Implausibility of the Vibrational Theory of Olfaction PNAS PLUS
Implausibility of the vibrational theory of olfaction PNAS PLUS Eric Blocka,1, Seogjoo Jangb,1, Hiroaki Matsunamic,1, Sivakumar Sekharand, Bérénice Dethiera, Mehmed Z. Ertemd,e, Sivaji Gundalaa, Yi Panf, Shengju Lif, Zhen Lif, Stephene N. Lodgea, Mehmet Ozbild, Huihong Jiangf, Sonia F. Penalbaa, Victor S. Batistad, and Hanyi Zhuangf,g,1 aDepartment of Chemistry, University at Albany, State University of New York, Albany, NY 12222; bDepartment of Chemistry and Biochemistry, Queens College, and Graduate Center, City University of New York, Flushing, NY 11367; cDepartment of Molecular Genetics and Microbiology and Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710; dDepartment of Chemistry, Yale University, New Haven, CT 06520; eChemistry Department, Brookhaven National Laboratory, Upton, NY 11973; fDepartment of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; and gInstitute of Health Sciences, Shanghai Jiao tong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, Shanghai 200031, China Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved March 31, 2015 (received for review February 20, 2015) The vibrational theory of olfaction assumes that electron transfer question” and that “a convenient way to address [this question] is occurs across odorants at the active sites of odorant receptors to test for odor character differences between deuterated and (ORs), serving as a sensitive measure of odorant vibrational nondeuterated odorant isotopomers since these have identical frequencies, ultimately leading to olfactory perception. A previous ground-state conformations but different vibrational modes.” study reported that human subjects differentiated hydrogen/ Gane et al.
[Show full text]