The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, Sdeforte@Health.Usf.Edu University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-27-2016 Intrinsic Disorder Where You Least Expect It: The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank Shelly Deforte University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Bioinformatics Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Scholar Commons Citation Deforte, Shelly, "Intrinsic Disorder Where You Least Expect It: The ncI idence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank" (2016). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6219 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Intrinsic Disorder Where You Least Expect It: The Incidence and Functional Relevance of Intrinsic Disorder in Enzymes and the Protein Data Bank by Shelly DeForte A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida Major Professor: Vladimir Uversky, Ph.D. Yu Chen, Ph.D. Robert Deschenes, Ph.D. Sandy Westerheide, Ph.D. Bin Xue, Ph.D. Date of Approval: June 14, 2016 Keywords: intrinsically disordered protein, x-ray crystallography, structural biology, enzyme function Copyright © 2016, Shelly DeForte Table of Contents List of Tables ................................................................................................ iv List of Figures ................................................................................................ v Abstract ..................................................................................................... vii 1. Introduction to Intrinsically Disordered Proteins ................................................... 1 1.1 The Dominant Paradigms in Protein Science .............................................. 1 1.2 Defining Intrinsically Disordered Proteins ................................................. 2 1.3 The Subtler Side of Disorder ................................................................ 5 1.4 The Line Between Order and Disorder ..................................................... 7 1.5 The Mechanisms of Disorder ................................................................. 9 1.5.1 Entropy ............................................................................. 10 1.5.2 Accessibility ....................................................................... 11 1.5.3 Plasticity ........................................................................... 11 1.6 Biological Functions ......................................................................... 12 1.6.1 Signaling ........................................................................... 12 1.6.2 Regulation ......................................................................... 12 1.7 Disorder and Protein Evolution............................................................. 13 1.8 The Tools of the Un-Structural Biologist .................................................. 14 1.8.1 Experimental techniques ........................................................ 14 1.8.1.1 X-Ray crystallography. ................................................ 14 1.8.1.2 Nuclear Magnetic Resonance. ........................................ 15 1.8.1.3 Combining experimental techniques................................ 16 1.8.2 Bioinformatics analysis ........................................................... 16 1.8.2.1 Sequence characteristics. ............................................ 16 1.8.2.2 Disorder prediction. ................................................... 18 1.8.2.3 Classification of function. ............................................ 20 1.8.2.4 Proteome level studies ............................................... 20 1.9 Protein Intrinsic Disorder and Disease .................................................... 21 1.10 Protein Intrinsic Disorder and Drug Design and Discovery ............................ 23 i 1.10.1 The story of PTP1B .............................................................. 24 1.11 The Field of Protein Intrinsic Disorder .................................................. 26 1.12 Intrinsic Disorder Where You Least Expect It ........................................... 29 2. Intrinsic Disorder in the Protein Data Bank ......................................................... 31 2.1 Background ................................................................................... 31 2.1.1 The Protein Data Bank ........................................................... 31 2.1.2 Missing regions in the PDB ....................................................... 31 2.1.3 B-factors ........................................................................... 33 2.1.4 Missing regions and the development of disorder prediction ............... 34 2.1.5 Previous studies ................................................................... 35 2.2 Results ......................................................................................... 35 2.2.1 A new method for the characterization of missing regions ................. 35 2.2.2 Ambiguous regions have greater secondary structure variation ........... 39 2.2.3 Different types of missing regions have distinct characteristics ........... 42 2.2.4 Disorder prediction correlates with missing residue conservation ........ 46 2.2.5 Static disorder and wobbly domains are rare in the PDB ................... 49 2.3 Conclusions ................................................................................... 52 3. Intrinsic Disorder in Enzymes ......................................................................... 54 3.1 Background ................................................................................... 54 3.1.1 Intrinsically disordered enzymes in the literature ........................... 54 3.1.2 Previous studies ................................................................... 63 3.2 Results ......................................................................................... 64 3.2.1 Experimental design .............................................................. 64 3.2.2 Enzymes and non-enzymes have a similar incidence of IDPRs. ............ 66 3.2.3 Enzymes and non-enzymes have IDPRs of similar lengths .................. 67 3.2.4 Disorder is specific to enzyme length and type. ............................. 69 3.2.5 Disorder increases with organismic complexity. ............................. 70 3.2.6 Eukaryotic proteins in the PDB are highly truncated ........................ 70 3.2.7 Long IDPRs in enzymes are associated with specific functions ............. 73 3.2.8 Promiscuity is not correlated with disorder in enzymes .................... 74 3.3 Conclusions ................................................................................... 75 4. Materials and Methods ................................................................................. 79 4.1 PubMed Data and Analysis .................................................................. 79 ii 4.1.1 IDP terminology in PubMed ...................................................... 79 4.2 PDB Data and Analysis ....................................................................... 81 4.2.1 Parsing and preparation of the PDB dataset .................................. 81 4.2.2 The assignment of missing residues from PDB files .......................... 82 4.2.3 The creation of PDB composite data in Python............................... 82 4.2.4 Amino acid composition ......................................................... 82 4.2.5 Disorder, binding, and MoRF predictions ...................................... 82 4.3 Reference Proteomes Data and Analysis .................................................. 83 4.3.1 Parsing and preparation of the Reference QFO dataset .................... 83 4.3.2 Enzyme Commission (EC) designations ........................................ 84 4.3.3 Disorder prediction ............................................................... 84 4.3.4 Disorder analysis .................................................................. 86 4.3.4.1 Disorder calculations .................................................. 86 4.3.4.2 Expectation values .................................................... 86 4.3.4.3 Transmembrane domains ............................................. 87 4.3.5 Gene Ontology enrichment ...................................................... 87 References ................................................................................................. 88 Appendix A: Glossary .................................................................................... 101 Appendix B: IDP Search Terms and PubMed IDs ...................................................... 103 Appendix C: IDP Search Terms, Search Results, and Disorder Scores ............................. 142 Appendix D: Intrinsically Disordered Enzymes ....................................................... 179 Appendix E: Copyright Permissions .................................................................... 182 iii List of Tables Table 1 Secondary structure abbreviations. ..........................................................
Recommended publications
  • Intrinsically Disordered Proteins As Crucial Constituents of Cellular Aqueous Two Phase Systems and Coacervates ⇑ Vladimir N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 15–22 journal homepage: www.FEBSLetters.org Hypothesis Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates ⇑ Vladimir N. Uversky a,b,c,d, , Irina M. Kuznetsova d,e, Konstantin K. Turoverov d,e, Boris Zaslavsky f a Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA b Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation c Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia d Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation e St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation f AnalizaDx Inc., 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA article info abstract Article history: Here, we hypothesize that intrinsically disordered proteins (IDPs) serve as important drivers of the Received 17 August 2014 intracellular liquid–liquid phase separations that generate various membrane-less organelles. This Revised 10 October 2014 hypothesis is supported by the overwhelming abundance of IDPs in these organelles. Assembly and Accepted 19 November 2014 disassembly of these organelles are controlled by changes in the concentrations of IDPs, their post- Available online 29 November 2014 translational modifications, binding of specific partners, and changes in the pH and/or temperature Edited by A. Valencia of the solution.
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • Arginine Kinase: a Crystallographic Investigation of Essential Substrate Structure Shawn A
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2006 Arginine Kinase: A Crystallographic Investigation of Essential Substrate Structure Shawn A. (Shawn Adam) Clark Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES ARGININE KINASE; A CRYSTALLOGRAPHIC INVESTIGATION OF ESSENTIAL SUBSTRATE STRUCTURE BY SHAWN A. CLARK A Dissertation submitted to the Department of Chemistry and Biochemistry In partial fulfillment of the requirements for the Degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2006 The members of committee approve the dissertation of Shawn A. Clark defended on 11/2/2006 __________________ Michael Chapman Professor Co-Directing Dissertation __________________ Tim Logan Professor Co-Directing Dissertation __________________ Ross Ellington Outside Committee Member __________________ Al Stiegman Committee Member _________________ Tim Cross Committee Member Approved: ________________________________________ Naresh Dalal, Department Chair, Department of Chemistry & Biochemistry The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS The voyage through academic maturity is full of numerous challenges that present themselves at many levels: physically, mentally, and emotionally. These hurdles can only be overcome with dedication, guidance, patience and above all support. It is for these reasons that I would like to express my sincerest and deepest admiration and love for my family; my wife Bobbi, and my two children Allexis and Brytney. Their encouragement, sacrifice, patience, loving support, and inquisitive nature have been the pillar of my strength, the beacon of my determination, and the spark of my intuition.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • SPATA33 Localizes Calcineurin to the Mitochondria and Regulates Sperm Motility in Mice
    SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice Haruhiko Miyataa, Seiya Ouraa,b, Akane Morohoshia,c, Keisuke Shimadaa, Daisuke Mashikoa,1, Yuki Oyamaa,b, Yuki Kanedaa,b, Takafumi Matsumuraa,2, Ferheen Abbasia,3, and Masahito Ikawaa,b,c,d,4 aResearch Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, Osaka 5650871, Japan; cGraduate School of Medicine, Osaka University, Osaka 5650871, Japan; and dThe Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan Edited by Mariana F. Wolfner, Cornell University, Ithaca, NY, and approved July 27, 2021 (received for review April 8, 2021) Calcineurin is a calcium-dependent phosphatase that plays roles in calcineurin can be a target for reversible and rapidly acting male a variety of biological processes including immune responses. In sper- contraceptives (5). However, it is challenging to develop molecules matozoa, there is a testis-enriched calcineurin composed of PPP3CC and that specifically inhibit sperm calcineurin and not somatic calci- PPP3R2 (sperm calcineurin) that is essential for sperm motility and male neurin because of sequence similarities (82% amino acid identity fertility. Because sperm calcineurin has been proposed as a target for between human PPP3CA and PPP3CC and 85% amino acid reversible male contraceptives, identifying proteins that interact with identity between human PPP3R1 and PPP3R2). Therefore, identi- sperm calcineurin widens the choice for developing specific inhibitors. fying proteins that interact with sperm calcineurin widens the choice Here, by screening the calcineurin-interacting PxIxIT consensus motif of inhibitors that target the sperm calcineurin pathway. in silico and analyzing the function of candidate proteins through the The PxIxIT motif is a conserved sequence found in generation of gene-modified mice, we discovered that SPATA33 inter- calcineurin-binding proteins (8, 9).
    [Show full text]
  • Dissertation Inês Silva ITQB.Pdf
    The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium Inês de Jesus de Almeida e Silva Insert here an image with rounded corners Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Oeiras, December, 2012 The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium Inês de Jesus de Almeida e Silva Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa Oeiras, December, 2012 Financial Support from Fundação para a Ciência e Tecnologia (FCT) – Ph.D: grant - SFRH / BD / 43211 / 2008. Work performed at: Control of Gene Expression Laboratory Instituto de Tecnologia Química e Biológica Av. da República (EAN) 2781-901 Oeiras – Portugal Tel: +351-21-4469548 Fax: +351-21-4469549 Supervisor : Professora Doutora Cecília Maria Pais de Faria de Andrade Arraiano – Investigadora Coordenadora, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. (Head of the Laboratory of Control of Gene Expression, where the work of this Dissertation was performed) Co-supervisor : Doutora Sandra Cristina de Oliveira Viegas – Investigadora Pós-Doutorada, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. (Post-doc Fellow in the Laboratory of Control of Gene Expression, where the work of this Dissertation was performed) President of the Jury : Doutora Claudina Amélia Marques Rodrigues Pousada – Professora Catedrática Convidada do Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, por delegação; iii Examiners: Professor Doutor Iñigo Lasa Uzcudun – Head of Microbial Biofilm Research Group, Instituto de Agrobiotecnología, Pamplona (Principal Examiner).
    [Show full text]
  • POTENTIAL MICROBIAL DETOXIFIERS of Mehg in BARCELONA CITY CONTINENTAL SHELF
    POTENTIAL MICROBIAL DETOXIFIERS OF MeHg IN BARCELONA CITY CONTINENTAL SHELF TREBALL REALITZAT PER Marina Pérez García PER OBTENIR EL TÍTOL DE Màster en Microbiologia Avançada 2017-2018 Treball de Final de Màster realitzat sota la supervisió la Dra Silvia González-Acinas i la Dra Andrea García Bravo a l’Institut de Ciències del Mar (ICM-CSIC) Barcelona, 03 de Setembre de 2018 POTENTIAL MICROBIAL DETOXIFIERS OF MeHg IN BARCELONA CITY CONTINENTAL SHELF TREBALL REALITZAT PER Marina Pérez García PER OBTENIR EL TÍTOL DE Màster en Microbiologia Avançada 2017-2018 Treball de Final de Màster realitzat sota la supervisió la Dra Silvia González-Acinas i la Dra Andrea García Bravo a l’Institut de Ciències del Mar (ICM-CSIC) Barcelona, 03 de Setembre de 2018 Silvia González-Acinas Marina Pérez García Andrea García Bravo Abstract Mercury specially in the form of Methylmercury (MeHg) is a big concern because affects human and wildlife health and accumulates and biomagnified in the aquatics systems through the food chain. Some Bacteria and Archaea have evolved resistance mechanisms to mercury compounds, this resistance is encoded in the mer operon. So, the microorganisms that have merA and merB genes can completely transform the neurotoxic form of MeHg in the volatile form of mercury. Despite the persistence of mercury there is no information about the mercury detoxification processes in Barcelona continental shelf. Therefore, the aim of this study is to detect the presence of merA and merB in past (1987 and 2008) and present (from two months April and May 2018) sediment samples from the Barcelona continental shelf.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of Plant SUN Domain-Interacting Tail Proteins and Analysis of Their Function in Nuclear Positioning
    Identification of Plant SUN Domain-Interacting Tail Proteins and Analysis of Their Function in Nuclear Positioning DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Xiao Zhou, M. S. Graduate Program in Plant Cellular and Molecular Biology The Ohio State University 2013 Dissertation Committee: Professor Iris Meier, Advisor Professor Biao Ding Professor Stephen Osmani Professor R. Keith Slotkin Copyright by Xiao Zhou 2013 Abstract The nuclear envelope (NE) is a double membrane system consisting of an inner nuclear membrane (INM) and an outer nuclear membrane (ONM). Studies in opisthokonts revealed that the two membranes are bridged by protein complexes formed by the INM Sad1/UNC-84 (SUN) proteins and the ONM Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. These SUN-KASH NE bridges are usually linkers of the nucleoskeleton to the cytoskeleton (LINC) conserved across eukaryotes. LINC complexes are key players in multiple cellular processes, such as nuclear and chromosomal positioning and nuclear shape determination, which in turn influence the gametogenesis and several aspects of development. Although these cellular processes have long been also known in plants, no KASH proteins are encoded in the plant genomes. I identified WPP domain interacting proteins (WIPs) as the first plant KASH protein analogs. WIPs are plant-specific ONM proteins that redundantly anchor Ran GTPase activating protein (RanGAP) to the NE. Arabidopsis thaliana WIPs (AtWIPs) interact with Arabidopsis thaliana SUN proteins (AtSUNs), which is required for both AtWIP1 and AtRanGAP1 NE localization. In addition, AtWIPs and AtSUNs are necessary for maintaining the elongated nuclear shape of Arabidopsis epidermal cells.
    [Show full text]
  • Proteomic Analysis of Thioredoxin-Targeted Proteins in Escherichia Coli
    Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli Jaya K. Kumar, Stanley Tabor, and Charles C. Richardson* Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Contributed by Charles C. Richardson, December 29, 2003 Thioredoxin, a ubiquitous and evolutionarily conserved protein, mod- inactivates the apoptosis signaling kinase-1 (ASK-1) (18). This ulates the structure and activity of proteins involved in a spectrum of mode of regulation is incumbent on stringent protein interac- processes, such as gene expression, apoptosis, and the oxidative tions, because these thioredoxin-linked proteins do not contain stress response. Here, we present a comprehensive analysis of the regulatory cysteines. thioredoxin-linked Escherichia coli proteome by using tandem affinity To identify the regulatory pathways in which thioredoxin partic- purification and nanospray microcapillary tandem mass spectrome- ipates, we have characterized the thioredoxin-associated E. coli try. We have identified a total of 80 proteins associated with thiore- proteome. A genomic tandem affinity purification (TAP) tag (19) doxin, implicating the involvement of thioredoxin in at least 26 was appended to thioredoxin, and proteins associated with TAP- distinct cellular processes that include transcription regulation, cell tagged thioredoxin were identified by MS. division, energy transduction, and several biosynthetic pathways. We also found a number of proteins associated with thioredoxin that Methods either participate directly (SodA, HPI, and AhpC) or have key regula- TAP Tagging of trxA. The DNA sequence encoding the TAP tory functions (Fur and AcnB) in the detoxification of the cell. Tran- cassette from plasmid pFA6a-CTAP (20) was fused to the C scription factors NusG, OmpR, and RcsB, not considered to be under terminus of the sequence encoding thioredoxin in plasmid redox control, are also associated with thioredoxin.
    [Show full text]
  • Breast Cancer Antiestrogen Resistance-3 Expression Regulates Breast Cancer Cell Migration Through Promotion of P130cas Membrane Localization Andmembrane Ruffling
    Research Article Breast Cancer Antiestrogen Resistance-3 Expression Regulates Breast Cancer Cell Migration through Promotion of p130Cas Membrane Localization andMembrane Ruffling Randy S. Schrecengost,1 Rebecca B. Riggins,2 Keena S. Thomas,1 Michael S. Guerrero,1 and Amy H. Bouton1 1Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia and 2Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia Abstract antiestrogen resistance-1 (BCAR1; also known as p130Cas; refs. 2, 3). Antiestrogens such as tamoxifen are widely used in the clinic A second protein, BCAR3 (the human homologue of the murine to treat estrogen receptor–positive breast tumors. Resistance protein AND-34), was identified in a genetic screen along with to tamoxifen can occur either de novo or develop over time in BCAR1 as a gene product whose overexpression conferred tamoxifen resistance in vitro (4). BCAR3 is a member of the novel a large proportion of these tumors. Additionally, resistance is S p associated with enhanced motility and invasiveness in vitro. rc homology 2 (SH2)–containing rotein (NSP) family that One molecule that has been implicated in tamoxifen resis- includes two other members, Chat/SHEP1 and NSP1. These tance, breast cancer antiestrogen resistance-3 (BCAR3), has proteins share a common domain structure consisting of an also been shown to regulate migration of fibroblasts. In this amino-terminal SH2 domain and a carboxyl-terminal domain with study, we investigated the role of BCAR3 in breast cancer cell sequence homology to the Cdc25-family of guanine nucleotide exchange factors (GEF). Several studies have shown that BCAR3 migration and invasion.
    [Show full text]
  • X Linked Disease in Females
    J Med Genet 1993; 30: 177-184 177 ORIGINAL ARTICLES J Med Genet: first published as 10.1136/jmg.30.3.177 on 1 March 1993. Downloaded from X chromosome inactivation and the diagnosis of X linked disease in females R M Brown, G K Brown Abstract larly important in the brain which has an In studies of female patients with sus- obligatory requirement for aerobic glucose ox- pected deficiency of the Elm subunit of idation under normal circumstances. Rela- the pyruvate dehydrogenase complex, we tively modest reduction in PDH activity there- have found that X inactivation ratios of fore has significant consequences, especially 80:20 or greater occur at sufficient fre- for central nervous system function. quency in cultured fibroblasts to make Within the PDH complex, the Ela subunit exclusion of the diagnosis impossible in contains the pyruvate binding site and the about 25% of cases. Pyruvate dehydroge- phosphorylation sites by which the activity of nase Elm subunit deficiency is an X linked the whole complex is controlled.5 The gene for inborn error of metabolism which is well the Elca subunit is located on the short arm of defined biochemically and is unusual in the X chromosome in the region Xp22. 1.6 that most heterozygous females manifest However, in all reported series of patients with the condition. The diagnosis is usually PDH Ela deficiency, there are approximately established by measurement of enzyme equal numbers of males and females.2- The activity and the level of immunoreactive clinical presentation does differ between the protein and these analyses are most com- sexes with the acute metabolic form more monly performed on cultured fibroblasts common from the patients.
    [Show full text]