Targeting Heme with Single Domain Antibodies

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Heme with Single Domain Antibodies Targeting Heme with Single Domain Antibodies Zélia Licínia Ferreira Gouveia Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, June, 2015 Targeting Heme with Single Domain Antibodies Zélia Licínia Ferreira Gouveia Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Research work coordinated by: Oeiras, Junho, 2015 Targeting Heme with Single Domain Antibodies Zélia Licínia Ferreira Gouveia Supervisor: Dr. Miguel P.Soares Instituto Gulbenkian da Ciência Co-Supervisor: Dr. Smilja Todorovic Instituto de Tecnologia Química e Biológica PhD fellowship financed by Fundação para a Ciência e Tecnologia (Apoio financeiro da FCT e do FSE no âmbito do Quadro Comunitário de apoio, BD: SFRH/BD/44828/2008) Oeiras, Junho, 2015 Acknowledgements Firstly and primarily I would like to express my most sincere gratitude to my Ph.D supervisor Dr. Miguel P. Soares for accepting me as his Ph.D student and to trust me this Ph.D project. I want to thank him for his help, advices and for non-stop teaching and extremely helpful and constructive scientific discussions. Today, I am the scientist that you help to build, thank you very much! I extremely grateful to Dr. Miguel P. Soares for his understanding and support, in a particular period of my life in which I had to take several weeks of my work time to be and support my family as we were having a extremely difficult time in our life. For all of this and more, thank you very much! I am grateful to Dr. Smilja Todorovic, for giving me the opportunity to join in her laboratory and for accepting me as Ph.D student, for her advices, support and precious and fundamental help in Resonance Raman spectroscopy. I also want to thank to all the present and past members of Inflammation groups for their help, support, discussion and the most diverse moments spent together. A special thanks to Sofia, for her advices, support and many other things. To Viktória Jeney, for all the help and teach in the begining of this project and for the beautiful words and advices. Thanks the wonderful person, Ramus, for showing me that the comprehension and the calm can be your best friends in the moments that everything seems to be under tumult. Thanks to Raffi, for all your help. Sílvia, thank you very much for been always so friendly. To Rita Carlos, Susana Ramos and Sebastian Weiss thanks for the comments and the correction of the introduction part of the thesis. To my previous group member and now good friend Ana Cunha, my thanks for being always present and supportive and for all her scientific and non scientific help. I To my good friend Ana Rita Mateus, my thanks for the support and for always been presence in the good or less good moments. Ana Regalado, my sincere and most adorable friend, thank you very much for being always present and willing to listen and share ideas and advices. I am also grateful to the people involved in the many collaborations that support this work (chapter 2), including Dr. João Gonçalves from Faculdade de Farmácia e Instituto de Medicina Molecular, for receiving me in his research group for almost two years and to supervise my work in the development of single domain antibodies against heme using phage display technology. Thanks also to all his group members, for their help, support and time. Dr. Frederico Aires-da-Silva, from Technophage for providing me many useful suggestions about Phage display technology and many other things. Also, for all the scientific discussions and for being always available to take time to teach me and sharing his scientific knowledge. Dr. Claúdio Gomes from Instituto tecnologia Química e Biológica, for his kindness, availability and all his scientific help to performed spectroscopic techniques Dr. Olga Iranzo from Instituto tecnologia Química e Biológica, for her precious help in the biotinylation of Heme. Dr. Iqbal Hamza from the University of Maryland, for his kindness, availability and discussion on this work. Also, for receiving me his laboratory and providing me all the material and support required to perform HPR assay. To all his group members and in special Tamika Samuel and Carine White for their kindness, availability and scientific or non scientific help, as well as Jason Sinclair and Xiaojing Yuan for their kindness and availability. And to all the other collaborators, my thanks. I am also grateful to my Thesis committee, Dr. Alekos Athanasiadis, IGC and Dr. Miguel Teixeira, ITQB. II I want to thank to Instituto Gulbenkian da Ciência and all IGC community, for providing an amazing scientific environment. All this work was only possible because I have amazing people supporting me at all the moments, my loved companion and my family and of course my good friends. I want to thank my beloved family and specially my mother, Felismina Pereira Ferreira and my father, José da Assunção Gouveia, for so many things that there is no space in this thesis to mention them. My most and important thank you. Ao meu querido pai, José da Assunção Gouveia, o meu Muito Obrigada para todo o sempre! Se hoje defendo esta tese é sem dúvida graça a ti e à mãe! To my companion Pierre Crozet, first I would like to thank you for being such an amazing friend and for all the love demonstrated and shared. Thank you for all the support, help and comments/discussions in non and scientific fields. Thanks for helping me in my thesis, correcting/commenting it. I am also grateful to his amazing and adorable family to receive me like family. Merci à tous, et surtout à Joёlle Crozet-Vaugelade, Jean Jeacques Crozet et Elisabeth Crozet. I would like to acknowledge the Fundação para a Ciência e Tecnologia (Apoio financeiro da FCT e do FSE no âmbito do Quadro Comunitário de apoio, BD: SFRH/BD/44828/2008), Instituto Gulbenkia da Ciência and Inflammation Group of Dr. Miguel P. Soares, who have finantially supported my Ph.D Work. I would like to apologize in advance to the many people that I might not have mention in this section but for sure help me along these years to develop this work. For all of them, my sincere thanks. I would like to finalize with these two popular proverbs “Não importa o tamanho da montanha, ela não pode tapar o sol (Doesn’t matter the size of the mountain, she cannot be cover by the sun)” and “Quando as nuvens passam o Sol brilha” (When III the clouds pass, the sun shines) and by dedicating this thesis to my family, but specially to my beloved father José da Assunção Gouveia, who will always be with us and to my beloved mother Felismina Pereira Ferreira, without them this thesis could not be possible. My eternal thanks! Z.Gouveia IV Abreviations [wav(x), wav(y); Eg]; Waving Bach2; Basic leucine zipper transcription 5c; Five coordinate factor 2 6c; Six coordinate BCP; Breast cancer resistance protein aa; amino acids Biotin; N-[-5- (Hydrazinocarboxy) pentyl]-D- Ab(s); Antibodie (s) biotinamide ABCB10 or ABC-me; ATP-binding cassette Blimp-1; B lymphocyte-induced maturation sub-family B member 10 protein-1 ABCB6; ATP-binding cassette sub-family B BR; Bilirubin member 6 BV; Biliverdin ABCG2; ATP-binding cassette transporter BVR; Biliverdin reductase G2 BW; Body weight ACN; Acetonitrile CCD; Charge coupled device ACTH; Adrenocorticotropic hormone ccm; System I cytochrome c maturation Ala, A; Alanine CcmE; Cytochrome c maturation E ALA; δ-aminolevulinic acid CD; Circular dichroism ALAS; δ -aminolevulinate synthase CD14; Cluster of differentiation 14 ALAS-E; δ -aminolevulinate synthase CD163; Cluster of differentiation 163 erythroid-specific (=ALAS2) cDNA; Complementary DNA ALAS-N; Delta-aminolevulinate synthase CDR; Complementarity-determining regions nonspecific (=ALAS 1) cGMP; Cyclic guanosine monophosphate ANOVA; Analysis of variance CH; Heavy chain constant domain ApoE; Apolipoprotein E ChEBI; Chemical entities of biological Arg, R; Arginine interest Asp, N; Asparagine Cl; Chloride ATP; Adenoside triphosphate CL; Liht chain constant domain ATPase; Adenylpyrophosphatase CLP; Cecal ligation and puncture ATR-FTIR; Attenuated total reflection Fourier CN; Cysteine‑ asparagine transform infrared CO; Carbon monoxide BACH1; Basic leucine zipper transcription CO2; Carbon dioxide factor 1 CoPP; Cobalt protoporphyrin IX COPRO III; Coproporphyrinogen III V CORMs; Monoxide releasing molecules Fe3+; Ferric ion CPOX; Coproporphyrinogen oxidase FECH; Ferrochelatase CS; Cysteine-serine FePP; Hemin Ctrl; Control sdAb FePPCH3; Iron protoporphyrin IX dimethyl CY; Cyanine dyes ester chloride Cys, C; Cysteine FF; Fast flow Cytc; Cytochrome c FITC; Fluorescein isothiocyanate DAPI; 4',6-diamidino-2-phenylindole FLVCR2; Feline leukemia virus subgroup C DETAPAC; Diethylenetriaminepentaacetic receptor 2 acid FR; Framework region DeutP; Iron deuteroporphyrin IX Ft; Ferritin DHB; 2,5-dihydroxybenzoic acid FtH; Heavy/heart chain DMEM; Dulbecco's modified eagle medium FtL; Light/liver chain h DMF; Dimethylformamide Fv; Variable fragment domain DMSO; Dimethylsulfoxide Gly, G; Glycine DNA; Deoxyribonucleic acid GaPP; Gallium protoporphyrin IX dom, A2u; Doming GATA1; GATA binding protein 1 (globin E.coli; Escherichia cole transcription factor 1) EDTA; Ethylenediaminetetraacetic acid GSH; Reduced glutathione EEA; Early endosomes GSSG; Oxidized glutathione ELISA; Enzyme-linked immunosorbent GST; Glutathione S-transferase B assay H2O2; Hydrogen peroxide ER; Endoplasmatic reticulum H2SO4; Sulfuric acid
Recommended publications
  • The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-Erbb
    PLoS BIOLOGY The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBb Keith I. Pardee1,2, Xiaohui Xu1,2,3, Jeff Reinking1,2,7¤a, Anja Schuetz4¤b, Aiping Dong4, Suya Liu5, Rongguang Zhang6, Jens Tiefenbach1,2, Gilles Lajoie5, Alexander N. Plotnikov4¤b, Alexey Botchkarev4, Henry M. Krause1,2*, Aled Edwards1,2,3,4* 1 Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada, 2 Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada, 3 Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada, 4 Structural Genomics Consortium, University of Toronto, Toronto, Canada, 5 Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, 6 Midwest Center for Structural Genomics, Argonne National Lab, Argonne, Illinois, United States of America, 7 Department of Biology, State University of New York at New Paltz, New Paltz, New York, United States of America Heme is a ligand for the human nuclear receptors (NR) REV-ERBa and REV-ERBb, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV- ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 A˚ crystal structure of the REV-ERBb LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384.
    [Show full text]
  • Study of the Role of the Adaptor Protein Myd88 in the Iron-Sensing Pathway
    Université de Montréal Study of the role of the adaptor protein MyD88 in the iron-sensing pathway and of the effect of curcumin in the development of anemia in a DSS-induced colitis mouse model By Macha Samba Mondonga Department of Microbiology and Immunology Faculty of Medicine Thesis presented to the Faculty of Graduate Studies in partial fulfillment of the Ph.D. degree in Microbiology, Immunology and Infectious Diseases 30 Aout 2018 © Macha Samba Mondonga, 2018 Université de Montréal Cette thése est intitulée: Study of the role of the adaptor protein MyD88 in the iron-sensing pathway and of the effect of curcumin in the development of anemia in a DSS-induced colitis mouse model Par Macha Samba Mondonga Department of Microbiology and Immunology Faculty of Medicine 30 Aout 2018 © Macha Samba Mondonga, 2018 RÉSUMÉ Étude du rôle de la protéine adaptatrice MyD88 dans la voie de détection du fer et de l’effet de la curcumine dans le développement de l'anémie dans un modèle murin de colite induite par le DSS L'hepcidine est l'hormone peptidique essentielle pour la régulation systémique de l'homéostasie du fer, en déclenchant la dégradation de la ferroportine et en évitant le développement d'une surcharge ou d'une carence en fer. L'expression de l'ARNm de l'hepcidine HAMP est contrôlée par deux voies principales, la voix de signalisation inflammatoire et la voie de détection en fer, BMP/SMAD4. Il a été rapporté que MyD88, la protéine adaptatrice impliquée dans l'activation des cytokines via la stimulation des récepteurs toll-like (TLRs), contribue à l'expression de l'hepcidine dans la voie inflammatoire.
    [Show full text]
  • Data-Driven Insights Into Ligands, Proteins, and Genetic Mutations
    Data-Driven Insights into Ligands, Proteins, and Genetic Mutations by Jing Lu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in the University of Michigan 2016 Doctoral Committee: Professor Heather A. Carlson, Chair Professor Charles L. Brooks III Assistant Professor Barry Grant Professor David S. Sept Professor Kerby A. Shedden © Jing Lu, 2016 Acknowledgements I would like to thank my advisor, Dr. Heather Carlson, for years of patient guidance, teaching, and support through the course of my PhD. I have learnt how to think critically and be rigorous in every step of research. I also want to express gratitude to my committee: Professor Charles L. Brooks III, Assistant Professor Barry Grant, Professor David S. Sept, Professor Kerby A. Shedden. Their advising is insightful and deepens my understanding of my research projects. I would like to thank Dr. Richard Smith for timely support for both my writing and research. For many Saturdays and Sundays, he promptly responds my requests for proofreading. Much of my work is built on his code in protein and ligand analysis. I would like to thank other members in Dr. Carlson’s lab for helping me with my work. Through the discussion with Dr. Jim Dunbar, I have learnt many critical ideas in Cheminformatics. Also, thank you to Sarah Graham and Jordan Clark for their tremendous friendship and willing to help with my writing. I would also thank previous members in Dr. Carlson’s lab. I would thank Dr. Phani Ghanakota for many late-night discussions and Dr.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0098193 A1 Kingsmore Et Al
    US 2011 0098193A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0098193 A1 Kingsmore et al. (43) Pub. Date: Apr. 28, 2011 (54) METHODS AND SYSTEMS FOR MEDICAL type (such as a disease symptom) of the trait, wherein the SEQUENCING ANALYSIS association of the relevant element with the relevant compo nent phenotype identifies the relevant element as an element (76) Inventors: Stephen F. Kingsmore, St. associated with the trait, wherein the relevant component Augustine, FL (US); Callum J. phenotype is a component phenotype having a threshold Bell, Santa Fe, NM (US) value of severity, age of onset, specificity to the trait or dis ease, or a combination, wherein the relevant element is an (21) Appl. No.: 12/910,764 element having a threshold value of importance of the ele ment to homeostasis relevant to the trait, intensity of the (22) Filed: Oct. 22, 2010 perturbation of the element, duration of the effect of the element, or a combination. The disclosed methods are based Related U.S. Application Data on a model of how elements affect complex diseases. The disclosed model is based on the existence of significant (60) Provisional application No. 61/254,115, filed on Oct. genetic and environmental heterogeneity in complex dis 22, 2009. eases. Thus, the specific combinations of genetic and envi ronmental elements that cause disease vary widely among the Publication Classification affected individuals in a cohort. The disclosed model is an (51) Int. Cl. effective, general experimental design and analysis approach C4OB 30/04 (2006.01) for the identification of causal variants in common, complex C4DB 60/2 (2006.01) diseases by medical sequencing.
    [Show full text]
  • Mechanisms of Paracrine and Endocrine Actions of Angiotensin II
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2004 Mechanisms of paracrine and endocrine actions of Angiotensin II Suyeon Kim University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Kim, Suyeon, "Mechanisms of paracrine and endocrine actions of Angiotensin II. " PhD diss., University of Tennessee, 2004. https://trace.tennessee.edu/utk_graddiss/4533 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Suyeon Kim entitled "Mechanisms of paracrine and endocrine actions of Angiotensin II." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Human Ecology. Naima Moustaid-Moussa, Major Professor We have read this dissertation and recommend its acceptance: Jay Whelan, Jung Han Kim, Brynn H. Jones, John Koontz Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertationwritten by Suyeon Kim entitled "Mechanisms of paracrine and endocrineactions of Angiotensin II." I have examined the finalpaper copy of this dissertation for formand content and recommend that it be accepted in partial fulfillment of the requirements forthe degreeof Doctor of Philosophy, with a major in Human Ecology.
    [Show full text]
  • The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-27-2016 Intrinsic Disorder Where You Least Expect It: The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Bioinformatics Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Scholar Commons Citation Deforte, Shelly, "Intrinsic Disorder Where You Least Expect It: The ncI idence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank" (2016). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6219 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Intrinsic Disorder Where You Least Expect It: The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank by Shelly DeForte A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Vladimir Uversky, Ph.D. Yu Chen, Ph.D. Robert Deschenes, Ph.D. Sandy Westerheide, Ph.D. Bin Xue, Ph.D. Date of Approval: June 14, 2016 Keywords: intrinsically disordered protein, x-ray crystallography, structural biology, enzyme function Copyright © 2016, Shelly DeForte Table of Contents List of Tables ................................................................................................ iv List of Figures ...............................................................................................
    [Show full text]
  • Acronyms/Abbreviations
    NOAA Coral Reef Information System - Glossary of Terminology Coral Reef Information System Home Data & Publications Regional Portals CRCP Activities Glossary Home / Glossary Home / Glossary of Terminology and Acronyms/Abbreviations Acronyms/Abbreviations A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 20CR : 20th Century Reanalysis A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | A : Adenine A/D : Analog/Digital A3H : Activities and Attractions Association of Hawaii AA : Alien Algae AA : Assistant Administrator AA : Atomic Absorption AA : Awareness and Appreciation AA : Awareness and Appreciation Team (SEFCRI) AAAS : American Association for the Advancement of Science AACL : Aquaculture, Aquarium, Conservation and Legislation http://coralglossaryxml.s3-website-us-west-2.amazonaws.com/print-acronym.html[9/13/2015 3:46:07 PM] NOAA Coral Reef Information System - Glossary of Terminology AAFC : Agriculture and Agri-Food Canada AAG : American Association of Geographers AAL : Average Annual Loss AAPA : American Association of Port Authorities AAPG : American Association of Petroleum Geologists AAR : Amino Acid Racemization AARNet : Australian Academic and Research Network AAS : Alternate Air Source AAS : Atomic Absorption Spectrometry AATAMS : Australian Acoustic Tagging and Monitoring System AAUS : American Academy of Underwater Sciences ABC : Acceptable Biological Catch ABC : ATP Binding Cassette ABE : Autonomous Benthic Explorer
    [Show full text]
  • Ferric Heme As a CO/NO Sensor in the Nuclear Receptor Reverbβ by Coupling 2 Gas Binding to Electron Transfer 3 Anindita Sarkar1, Eric L
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.22.164806; this version posted June 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Ferric Heme as a CO/NO Sensor in the Nuclear Receptor Reverbβ by Coupling 2 Gas binding to Electron Transfer 3 Anindita Sarkar1, Eric L. Carter1, Jill B. Harland2, Amy L. Speelman2,3, Nicolai Lehnert2, and Stephen W. 4 Ragsdale1* 5 1Department oF Biological Chemistry, University oF Michigan, Ann Arbor, Michigan 48109. 6 2Department oF Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109. 7 3Current address: PaciFic Northwest National Laboratory, Richland, WA 99354. 8 9 Abstract 10 Rev-Erbβ is a nuclear receptor that couples circadian rhythm, metabolism, and inflammation.1-7 11 Heme binding to the protein modulates its function as a repressor, its stability, its ability to bind 12 other proteins, and its activity in gas sensing.8-11 Rev-Erbβ binds Fe3+-heme tighter than Fe2+- 13 heme, suggesting its activities may be regulated by the heme redox state.9 Yet, this critical role of 14 heme redox chemistry in defining the protein’s resting state and function is unknown. We 15 demonstrate by electrochemical and whole-cell electron paramagnetic resonance experiments that 16 Rev-Erbβ exists in the Fe3+ form within the cell essentially allowing the protein to be heme-replete 17 even at low concentrations of labile heme in the nucleus.
    [Show full text]
  • Ferric Heme As a CO/NO Sensor in the Nuclear Receptor Rev-Erbß by Coupling Gas Binding to Electron Transfer
    Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer Anindita Sarkara, Eric L. Cartera,1, Jill B. Harlandb, Amy L. Speelmanb,c,2, Nicolai Lehnertb, and Stephen W. Ragsdalea,3 aDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109; bDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109; and cDepartment of Biophysics, University of Michigan, Ann Arbor, MI 48109 Edited by John T. Groves, Princeton University, Princeton, NJ, and approved November 19, 2020 (received for review August 6, 2020) Rev-Erbβ is a nuclear receptor that couples circadian rhythm, me- are in low nanomolar concentrations (∼<2.5 nM) (20). Here, we tabolism, and inflammation. Heme binding to the protein modu- focus on the Fe3+/2+ redox couple and how this redox poise lates its function as a repressor, its stability, its ability to bind other contributes to Rev-Erb’s ability to be a gas sensor. The heme- proteins, and its activity in gas sensing. Rev-Erbβ binds Fe3+-heme binding constants for the different redox states of Rev-Erbβ range 2+ 3+ 2+ more tightly than Fe -heme, suggesting its activities may be reg- over 200-fold, from the Fe /thiolate with Kd ∼0.1 nM to Fe with ulated by the heme redox state. Yet, this critical role of heme re- Kd ∼22 nM (15). These Kd values indicate that Rev-Erb would lose dox chemistry in defining the protein’s resting state and function a significant amount of heme if it is reduced to the ferrous form, is unknown.
    [Show full text]
  • Biology Is the Most Powerful Technology on the Planet
    biology is the most powerful technology on the planet WE’RE HIRING ginkgobioworks.com/careers One source. Multiple solutions. Wherever your research takes you, whatever the latest technology, you can rely on our real-industry expertise and high quality, trusted products. Together, we can create long-lasting partnerships that stand the test of time and technology. See what we can do for you at www.idtdna.com. table of contents About ......................................................................................................... 9 Team Map ................................................................................................... 10 Contributors ............................................................................................... 12 Sponsors ..................................................................................................... 18 Exhibitors ................................................................................................... 19 Maps ......................................................................................................... 20 Exterior Hynes Convention Center...................................................... 20 Plaza Level ....................................................................................... 21 Halls A and B ..................................................................................... 22 Second Floor..................................................................................... 23 Third Floor.......................................................................................
    [Show full text]
  • ROLE of BIOACTIVE FOOD COMPOUNDS in ACUTE and CHRONIC INFLAMMATION Victor Pallarés López
    ROLE OF BIOACTIVE FOOD COMPOUNDS IN ACUTE AND CHRONIC INFLAMMATION Victor Pallarés López Dipòsit Legal: T.1472-2012 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • M. Muoio and Daniel P. Kelly Kapoor, Timothy R. Koves, Robert Stevens
    Energy Metabolic Re-Programming in the Hypertrophied and Early Stage Failing Heart: A Multi-systems Approach Ling Lai, Teresa C. Leone, Mark P. Keller, Ola J. Martin, Aimee T. Broman, Jessica Nigro, Kapil Kapoor, Timothy R. Koves, Robert Stevens, Olga R. Ilkayeva, Rick B. Vega, Alan D. Attie, Deborah M. Muoio and Daniel P. Kelly Circ Heart Fail. published online September 18, 2014; Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 1941-3289. Online ISSN: 1941-3297 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circheartfailure.ahajournals.org/content/early/2014/09/18/CIRCHEARTFAILURE.114.001469 Data Supplement (unedited) at: http://circheartfailure.ahajournals.org/content/suppl/2014/09/18/CIRCHEARTFAILURE.114.001469.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation: Heart Failure is online at: http://circheartfailure.ahajournals.org//subscriptions/ Downloaded from http://circheartfailure.ahajournals.org/ at Loyola University of Chicago on November 3, 2014 Energy Metabolic Re-Programming in the Hypertrophied and Early Stage Failing Heart: A Multi-systems Approach Lai et al: Metabolic Remodeling in Heart Failure Ling Lai, MD, PhD1; Teresa C.
    [Show full text]