Diseases 2014, 2, 209-225; doi:10.3390/diseases2030209 OPEN ACCESS diseases ISSN 2079-9721 www.mdpi.com/journal/diseases/ Review Role of MTDH, FOXM1 and microRNAs in Drug Resistance in Hepatocellular Carcinoma Xiangbing Meng 1,2,*, Eric J. Devor 1, Shujie Yang 1, Brandon M. Schickling 3 and Kimberly K. Leslie 1,2 1 Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, IA 52242, USA 2 Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA 3 Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA * Author to whom correspondence should be addressed; E-Mail:
[email protected]. Received: 16 April 2014; in revised form: 24 June 2014 / Accepted: 25 June 2014 / Published: 1 July 2014 Abstract: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies due to underlying co-morbid cirrhosis and chemo-resistance. Vaccination and improved treatment for hepatitis are the most effective means to reduce the burden of liver cancer worldwide. Expression of biomarkers such as AFP (alpha-fetoprotein), DDK1 (Dickkopf WNT Signaling Pathway Inhibitor 1) and microRNAs in blood are being tested for early screening of liver cancer. Since 2008, sorafenib has been used as the standard molecular targeting agent for HCC. However, overall outcomes for sorafenib alone or in combination with other tyrosine kinase inhibitors are unsatisfactory. Whether simultaneously or sequentially, addiction switches and compensatory pathway activation in HCC, induced by sorafenib treatment, may induce acquired resistance. Forkhead box M1 (FOXM1) and metadherin (MTDH) have been shown to be master regulators of different aspects of tumorigenesis, including angiogenesis, invasion, metastasis and drug resistance.