................................... 19 Maps ......................................................................................................... 20 Exterior Hynes Convention Center...................................................... 20 Plaza Level ....................................................................................... 21 Halls A and B ..................................................................................... 22 Second Floor..................................................................................... 23 Third Floor.......................................................................................
    [Show full text]
  • ROLE of BIOACTIVE FOOD COMPOUNDS in ACUTE and CHRONIC INFLAMMATION Victor Pallarés López
    ROLE OF BIOACTIVE FOOD COMPOUNDS IN ACUTE AND CHRONIC INFLAMMATION Victor Pallarés López Dipòsit Legal: T.1472-2012 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • M. Muoio and Daniel P. Kelly Kapoor, Timothy R. Koves, Robert Stevens
    Energy Metabolic Re-Programming in the Hypertrophied and Early Stage Failing Heart: A Multi-systems Approach Ling Lai, Teresa C. Leone, Mark P. Keller, Ola J. Martin, Aimee T. Broman, Jessica Nigro, Kapil Kapoor, Timothy R. Koves, Robert Stevens, Olga R. Ilkayeva, Rick B. Vega, Alan D. Attie, Deborah M. Muoio and Daniel P. Kelly Circ Heart Fail. published online September 18, 2014; Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 1941-3289. Online ISSN: 1941-3297 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circheartfailure.ahajournals.org/content/early/2014/09/18/CIRCHEARTFAILURE.114.001469 Data Supplement (unedited) at: http://circheartfailure.ahajournals.org/content/suppl/2014/09/18/CIRCHEARTFAILURE.114.001469.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation: Heart Failure is online at: http://circheartfailure.ahajournals.org//subscriptions/ Downloaded from http://circheartfailure.ahajournals.org/ at Loyola University of Chicago on November 3, 2014 Energy Metabolic Re-Programming in the Hypertrophied and Early Stage Failing Heart: A Multi-systems Approach Lai et al: Metabolic Remodeling in Heart Failure Ling Lai, MD, PhD1; Teresa C.
    [Show full text]