History of Science at Dartmouth Dartmouth’S Nobel Laureate Jacob Waldbauer ‘01

Total Page:16

File Type:pdf, Size:1020Kb

History of Science at Dartmouth Dartmouth’S Nobel Laureate Jacob Waldbauer ‘01 History of Science at Dartmouth Dartmouth’s Nobel Laureate Jacob Waldbauer ‘01 Though few on campus would likely recognize him today, Owen Chamberlain ‘41 is one of the most internationally renowned scientists to have studied at Dartmouth. Chamberlain shared the 1959 Nobel Prize in Physics for demonstrating the existence of the antiproton, the antimatter counterpart to the pro- ton. Today, he is considered by many to be one of the true states- men of science. Owen Chamberlain was born in San Francisco in 1920. After getting his bachelor’s degree from Dartmouth in 1941, he started graduate school at the University of California. The involvement of the United States in World War II interrupted his studies, and in 1942 Chamberlain joined the Manhattan Project. Within the Manhattan Project he worked under Emilio Segrè, with whom he would later share the Nobel Prize. He resumed graduate study in 1946 at the University of Chicago, where he was advised by Enrico Fermi. He was awarded his doctoral degree in 1949. Chamberlain then began teaching and doing research at the University of California, Berkeley. The Lawrence Berkeley Laboratory housed one of the most powerful particle accelerators at the time, the Bevatron, capable of generating beam energies of up to 6.2 GeV. By 1955, the hunt for the antiproton was on, and the Bevatron was considered a prime place to find it. Though the Owen Chamberlain ‘41 existence of the antimatter particles had been predicted theoreti- cally by Paul Dirac in 1929, thus far only the positron (the posi- tively-charged antimatter counterpart to the electron) had been observed experimentally. At Lawrence Berkeley, Chamberlain worked with a group headed by Emilio Segrè, which also includ- ed Clyde Wiegand and Thomas Ypsilantis. Other researchers, including other groups at Lawrence Berkeley, were also actively engaged in looking for the antiproton; it was a question of who would get there first. On September 21, 1955, after months of searching, equipment breakdowns, and experimental redesigns, the Segrè group recorded the first experimental observations of the antiproton. In 1959 Segrè and Chamberlain were recognized for their work with the Nobel Prize. In his acceptance speech at the Nobel presentation ceremony, Chamberlain said, “The development of physics, like the devel- opment of any science, is a continuous one. Each new idea is dependent upon the ideas of the past. The whole structure of sci- ence gradually grows, but only as it is built upon a firm founda- tion of past research. Each generation of scientists stands upon the shoulders of those who have gone before.” Since winning the Nobel Prize, Chamberlain has lent his support to a great number of scientific and social causes, including the Committee of Concerned Scientists, the Ploughshares Fund (an organization for promoting peace in the nuclear age), the Manifesto Against H u n g e r, and the Heidelberg Appeal to environmental responsibility. Chamberlain checking the proton target aparatus at Lawrence Berkeley Dartmouth Undergraduate Journal of Science 25.
Recommended publications
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • The Donald A. Glaser Papers, 1943-2013, Bulk 1949-2003
    http://oac.cdlib.org/findaid/ark:/13030/c8n01cbt No online items Finding Aid for the Donald A. Glaser Papers, 1943-2013, bulk 1949-2003 Bianca Rios and Mariella Soprano California Institute of Technology. Caltech Archives ©2017 1200 East California Blvd. Mail Code B215A-74 Pasadena, CA 91125 [email protected] URL: http://archives.caltech.edu/ Finding Aid for the Donald A. 10285-MS 1 Glaser Papers, 1943-2013, bulk 1949-2003 Language of Material: English Contributing Institution: California Institute of Technology. Caltech Archives Title: The Donald A. Glaser papers creator: Glaser, Donald Arthur Identifier/Call Number: 10285-MS Physical Description: 15.97 Linear feet (41 boxes) Date (inclusive): 1918-2016, bulk 1949-2003 Abstract: Donald Arthur Glaser (1926 – 2013) earned his PhD in Physics and Mathematics from the California Institute of Technology in 1950 and won the 1960 Nobel Prize in Physics for his invention of the bubble chamber. He then changed his research focus to molecular biology and went on to co-found Cetus Corporation, the first biotechnology company. In the 1980s he again switched his focus to neurobiology and the visual system. The Donald A. Glaser papers consist of research notes and notebooks, manuscripts and printed papers, correspondence, awards, biographical material, photographs, audio-visual material, and born-digital files. Conditions Governing Access The collection is open for research. Researchers must apply in writing for access. General The collection is fully digitized and will be made available online by the beginning of 2018. Conditions Governing Use Copyright may not have been assigned to the California Institute of Technology Archives.
    [Show full text]
  • JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
    Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc.
    [Show full text]
  • Muonium Gravity Seminar Wichita-6-17
    Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with..
    [Show full text]
  • Modern Physics, the Nature of the Interaction Between Particles Is Carried a Step Further
    44.1 Some Properties of Nuclei 1385 are the same, apart from the additional repulsive Coulomb force for the proton– U(r ) (MeV) proton interaction. 40 Evidence for the limited range of nuclear forces comes from scattering experi- n–p system ments and from studies of nuclear binding energies. The short range of the nuclear 20 force is shown in the neutron–proton (n–p) potential energy plot of Figure 44.3a 0 r (fm) obtained by scattering neutrons from a target containing hydrogen. The depth of 1 567432 8 the n–p potential energy well is 40 to 50 MeV, and there is a strong repulsive com- Ϫ20 ponent that prevents the nucleons from approaching much closer than 0.4 fm. Ϫ40 The nuclear force does not affect electrons, enabling energetic electrons to serve as point-like probes of nuclei. The charge independence of the nuclear force also Ϫ60 means that the main difference between the n–p and p–p interactions is that the a p–p potential energy consists of a superposition of nuclear and Coulomb interactions as shown in Figure 44.3b. At distances less than 2 fm, both p–p and n–p potential The difference in the two curves energies are nearly identical, but for distances of 2 fm or greater, the p–p potential is due to the large Coulomb has a positive energy barrier with a maximum at 4 fm. repulsion in the case of the proton–proton interaction. The existence of the nuclear force results in approximately 270 stable nuclei; hundreds of other nuclei have been observed, but they are unstable.
    [Show full text]
  • Spellman Is the Innovator of the High Voltage Industry
    International Journal of High-Energy Physics CERN COURIER Silicon makes tracks for CMS CERN COMPUTING NEWS Z BOSON LHC cryogenic line Combating congestion LEP and SLD publish passes first tests p5 on the Internet pl7 combined results p23 Thinking Inside the Box With Every Spelh Bertan brand High Voltage Supply you get something extra inside: The "Know How" of the High Voltage People. For more than 50 years, Spellman is the innovator of the High Voltage industry. With our recent acquisition of the respected Bertan High Voltage brand, we offer the world's most comprehensive line of generators, rack instruments, modules and Monoblock X-Ray Sources". • Application Know How: Voltage: 250V to 36» Whether your field is X-Ray Analysis, Semiconductor Processing, Security Detection, Medical Imaging, Electron Microscopy, or Mass Spectrometry, Power: 1W to 120k we make a high voltage supply to meet your needs. Ripple: depending on Application • Engineering Know How: <.001%p-p We have the largest engineering team in the business and one of the Package: Rack, Module, PCB, most innovative design libraries in our industry. Benchtop, NIM, Custom • Manufacturing Know How: Interface: Analog, RS232, USB, Ethernet, IEEE We maintain world-class ISO9001 production facilities in the US, Europe and in Mexico. The High Voltage People of Spellman: responsive, professional and situated globally to support you. Put their know how to work for you today. For more on the inside story of Spellman's innovative high voltage solutions, call us or MONOBLOCK® is a registered trademark of Spellman High Voltage Electronics Corp. visit our website www.spellmanhv.com 475 Wireless Blvd.
    [Show full text]
  • The Federal Government: a Nobel Profession
    The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery.
    [Show full text]
  • From the Executive Director Kathryn Sullivan to Receive Sigma Xi's Mcgovern Award
    May-June 2011 · Volume 20, Number 3 Kathryn Sullivan to From the Executive Director Receive Sigma Xi’s McGovern Award Annual Report In my report last year I challenged the membership to consider ormer astronaut the characteristics of successful associations. I suggested that we Kathryn D. emulate what successful associations do that others do not. This FSullivan, the first year as I reflect back on the previous fiscal year, I suggest that we need to go even further. U.S. woman to walk We have intangible assets that could, if converted to tangible outcomes, add to the in space, will receive value of active membership in Sigma Xi. I believe that standing up for high ethical Sigma Xi’s 2011 John standards, encouraging the earlier career scientist and networking with colleagues of diverse disciplines is still very relevant to our professional lives. Membership in Sigma P. McGovern Science Xi still represents recognition for scientific achievements, but the value comes from and Society Award. sharing with companions in zealous research. Since 1984, a highlight of Sigma Xi’s Stronger retention of members through better local programs would benefit the annual meeting has been the McGovern Society in many ways. It appears that we have continued to initiate new members in Lecture, which is made by the recipient of numbers similar to past years but retention has declined significantly. In addition, the the McGovern Medal. Recent recipients source of the new members is moving more and more to the “At-large” category and less and less through the Research/Doctoral chapters. have included oceanographer Sylvia Earle and Nobel laureates Norman Borlaug, Mario While Sigma Xi calls itself a “chapter-based” Society, we have found that only about half of our “active” members are affiliated with chapters in “good standing.” As long Molina and Roald Hoffmann.
    [Show full text]
  • OLC Denies FOIA Request for Opinion on Executive Orders
    FEDERATION OF AMERICAN SCIENTISTS Board of Sponsors 1725 DeSales Street NW, 6th floor [email protected] (Partial List) Washington, DC 20036 www.fas.org *Sidney Altman Phone: (202) 546-3300 Fax: (202) 675-1010 Bruce Ames F.A.S. *Philip W. Anderson *Kenneth J. Arrow *Julius Axelrod *David Baltimore Frank von Hippel Hal Feiveson Henry C. Kelly Paul Beeson Chairman Secretary-Treasurer President *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop *Nicolaas Bloembergen *Norman Borlaug *Paul Boyer March 11, 2008 *Owen Chamberlain (202)454-4691 Morris Cohen *Stanley Cohen [email protected] Mildred Cohn *Leon N. Cooper Elizabeth Farris *E. .J. Corey Paul B. Cornely Office of Legal Counsel *James Cronin *Johann Deisenhofer Room 5515, 950 Pennsylvania Avenue, NW Carl Djerassi Ann Druyan Department of Justice *Renato Dulbecco John T. Edsall Washington, DC 20530-0001 Paul R. Ehrlich By fax: 202-514-0563 George Field *Val L. Fitch Jerome D. Frank *Jerome I. Friedman Dear Ms. Farris: *John Kenneth Galbraith *Walter Gilbert *Donald Glaser *Sheldon L. Glashow This is a request under the Freedom of Information Act. Marvin L. Goldberger *Joseph L. Goldstein *Roger C. L. Guillemin We request a copy of an Office of Legal Counsel opinion from the George *Dudley R. Herschbach *Roald Hoffmann W. Bush Administration pertaining in part to the efficacy of executive John P. Holdren *David H. Hubel orders. *Jerome Karle Nathan Keyfitz *H. Gobind Khorana *Arthur Kornberg In particular, Senator Sheldon Whitehouse stated on the Senate floor on *Edwin G. Krebs *Willis E. Lamb December 7 that he had examined an OLC opinion which included, *Leon Lederman *Edward Lewis according to his notes, the following statement or something resembling it: *William N.
    [Show full text]
  • 10.8 News 612 Mh
    NEWS NATURE|Vol 442|10 August 2006 Views collide over fate of accelerator Its parts have been dismembered, its roof is leaking, and a wall is missing. Now activists and scientists are squabbling over whether to com- pletely raze the Bevatron — one of the most important particle accelerators ever built. The remains of the Bevatron, which was decommissioned more than a decade ago, take up prime real estate on the Lawrence Berkeley LAB. NATL BERKELEY LAWRENCE National Laboratory’s campus in Berkeley, Cali- fornia. Scientists at the lab want to tear it down to make way for fresh projects. But locals, many of whom oppose the demolition because of con- cerns about the possible release of contaminants, say they want to see it made into a museum. On 3 August, the city council’s Landmarks and Preservation Commission dealt a blow to those wanting landmark status for the accelera- tor by voting to recognize the Bevatron’s legacy without protecting the building. Nevertheless, landmark advocates have vowed to continue fighting. “It’s truly a landmark, a very unique building,” says Mark Divided: physicists up. Community members have expressed fears McDonald, who sits on the hope to reclaim the that razing the Bevatron would involve moving City of Berkeley’s Peace and space but local groups large amounts of loose asbestos through the city Justice Commission. “Some- want landmark status of Berkeley. Environmentalists also fear that body called it the world’s for the Bevatron. lead and other contaminants from the build- largest yurt.” The Bevatron, ing site could escape into the water table.
    [Show full text]
  • James W. Rohlf Boston University
    Institute for Theoretical and Experimental Physics, Moscow, 3 December 2003 20 The Quest for 10− Meters James W. Rohlf Boston University Rohlf/ITEP – p.1/76 ITEP Forces and Distance Rohlf/ITEP – p.2/76 ITEP Discovery of the electron 1897 J. J. Thompson ...birth of the spectrometer! Note: The charge to mass depends on the speed, which is hard to measure! The ingenuity of the experiment was to add a magnetic field to cancel the electric deflection. Rohlf/ITEP – p.3/76 ITEP Electron e/m J.J. Thomson The electron gets acceleration 2 vy vyvx vx tan θ a = t = L = L with B field on and no deflection, E vx = B e a Etanθ m = E = LB2 E is field that produces deflection θ B is field that produces no deflection. Rohlf/ITEP – p.4/76 ITEP Classical electron radius Big trouble at a distance where electrostatic potential energy exceeds electron mass energy: ke2 2 r > mc This occurs when ke2 1:44 eV nm 15 r < = · 3 10− m mc2 0:511 MeV ' × Rohlf/ITEP – p.5/76 ITEP Rutherford scattering 1909 The detector consisted of a fluorescent screen and Hans Geiger looking through a microscope for light flashes. This experience is, no doubt, what motivated him to invent the Geiger counter! Rohlf/ITEP – p.6/76 ITEP Cross section definition transition rate σ = incident flux effective area of target Examples: 28 2 nuclear barn (b) = 10− m ∼ pp (high energy) 50 mb ∼ W/Z0 discovery at SPS nb ∼ rare processes at LHC fb ∼ Rohlf/ITEP – p.7/76 ITEP Rutherford scattering dσ 2 ~c 2 1 d cos θ α (E ) (1 cos θ)2 ∼ k − (∆p)2 = 2(mv)2(1 cos θ) − dσ = 2πbdb Can only happen if: force is 1/r2 • nucleus is pointlike • J=1, m=0 photon • Rohlf/ITEP – p.8/76 ITEP Davisson-Germer discovering electron waves “We have become accustomed to think of the atom as rather like a solar system..
    [Show full text]