Atlas Antibodies in Breast Cancer Research Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Atlas Antibodies in Breast Cancer Research Table of Contents ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3. Uhlen M, et al. (2019) A genome-wide in academia and industry to freely human body. transcriptomic analysis of protein-coding genes access the data for exploration of the • The Cell Atlas shows the in human blood cells. Science 366(6472). human proteome. subcellular localization of proteins 4. Uhlén M,et al. (2019) The human secretome. in single cells. Sci Signal.12(609) The HPA project aims to present • The Pathology Atlas shows 5. Uhlen M, et al. (2017) A pathology atlas of an expression map of the complete the impact of protein levels for the human cancer transcriptome. Science. human proteome. To accomplish this, survival of patients with cancer. 357(6352) 6. Uhlén M et al. (2015) Tissue-based map of the highly specific Triple A polyclonal • The Brain Atlas explores the human proteome. Science 347(6220):1260419. antibodies are developed against protein expression in the 7. Uhlén M et al. (2010) Towards a knowledge- all protein-coding human genes and mammalian brain by integration based Human Protein Atlas. Nat Biotechnol protein profiling is established in a of data from three mammalian 28(12):1248-50. multitude of tissues and cells using species: human, pig and mouse. 8. Uhlén M, et al. (2005) A human protein tissue arrays. The antibodies are • The Blood Atlas contributes with atlas for normal and cancer tissues based on tested in immunohistochemistry (IHC), data regarding the cell types and antibody proteomics. Mol Cell Proteomics. Western blot (WB) analysis, protein proteome of human blood. 4(12):1920-32 array assay and immunofluorescent • The Metabolic Atlas enables the based confocal microscopy (ICC-IF). exploration of protein function and gene expression in the context of The Human Protein Atlas program the human metabolic network. has already contributed to several thousands of publications in the field The HPA project employes tissue of human biology and disease and microarrays with samples from 44 it is selected by the organization different normal human tissues, 20 ELIXIR (www.elixir-europe.org) as different cancer types and 44 different a European core resource due to its human cell lines. The 44 normal fundamental importance for a wider tissues are present in triplicate life science community. samples and represent 82 different proteinatlas.org Page 4 (24) Triple A Polyclonals Triple A Polyclonals - the native protein suitable for triggering the same protein target, allowing the the generation of antibodies of high results and validation of one antibody Building Blocks of HPA specificity. This is achieved by a to be used to validate the other one. The uniqueness and low cross complete human genome scanning reactivity of Triple A Polyclonals to to ensure that PrESTs with the lowest other proteins are due to a thorough Triple A Polyclonal catalog homology to other human proteins Today, there are more than 17,000 selection of antigen regions, affinity are used as antigens. purification on the recombinant Triple A Polyclonals and new antigen, validation using several antibodies are added each year. methods and a stringent approval Approval process. The approval of Triple A Polyclonals The antibodies developed relies on a combined validation of and characterized within the the experimental results using IHC, Human Protein Atlas project are Development WB or ICC-IF, from RNA sequencing made available to the scientific The Triple A Polyclonals are and from information obtained via community by Atlas Antibodies developed against recombinant bioinformatics prediction methods under the brand name "Triple A human Protein Epitope Signature and literature. Since the literature Polyclonals". The antibodies are Tags (PrESTs) of approximately 50 is often inconclusive, an important available in 25 and 100 µL size. to 150 amino acids. These protein objective of the HPA project has been fragments are designed, using a to generate paired antibodies with The product numbers of Triple A proprietary software, to contain non-overlapping epitopes towards unique epitopes present in the Polyclonals start with "HPA". PrecisA Monoclonals Atlas Antibodies also provide In addition to positive stained tissue, a selected number of mouse Epitope Mapping a negative control tissue staining is monoclonal antibodies, under the Clones are epitope-mapped using also displayed and if relevant, clinical brand name PrecisA Monoclonals. synthetic overlapping peptides in a cancer tissue staining. The PrecisA Monoclonal catalog bead-based array format for selection is regularly expanding with new of clones with non-overlapping The Western blot (WB) products every year. epitopes only. characterization includes results from endogenous human cell or tissue protein lysates or optionally Unique Features Isotyping Special care is taken in offering recombinant full-length human All PrecisA Monoclonals antibodies protein lysates. clones recognizing only unique are isotyped to allow for multiplexing non-overlapping epitopes and/ using isotype-specific secondary or isotypes. Using the same Each PrecisA Monoclonal is thus antibodies. stringent PrEST production process supplied with the most relevant and characterization procedure characterization data for its specific as for the Triple A Polyclonals, Hybridoma Cell Cultivation target. the PrecisA Monoclonals offer Atlas Antibodies use in-vitro methods outstanding performance in approved for the production scale-up phase PrecisA Monoclonals are applications, together with defined thus replacing the use of mice for developed by Atlas Antibodies, based on the knowledge from the specificity, secured continuity and production of ascites fluid. stable supply. In general they also Human Protein Atlas with careful permit high working dilutions and antigen design and extended contribute to more standardized Antibody Characterization validation of antibody performance. assay procedures. The characterization of PrecisA With precise epitope information Monoclonals starts with an extensive following all monoclonals, these literature search to select the most precise, accurate and targeted Clone Selection relevant and clinically significant antibodies are denoted PrecisA Functional characterization is tissues to use for IHC characterization. Monoclonals. The antibodies are performed on a large number of Often there are more than one tissue available in 25 and 100 µL size. ELISA positive cell supernatants to type displayed in the IHC application select the optimal clones for each data for each antibody. The product numbers of PrecisA application prior to subcloning and Monoclonals start "AMAb". expansion of selected hybridomas. Page 5 (24) Clinical markers (ESR1, HER2, Ki67, PGR) - established clinical breast cancer markers 6. Pohler E et al. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate Target protein Product Product Validated palmoplantar keratoderma. Nat Genet. 2012 Nov; 44(11):10.1038/ng.2444. Name Number Applications 7. Roca H et al. IL-4 induces proliferation in prostate cancer PC3 cells under nutrient-depletion stress Estrogen receptor Anti-ESR1 HPA0004491 IHC*,WB*,ICC-IF through the activation of the JNK-pathway and survivin upregulation. J Cell Biochem 2012 May; 113(5):1569-1580. Estrogen receptor Anti-ESR1 HPA0004501 IHC*,WB* Estrogen receptor Anti-ESR1 AMAb90867 IHC,WB*,ICC-IF Progesteron receptor Anti-PGR HPA0047512 IHC* Estrogen receptor Progesteron receptor Anti-PGR HPA0084283 IHC* (A) IHC staining with Progesteron receptor Anti-PGR HPA017176 IHC* A B the Anti-ESR1 antibody HER2/ERBB2 Anti-ERBB2 HPA0013833,4 IHC,WB,ICC-IF (HPA000449) shows distinct nuclear positivity HER2/ERBB2 Anti-HER2 AMAb90627 IHC,WB in glandular cells in Ki67/MKI67 Anti-MKI67 HPA0004515,6 IHC*,ICC-IF human breast tissue and in tumor cells in 7 (B) Ki67/MKI67 Anti-MKI67 HPA001164 IHC*,ICC-IF breast cancer samples. Ki67/MKI67 Anti-MKI67 AMAb90870 IHC,ICC-IF * Products with enhanced validation for indicated application (A) IHC staining
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • AN INVESTIGATION of the ROLE of PAK6 in TUMORIGENESIS By
    AN INVESTIGATION OF THE ROLE OF PAK6 IN TUMORIGENESIS by JoAnn Roberts A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant No. DGE: 0638662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. I would like to thank and acknowledge my thesis advisor, Dr. Michael Lu, for his support and guidance throughout the writing of this thesis and design of experiments in this manuscript. I would also like to thank my colleagues for assistance in various trouble-shooting circumstances. Last, but certainly not least, I would like to thank my family and friends for their support in the pursuit of my graduate studies. iii ABSTRACT Author: JoAnn Roberts Title: An Investigation of the Role of PAK6 in Tumorigenesis Institution: Florida Atlantic University Thesis Advisor: Dr. Michael Lu Degree: Master of Science Year: 2012 The function and role of PAK6, a serine/threonine kinase, in cancer progression has not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Based on the membrane localization of PAK6 in prostate and breast cancer cells, we speculated that PAK6 plays a role in cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation.
    [Show full text]
  • View Is Portrayed Schematically in Figure 7B
    BASIC RESEARCH www.jasn.org Recombination Signal Binding Protein for Ig-kJ Region Regulates Juxtaglomerular Cell Phenotype by Activating the Myo-Endocrine Program and Suppressing Ectopic Gene Expression † † ‡ Ruth M. Castellanos-Rivera,* Ellen S. Pentz,* Eugene Lin,* Kenneth W. Gross, † Silvia Medrano,* Jing Yu,§ Maria Luisa S. Sequeira-Lopez,* and R. Ariel Gomez* *Department of Pediatrics, School of Medicine, †Department of Biology, Graduate School of Arts and Sciences, and §Department of Cell Biology, University of Virginia, Charlottesville, Virginia; and ‡Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York ABSTRACT Recombination signal binding protein for Ig-kJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7)and smooth muscle (Acta2, Myh11, Cnn1,andSmtn) genes and regulators of smooth muscle expression (miR- 145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin- expressing cells in the juxtaglomerular apparatus.
    [Show full text]
  • Amplification of Chromosome 8 Genes in Lung Cancer Onur Baykara1, Burak Bakir1, Nur Buyru1, Kamil Kaynak2, Nejat Dalay3
    Journal of Cancer 2015, Vol. 6 270 Ivyspring International Publisher Journal of Cancer 2015; 6(3): 270-275. doi: 10.7150/jca.10638 Research Paper Amplification of Chromosome 8 Genes in Lung Cancer Onur Baykara1, Burak Bakir1, Nur Buyru1, Kamil Kaynak2, Nejat Dalay3 1. Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Turkey 2. Department of Chest Surgery, Cerrahpasa Medical Faculty, Istanbul University, Turkey 3. Department of Basic Oncology, I.U. Oncology Institute, Istanbul University, Turkey Corresponding author: Prof. Dr. Nejat Dalay, I.U.Oncology Institute, 34093 Capa, Istanbul, Turkey. e-mail : [email protected]; Phone : 90 542 2168861; Fax : 90 212 5348078 © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2014.09.25; Accepted: 2014.12.18; Published: 2015.01.20 Abstract Chromosomal alterations are frequent events in lung carcinogenesis and usually display regions of focal amplification containing several overexpressed oncogenes. Although gains and losses of chromosomal loci have been reported copy number changes of the individual genes have not been analyzed in lung cancer. In this study 22 genes were analyzed by MLPA in tumors and matched normal tissue samples from 82 patients with non-small cell lung cancer. Gene amplifications were observed in 84% of the samples. Chromosome 8 was found to harbor the most frequent copy number alterations. The most frequently amplified genes were ZNF703, PRDM14 and MYC on chromosome 8 and the BIRC5 gene on chromosome 17. The frequency of deletions were much lower and the most frequently deleted gene was ADAM9.
    [Show full text]
  • Recq Helicase Translocates Along Single-Stranded DNA with a Moderate Processivity and Tight Mechanochemical Coupling
    RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling Kata Sarlós, Máté Gyimesi, and Mihály Kovács1 Department of Biochemistry, Eötvös Loránd University - Hungarian Academy of Sciences, “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, H-1117, Budapest, Hungary Edited* by Stephen C. Kowalczykowski, University of California, Davis, CA, and approved May 8, 2012 (received for review September 2, 2011) Maintenance of genome integrity is the major biological role of characterized by diffusion along the DNA strand in alternating RecQ-family helicases via their participation in homologous re- weak and strong binding states, was used to describe the trans- combination (HR)-mediated DNA repair processes. RecQ helicases location of hepatitis C virus NS3 helicase (19). Because of the exert their functions by using the free energy of ATP hydrolysis low coupling between the enzymatic (ATPase) and mechanical for mechanical movement along DNA tracks (translocation). In (translocation) cycles, ratchet mechanisms usually lead to the addition to the importance of translocation per se in recombina- consumption of more than one ATP molecule per nucleotide tion processes, knowledge of its mechanism is necessary for the traveled. In contrast to the above enzymes, although the biological understanding of more complex translocation-based activities, in- functions of E. coli RecQ are well described (20–23), mechanistic cluding nucleoprotein displacement, strand separation (unwind- knowledge of the underlying molecular processes is scarce. ing), and branch migration. Here, we report the key properties of DNA activates the ATPase activity of RecQ, and the ATP the ssDNA translocation mechanism of Escherichia coli RecQ heli- hydrolysis cycle is coupled to DNA unwinding (22, 24).
    [Show full text]
  • Application of a MYC Degradation
    SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser .
    [Show full text]
  • Snapshot: the Splicing Regulatory Machinery Mathieu Gabut, Sidharth Chaudhry, and Benjamin J
    192 Cell SnapShot: The Splicing Regulatory Machinery Mathieu Gabut, Sidharth Chaudhry, and Benjamin J. Blencowe 133 Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada Expression in mouse , April4, 2008©2008Elsevier Inc. Low High Name Other Names Protein Domains Binding Sites Target Genes/Mouse Phenotypes/Disease Associations Amy Ceb Hip Hyp OB Eye SC BM Bo Ht SM Epd Kd Liv Lu Pan Pla Pro Sto Spl Thy Thd Te Ut Ov E6.5 E8.5 E10.5 SRp20 Sfrs3, X16 RRM, RS GCUCCUCUUC SRp20, CT/CGRP; −/− early embryonic lethal E3.5 9G8 Sfrs7 RRM, RS, C2HC Znf (GAC)n Tau, GnRH, 9G8 ASF/SF2 Sfrs1 RRM, RS RGAAGAAC HipK3, CaMKIIδ, HIV RNAs; −/− embryonic lethal, cond. KO cardiomyopathy SC35 Sfrs2 RRM, RS UGCUGUU AChE; −/− embryonic lethal, cond. KO deficient T-cell maturation, cardiomyopathy; LS SRp30c Sfrs9 RRM, RS CUGGAUU Glucocorticoid receptor SRp38 Fusip1, Nssr RRM, RS ACAAAGACAA CREB, type II and type XI collagens SRp40 Sfrs5, HRS RRM, RS AGGAGAAGGGA HipK3, PKCβ-II, Fibronectin SRp55 Sfrs6 RRM, RS GGCAGCACCUG cTnT, CD44 DOI 10.1016/j.cell.2008.03.010 SRp75 Sfrs4 RRM, RS GAAGGA FN1, E1A, CD45; overexpression enhances chondrogenic differentiation Tra2α Tra2a RRM, RS GAAARGARR GnRH; overexpression promotes RA-induced neural differentiation SR and SR-Related Proteins Tra2β Sfrs10 RRM, RS (GAA)n HipK3, SMN, Tau SRm160 Srrm1 RS, PWI AUGAAGAGGA CD44 SWAP Sfrs8 RS, SWAP ND SWAP, CD45, Tau; possible asthma susceptibility gene hnRNP A1 Hnrnpa1 RRM, RGG UAGGGA/U HipK3, SMN2, c-H-ras; rheumatoid arthritis, systemic lupus
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Combined Inhibition of MEK and Plk1 Has Synergistic Anti-Tumor Activity in NRAS Mutant Melanoma
    Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Posch, C., B. Cholewa, I. Vujic, M. Sanlorenzo, J. Ma, S. Kim, S. Kleffel, et al. 2015. “Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma.” The Journal of investigative dermatology 135 (10): 2475-2483. doi:10.1038/jid.2015.198. http://dx.doi.org/10.1038/jid.2015.198. Published Version doi:10.1038/jid.2015.198 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26860102 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author Manuscript Author ManuscriptJ Invest Author ManuscriptDermatol. Author Author Manuscript manuscript; available in PMC 2016 April 01. Published in final edited form as: J Invest Dermatol. 2015 October ; 135(10): 2475–2483. doi:10.1038/jid.2015.198. Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma C Posch#1,2,3,*, BD Cholewa#4, I Vujic1,3, M Sanlorenzo1,5, J Ma1, ST Kim1, S Kleffel2, T Schatton2, K Rappersberger3, R Gutteridge4, N Ahmad4, and S Ortiz/Urda1 1 University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research
    [Show full text]
  • Ikkγ Protein Is a Target of BAG3 Regulatory Activity in Human Tumor Growth
    IKKγ protein is a target of BAG3 regulatory activity in human tumor growth Massimo Ammirantea,b,1, Alessandra Rosatib,c,1, Claudio Arrac,d, Anna Basileb,c, Antonia Falcob,c, Michela Festab,c, Maria Pascaleb,c, Morena d’Aveniab,c, Liberato Marzullob,c, Maria Antonietta Belisariob, Margot De Marcob,c, Antonio Barbierid, Aldo Giudiced, Gennaro Chiappettae, Emilia Vuttarielloe, Mario Monacoe, Patrizia Bonellid, Gaetano Salvatoref, Maria Di Benedettof, Satish L. Deshmaneg, Kamel Khalilig, Maria Caterina Turcob,c,2, and Arturo Leoneb aLaboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0723; bDepartment of Pharmaceutical Sciences (DiFarma), University of Salerno, 84084 Fisciano, Italy; cBioUniverSA S.R.L., 84084 Fisciano, Italy; dAnimal Facility and eFunctional Genomic Unit National Cancer Institute, “Tumor Institute Fond. Pascale,” 80131 Naples, Italy; fPathological Anatomy, Federico II University, 80131 Naples, Italy; and gCenter For Neurovirology, Department of Neuroscience, Temple University, Philadelphia PA 19122 Edited* by Michael Karin, School of Medicine, University of California, La Jolla, CA, and approved March 17, 2010 (received for review July 10, 2009) BAG3, a member of the BAG family of heat shock protein (HSP) 70 leukemia results in a dramatic increase of basal as well as drug- cochaperones, is expressed in response to stressful stimuli in a number induced apoptosis (17, 18). Furthermore, BAG3 is overexpressed in of normal cell types and constitutively in a variety of tumors, including thyroid carcinomas, where higher levels of expression are reached in pancreas carcinomas, lymphocytic and myeloblastic leukemias, and anaplastic tumors compared with well-differentiated forms.
    [Show full text]