FISICA MATEMATICA 2 Corso Di 6 Crediti Corso Di Laurea Magistrale

Total Page:16

File Type:pdf, Size:1020Kb

FISICA MATEMATICA 2 Corso Di 6 Crediti Corso Di Laurea Magistrale FISICA MATEMATICA 2 Corso di 6 Crediti Corso di Laurea Magistrale in Matematica A.A. 2014-2015 Cornelis VAN DER MEE Dipartimento di Matematica e Informatica Universit`adi Cagliari Viale Merello 92, 09123 Cagliari 070-6755605 (studio), 070-6755601 (FAX), 328-0089799 (cell.) [email protected] http:nnbugs.unica.itn∼cornelis oppure: http:nnkrein.unica.itn∼cornelis LaTeX compilation date: 9 maggio 2015 Indice I Equazioni di Hamilton 1 1 Equazioni del moto di Hamilton . .1 2 Trasformazioni canoniche . .6 3 Parentesi di Poisson e di Lagrange . 10 4 Lagrangiana per i Sistemi Continui . 13 5 Hamiltoniana per i Sistemi Continui . 17 6 Esempi . 18 II Punti di equilibrio 21 1 Sistema autonomo generalizzato . 21 2 Derivata di Lie e costanti del moto . 22 3 Classificazione dei punti di equilibrio . 23 4 Esempi . 27 III Stabilit`asecondo Liapunov 31 1 Stabilit`asecondo Liapunov . 31 2 Sistemi autonomi sulla retta . 32 3 Sistemi lineari a coefficienti costanti . 33 4 Funzione di Liapunov e linearizzazione . 38 5 Stabilit`ae loro applicazioni . 46 IV Stabilit`adei sistemi dinamici discreti 53 1 Teorema delle contrazioni . 53 2 Alcuni esempi illustrativi . 55 3 L'insieme di Mandelbrot . 62 V Biforcazioni e cicli-limite 67 1 Teorema di Poincar´e-Bendixson . 67 2 Applicazioni ai sistemi non lineari . 76 i VI Frattali 91 1 Insieme di Cantor e le sue varianti . 91 2 Caratteristiche dei frattali . 95 3 Dimensione di Hausdorff . 97 VIIEquazioni Integrabili 103 1 Storia di alcune equazioni integrabili . 103 2 Generazione di equazioni integrabili . 107 3 Inverse scattering transform per la KdV . 110 4 Inverse scattering transform per la NLS . 118 5 Superfici solitoniche . 124 A 3-ciclo implica caos 129 B Gruppi di Lie 135 1 Algebre di Lie . 135 2 Algebra di Lie di un gruppo di matrici . 136 3 Alcuni esempi dettagliati . 140 C Forma Normale di Jordan 145 1 Catene di Jordan . 145 2 Forme normali di Jordan: Matrici complesse . 147 3 Forme normali di Jordan: Matrici reali . 148 4 Decomposizione spettrale . 149 D Esercizi 151 Bibliografia 160 ii Capitolo I Equazioni di Hamilton 1 Equazioni del moto di Hamilton Nella formulazione lagrangiana il moto di un sistema ad n gradi di libert`aviene descritto dalle n equazioni d @L @L − = 0; (I.1) dt @q_i @qi dove L = L(q1; : : : ; qn; q_1;:::; q_n; t) `ela lagrangiana. Lo stato del sistema viene rappresentato da un unico punto nello spazio delle configurazioni n-dimensionale le cui coordinate sono le coordinate generalizzate qi. Descrivere il moto del sistema significa seguire questo punto lungo la sua traiettoria nello spazio delle configurazioni. Tutte le n coordinate devono essere indipendenti e non devono essere presenti equazioni di vincolo. Se le n coordinate non fossero indipendenti si dovrebbe, prima di impostare il problema, ridurre il numero delle incognite ad un opportuno m < n. Nella formulazione hamiltoniana si cercher`adi descrivere il moto con un sistema di 2n equazioni differenziali del primo ordine. Le 2n equazioni del moto descriveranno l'evoluzione del punto rappresentativo del sistema in uno spazio di dimensione 2n, detto spazio delle fasi, le cui coordinate saranno le 2n variabili indipendenti associate al sistema. La scelta naturale, ma non l'unica possibile, per raddoppiare le coordinate indipendenti del problema, `equella di scegliere met`adi esse come le n coordinate generalizzate qi. Come rimanenti coordinate scegliamo i momenti coniugati o generalizzati pi definite da: @L pi = (q1; : : : ; qn; q_1;:::; q_n; t): (I.2) @q_i Le variabili (q; p) = (q1; : : : ; qn; p1; : : : ; pn) sono generalmente note come variabili canoniche. 1 La cosiddetta trasformazione di Legendre da (q; q;_ t) a (q; p; t) agisce come segue. Il differenziale della lagrangiana L(q; q;_ t) `e n X @L @L @L dL = dq + dq_ + dt @q i @q_ i @t i=1 i i n X @L @L = dq + p dq_ + dt: @q i i i @t i=1 i Definendo l'hamiltoniana come n X H(q; p; t) = q_ipi − L(q; q;_ t); (I.3) i=1 e differenziando il secondo membro della (I.3), si ottiene n X dH = (_qidpi + pidq_i) − dL i=1 n n X X @L @L = (_q dp + p dq_ ) − dq + p dq_ − dt i i i i @q i i i @t i=1 i=1 i n X @L @L = q_ dp − dq − dt i i @q i @t i=1 i n X @L = (_q dp − p_ dq ) − dt: i i i i @t i=1 D'altra parte, il differenziale dell'hamiltoniana `edato da: n X @H @H @H dH = dq + dp + dt: @q i @p i @t i=1 i i Di conseguenza, otteniamo le 2n + 1 equazioni @H q_i = ; i = 1; : : : ; n; (I.4a) @pi @H −p_i = ; i = 1; : : : ; n; (I.4b) @qi @L @H − = : (I.4c) @t @t Le equazioni (I.4a) e (I.4b) sono note come le equazioni di Hamilton. Esse co- stituiscono un sistema di 2n equazioni del moto del primo ordine e sostituiscono le n equazioni del secondo ordine di Lagrange. 2 Nello studio di un problema concreto la costruzione dell'hamiltoniana de- ve comunque passare attraverso la formulazione lagrangiana. Il procedimento formale richiede una sequenza piuttosto impegnativa di passaggi: a. Dopo aver scelto le coordinate generalizzate qi, si costruisca la lagrangiana L(q; q;_ t) = T − V . b. Attraverso le definizioni (I.2) si ricavano i momenti generalizzati in fun- zione di q,_q e t. c. Utilizzando la (I.3) si costruisce l'hamiltoniana, che risulta (in questo stadio) essere una funzione di q,_q, p e t. d. Invertendo le (I.2) si ricavano leq _i in funzione di (q; p; t). e. Eliminandoq _ dall'espressione per l'hamiltoniana, si arriva ad un'hamil- toniana H = H(q; p; t). Soltanto da questo punto si possono derivare le equazioni di Hamilton. Esempio I.1 (campo elettromagnetico) Sia 1 L = 1 mj~r_j2 − q V (~r) − ~r_ · A~ ; 2 c dove m e q sono la massa e la carica della particella, c `ela velocit`adella luce e V = V (~r) e A~ = A~(~r) sono i potenziali elettrici e magnetici. Le tre equazioni di Eulero-Lagrange assumono la seguente forma ! 1 @A~ q q m~r¨ = −q rV + + ~r_ ^ (r ^ A~) = qE~ + (~r_ ^ B~ ); c @t c c dove E~ e B~ sono i campi elettrici e magnetici. Le coordinate generalizzate sono ~r = (x; y; z), mentre i momenti generalizzati sono: @L q @L q @L q p = = mx_ + A ; p = = my_ + A ; p = = mz_ + A : 1 @x_ c 1 2 @y_ c 2 3 @z_ c 3 _ q ~ In altre parole, ~p = m~r + c A. Quindi l'hamiltoniana `edata da: 1 q 2 H = ~r_ · ~p − L = 1 mj~r_j2 + qV (~r) = ~p − A~ + qV (~r): 2 2m c Le sei equazioni di Hamilton si riducono a: q q q ~p − A~ = m~r;_ ~p_ = −qrV + (~p − A~) · rA: c mc c 2 3 Esempio I.2 (Toda lattice periodico) Consideriamo la hamiltoniana n 1 X 2 H = 2 pj + V (q2 − q1) + V (q3 − q2) + ::: + V (qn − qn−1) + V (q1 − qn); j=1 dove 1 V (r) = e−r + r − 1 = r2 + O(r3);V 0(r) = 1 − e−r = r + O(r2); r ! 0: 2 Allora le equazioni di Hamilton sono le seguenti: @H q_j = = pj; @pj @H 0 0 p_j = − = V (qj+1 − qj) − V (qj − qj−1) @qj = e−(qj −qj−1) − e−(qj+1−qj ); essendo q0 = qn e qn+1 = q1. Di conseguenza, otteniamo la cosiddetta equazione non lineare della Toda lattice 8 e−(q1−qn) − e−(q2−q1); j = 1; <> −(q −q ) −(q −q ) q¨j = e j j−1 − e j+1 j ; j = 2; : : : ; n − 1; > :e−(qn−qn−1) − e−(q1−qn); j = n: Quest'equazione coincide con l'equazione di Eulero-Lagrange. Si vede subito che H e p1 + ::: + pn sono costanti del moto. 2 Una coordinata si dice ciclica se non compare esplicitamente nella lagrangia- na. In virt`udelle equazioni di Eulero-Lagrange, se qj `euna coordinata ciclica, allora il momento generalizzato pj `euna costante del moto, poich`e @L @H p_j = = − = 0: @qj @qj Inoltre, se qj `eciclica, allora non compare esplicitamente nemmeno nell'hamil- toniana, infatti, sfruttando le equazioni di Eulero-Lagrange, si ha @L @H 0 = = − : @qj @qj 4 Un'altra legge di conservazione segue dalla (I.4c) nel caso in cui H (o L) non dipende esplicitamente dal tempo. Infatti, in tal caso, si ha n dH X @H @H @H = q_ + p_ + dt @q i @p i @t i=1 i i n X @H = (−p_ q_ +_q p_ ) + i i i i @t i=1 @H @L = = − : @t @t Infine supponiamo che le coordinate generalizzate q1; : : : ; qn e i momenti ge- neralizzati p1; : : : ; pn non siano indipendenti ma invece siano sottoposti ad m (con m < n) vincoli k(q1; : : : ; qn; p1; : : : ; pn; t) = 0; k = 1; : : : ; m: Introducendo i moltiplicatori di Lagrange λ1; : : : ; λm e l'hamiltoniana estesa He(q1; : : : ; qn; p1; : : : ; pn; λ1; : : : ; λm; t) = H(q1; : : : ; qn; p1; : : : ; pn; t) m X + λk k(q1; : : : ; qn; p1; : : : ; pn; t); k=1 otteniamo le seguenti equazioni di Hamilton: m @He @H X @ k q_i = = + λk ; i = 1; : : : ; n; (I.5a) @pi @pi @pi k=1 m @He @H X @ k −p_i = = + λk ; i = 1; : : : ; n; (I.5b) @qi @qi @qi k=1 @He 0 = = j; j = 1; : : : ; m: (I.5c) @λj Introduciamo ora la formulazione simplettica delle equazioni di Hamilton. Consideriamo le nuove variabili η = (η1; : : : ; η2n) nel seguente modo: ( qi; i = 1; : : : ; n; ηi = pi−n; i = n + 1;:::; 2n: Allora 8@H @H <> = −p_i; i = 1; : : : ; n; = @qi @η @H i :> =q _i−n; i = n + 1;:::; 2n: @pi−n 5 Di conseguenza, le equazioni di Hamilton si possono scrivere nel seguente modo: @H η_ = J ; (I.6) @η dove 0 I J = n×n n : −In 0n×n La matrice J si dice simplettica nel senso che T 2 J = −J; J = −I2n: Inoltre, det J = 1.
Recommended publications
  • U Iversidad Del Valle De Guatemala
    UIVERSIDAD DEL VALLE DE GUATEMALA Facultad de Ciencias y Humanidades Análisis de Cantor-Bendixson: La Hipótesis del Continuo para espacios polacos Gabriel Enrique Girón Garnica Guatemala 2008 Análisis de Cantor-Bendixson: La Hipótesis del Continuo para espacios polacos UIVERSIDAD DEL VALLE DE GUATEMALA Facultad de Ciencias y Humanidades Análisis de Cantor-Bendixson: La Hipótesis del Continuo para espacios polacos Trabajo de graduación presentado por Gabriel Enrique Girón Garnica para optar al grado académico de Licenciado en Matemática Guatemala 2008 Vo. Bo.: (f)_____________________________ PhD. L. Pedro Poitevin Asesor Tribunal: (f)_____________________________ Lic. Dorval Carías (f)_____________________________ PhD. L. Pedro Poitevin (f)_____________________________ Licda. María Eugenia de Nieves Fecha de aprobación: 19 de diciembre de 2008. «Creo que la verdad está bien en la matemática…. o en la vida. En la vida es más importante la ilusión, la imaginación, el deseo, la esperanza. Además, ¿sabemos acaso lo que es la verdad? Si yo le digo que aquel trozo de ventana es azul, digo una verdad. Pero es una verdad parcial, y por lo tanto una especie de mentira. Porque ese trozo de ventana no está solo, está en una casa, en una ciudad, en un paisaje. Está rodeado del gris de ese muro de cemento, del azul claro de este cielo, de aquellas nubes alargadas, de infinitas cosas más. Y si no digo todo, absolutamente todo, estoy mintiendo. Pero decir todo es imposible, aun en este caso de la ventana, de un simple trozo de la realidad física, de la simple realidad física. La realidad es infinita y además infinitamente matizada, y si me olvido de un solo matiz ya estoy mintiendo.
    [Show full text]
  • RM Calendar 2011
    Rudi Mathematici x4-8.212x3+25.286.894x2-34.603.963.748x+17.756.354.226.585 =0 Rudi Mathematici January 1 S (1894) Satyendranath BOSE Putnam 1996 - A1 (1878) Agner Krarup ERLANG (1912) Boris GNEDENKO Find the least number A such that for any two (1803) Guglielmo LIBRI Carucci dalla Sommaja RM132 squares of combined area 1, a rectangle of 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS area A exists such that the two squares can be (1938) Anatoly SAMOILENKO packed in the rectangle (without interior (1905) Lev Genrichovich SHNIRELMAN overlap). You may assume that the sides of 1 3 M (1917) Yuri Alexeievich MITROPOLSKY the squares are parallel to the sides of the rectangle. 4 T (1643) Isaac NEWTON RM071 5 W (1871) Federigo ENRIQUES RM084 Math pickup lines (1871) Gino FANO (1838) Marie Ennemond Camille JORDAN My love for you is a monotonically increasing 6 T (1807) Jozeph Mitza PETZVAL unbounded function. (1841) Rudolf STURM MathJokes4MathyFolks 7 F (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY Ten percent of all car thieves are left-handed. 8 S (1924) Paul Moritz COHN All polar bears are left-handed. (1888) Richard COURANT If your car is stolen, there’s a 10% chance it (1942) Stephen William HAWKING was taken by a polar bear. 9 S (1864) Vladimir Adreievich STEKLOV The description of right lines and circles, upon 2 10 M (1905) Ruth MOUFANG which geometry is founded, belongs to (1875) Issai SCHUR mechanics. Geometry does not teach us to 11 T (1545) Guidobaldo DEL MONTE RM120 draw these lines, but requires them to be (1734) Achille Pierre Dionis DU SEJOUR drawn.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8188x3+25139294x2-34301407052x+17549638999785=0 Rudi Mathematici January 53 1 S (1803) Guglielmo LIBRI Carucci dalla Sommaja Putnam 1999 - A1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Find polynomials f(x), g(x), and h(x) _, if they exist, (1912) Boris GNEDENKO such that for all x 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS f (x) − g(x) + h(x) = (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO −1 if x < −1 1 3 M (1917) Yuri Alexeievich MITROPOLSHY 4 T (1643) Isaac NEWTON = 3x + 2 if −1 ≤ x ≤ 0 5 W (1838) Marie Ennemond Camille JORDAN − + > (1871) Federigo ENRIQUES 2x 2 if x 0 (1871) Gino FANO (1807) Jozeph Mitza PETZVAL 6 T Publish or Perish (1841) Rudolf STURM "Gustatory responses of pigs to various natural (1871) Felix Edouard Justin Emile BOREL 7 F (1907) Raymond Edward Alan Christopher PALEY and artificial compounds known to be sweet in (1888) Richard COURANT man," D. Glaser, M. Wanner, J.M. Tinti, and 8 S (1924) Paul Moritz COHN C. Nofre, Food Chemistry, vol. 68, no. 4, (1942) Stephen William HAWKING January 10, 2000, pp. 375-85. (1864) Vladimir Adreievich STELKOV 9 S Murphy's Laws of Math 2 10 M (1875) Issai SCHUR (1905) Ruth MOUFANG When you solve a problem, it always helps to (1545) Guidobaldo DEL MONTE 11 T know the answer. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of (1906) Kurt August HIRSCH 12 W mathematics.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici 4 3 2 x -8176x +25065656x -34150792256x+17446960811280=0 Rudi Mathematici January 1 1 M (1803) Guglielmo LIBRI Carucci dalla Somaja (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE 18º USAMO (1989) - 5 (1912) Boris GNEDENKO 2 M (1822) Rudolf Julius Emmanuel CLAUSIUS Let u and v real numbers such that: (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO 8 i 9 3 G (1917) Yuri Alexeievich MITROPOLSHY u +10 ∗u = (1643) Isaac NEWTON i=1 4 V 5 S (1838) Marie Ennemond Camille JORDAN 10 (1871) Federigo ENRIQUES = vi +10 ∗ v11 = 8 (1871) Gino FANO = 6 D (1807) Jozeph Mitza PETZVAL i 1 (1841) Rudolf STURM Determine -with proof- which of the two numbers 2 7 M (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY -u or v- is larger (1888) Richard COURANT 8 T There are only two types of people in the world: (1924) Paul Moritz COHN (1942) Stephen William HAWKING those that don't do math and those that take care of them. 9 W (1864) Vladimir Adreievich STELKOV 10 T (1875) Issai SCHUR (1905) Ruth MOUFANG A mathematician confided 11 F (1545) Guidobaldo DEL MONTE That a Moebius strip is one-sided (1707) Vincenzo RICCATI You' get quite a laugh (1734) Achille Pierre Dionis DU SEJOUR If you cut it in half, 12 S (1906) Kurt August HIRSCH For it stay in one piece when divided. 13 S (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN (1876) Luther Pfahler EISENHART (1876) Erhard SCHMIDT A mathematician's reputation rests on the number 3 14 M (1902) Alfred TARSKI of bad proofs he has given.
    [Show full text]
  • La Teor´Ia De Conjuntos En El Periodo Entreguerras
    La teor´ıade conjuntos en el periodo Entreguerras: la internacionalizaci´onde la matem´atica polaca a trav´esde Fundamenta Mathematicae ySierpi´nski Tesis doctoral de Andr´esChaves Beltr´an Director: Dr. Jos´eFerreir´os Dom´ınguez Tutor: Dr. Xavier Roqu´eRodr´ıguez Centre D’ Hist`oria de la Ci`encia Universitat Autonoma de Barcelona Septiembre de 2014 Agradezco a: La Universidad de Nari˜no por patrocinar mis estudios de doctorado, sin este acto de confianza hacia mi por parte de la UDENAR habr´ıa sido poco pro- bable que me aventurara a realizar un doctorado. Al profesor Jos´eFerreir´os Dom´ınguez, por acceder a dirigir esta tesis y por permitirme conocer parte de su bagage intelectual. A Lucho Recalde por seguir brind´andome su experiencia acad´emica. Al Master y el Doctorado en Historia de la Ciencia por mostrarme enormes posibilidades de estudio. Amifamiliaporsoportarmiscambiosde´animoduranteestosa˜nos. A Nancy, por tantas cosas. Resumen En esta tesis se abordan algunos aspectos del desarrollo hist´orico de la teor´ıa de conjuntos desde su nacimiento en la d´ecada de 1870 hasta el inicio de la Segunda Guerra Mundial en 1939, enfatizando en el periodo 1920-1939 concretamente en Varsovia, en la revista Fundamenta Mathematicae yenla obra del matem´aticoWaclaw Sierpi´nski. En este sentido, se hace un estudio hist´orico de la teor´ıa de conjuntos en la escuela de Varsovia en el periodo Entreguerras, estudiando los aspectos que se conjugaron para que la comunidad matem´atica en Polonia adquiriera una posici´on de reconocimiento a nivel internacional. Entre estos aspectos est´an el surgimiento de la revista Fundamenta Mathematicae como ´organo de di- fusi´onde los matem´aticos de la escuela de Varsovia, la cual se especializ´oen teor´ıade conjuntos y ramas afines a ´esta, tambi´en se estudia la obra de Sier- pi´nski en relaci´ona la teor´ıade conjuntos.
    [Show full text]
  • Topological Spaces and Manifolds
    Appendix A Topological Spaces and Manifolds A.1 Topology and Metric A subset of R is called open if it is the union of open intervals (a, b) ⊆ R.This definition makes R into a topological space: A.1 Definition 1. A topological space is a pair (M, O), consisting of a set M and a set O of subsets of M (these subsets will be called open sets) such that the following properties are satisfied: 1. ∅ and M are open, 2. arbitrary unions of open sets are open, 3. the intersection of any two open sets is open. 2. O is called a topology on M. 3. If O1 and O2 are topologies on M and O1 ⊆ O2, then we call O1 coarser or weaker than O2, and O2 finer or stronger than O1. A.2 Example 1. The discrete topology 2M (the power set) is the finest topology onasetM, and the trivial topology {M, ∅} is the coarsest topology on M. Topological spaces (M, 2M ) are called discrete. 2. If N ⊆ M is a subset of the topological space (M, O), then {U ∩ N | U ∈ O}⊆2N (A.1.1) defines a topology on N, called the subspace topology, relative topology, induced topology,ortrace topology. For example, for the subset N := [0, ∞) of R,all subintervals of the form [0, b) ⊂ N with b ∈ N are open in N, but not open in R. 3. If (M, OM ) and (N, ON ) are disjoint topological spaces (i.e., M ∩ N =∅), then M∪N the union M ∪ N with {U ∪ V | U ∈ OM , V ∈ ON }⊆2 is a topological space, called the sum space.
    [Show full text]
  • Cultivating Mathematics in an International
    Cultivating Mathematics in an International Space: Roles of Gösta Mittag-Leffler in the Development and Internationalization of Mathematics in Sweden and Beyond, 1880 – 1920 by Laura E. Turner B.Sc., Acadia University, 2005 M.Sc., Simon Fraser University, 2007 a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in the Department of Science Studies c Laura E. Turner 2011 AARHUS UNIVERSITET October 2011 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author, except for scholarly or other non-commercial use for which no further copyright permission need be requested. Abstract This thesis aims to investigate several areas of mathematical activity undertaken by the Swedish mathematician Gösta Mittag-Leffler (1846–1927). These not only markedly impacted the de- velopment of mathematics in Stockholm, where they were centred, but transformed, by virtue of their roots in both nationalist and internationalist movements, the landscape of mathemat- ics across Scandinavia and Europe more broadly. These activities are Mittag-Leffler’s role in cultivating research activity from his students at Stockholms Högskola as the first professor of mathematics there (1881–1911); his establishment (1882) and development of Acta Mathematica, an “international” journal that could bring Sweden onto the scene as an arbiter of mathematical talent and establish the nation as a major locus of mathematical activity; and his attempts to establish a broader Scandinavian mathematical community through the foundation of the Scan- dinavian Congress of Mathematicians (1909) according to a belief that cultural solidarity would both enrich each country involved and afford a united group more clout than could be gained by each of the small nations alone.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8180x3+25090190x2-34200948100x+17481136677369=0 Rudi Mathematici January 1 1 W (1803) Guglielmo LIBRI Carucci dalla Somaja APMO 1989 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Let x1 , x2 , , xn be positive real numbers, (1912) Boris GNEDENKO n 2 T (1822) Rudolf Julius Emmanuel CLAUSIUS (1905) Lev Genrichovich SHNIRELMAN = and let S xi . (1938) Anatoly SAMOILENKO i=1 3 F (1917) Yuri Alexeievich MITROPOLSHY Prove that 4 S (1643) Isaac NEWTON i (1838) Marie Ennemond Camille JORDAN n n 5 S S (1871) Federigo ENRIQUES ()+ ≤ ∏ 1 xi (1871) Gino FANO i=1 i=0 i! 2 6 M (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM The Dictionary 7 T (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY Clearly: I don't want to write down (1888) Richard COURANT 8 W (1924) Paul Moritz COHN all the "in-between" steps. (1942) Stephen William HAWKING The First Law of Applied 9 T (1864) Vladimir Adreievich STELKOV Mathematics: All infinite series 10 F (1875) Issai SCHUR (1905) Ruth MOUFANG converge, and moreover converge to 11 S (1545) Guidobaldo DEL MONTE the first term. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR A mathematician's reputation rests 12 S (1906) Kurt August HIRSCH on the number of bad proofs he has 3 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN (1876) Luther Pfahler EISENHART given. (1876) Erhard SCHMIDT Abram BESICOVITCH 14 T (1902) Alfred TARSKI 15 W (1704) Johann CASTILLON Probabilities must be regarded as (1717) Mattew STEWART analogous to the measurements of (1850) Sofia Vasilievna KOVALEVSKAJA physical magnitudes; that is to say, 16 T (1801) Thomas KLAUSEN they can never be known exactly, but 17 F (1847) Nikolay Egorovich ZUKOWSKY (1858) Gabriel KOENIGS only within certain approximation.
    [Show full text]
  • RM Calendar 2018
    Rudi Mathematici x3 – 6’138 x2 + 12’557’564 x – 8’563’189’272 = 0 www.rudimathematici.com 1 1 M (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 T (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 W (1917) Yuri Alexeievich Mitropolsky January 4 T (1643) Isaac Newton RM071 5 F (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2003, A1 (1871) Federigo Enriques RM084 Let n be a fixed positive integer. How many ways are (1871) Gino Fano there to write n as a sum of positive integers, n = a1 + 6 S (1807) Jozeph Mitza Petzval a2 + … + ak, with k an arbitrary positive integer and a1 (1841) Rudolf Sturm ≤ a2 ≤ … ≤ ak ≤ a1+1? For example, for n=4 there are 7 S (1871) Felix Edouard Justin Émile Borel four ways: 4; 2+2; 2+1+1, 1+1+1+1. (1907) Raymond Edward Alan Christopher Paley 2 8 M (1888) Richard Courant RM156 Invited to the Great Ball of Scientists... (1924) Paul Moritz Cohn ... Ampere was following the current. (1942) Stephen William Hawking 9 T (1864) Vladimir Adreievich Steklov How do mathematicians do it? (1915) Mollie Orshansky Möbius always did it on the same side. 10 W (1875) Issai Schur (1905) Ruth Moufang If a man will begin with certainties, he shall end in 11 T (1545) Guidobaldo del Monte RM120 doubts; but if he will be content to begin with doubts, he (1707) Vincenzo Riccati shall end in certainties.
    [Show full text]
  • Classical Mechanics
    CLASSICAL MECHANICS Gregory’s Classical Mechanics is a major new textbook for undergraduates in mathe- matics and physics. It is a thorough, self-contained and highly readable account of a subject many students find difficult. The author’s clear and systematic style promotes a good understanding of the subject: each concept is motivated and illustrated by worked examples, while problem sets provide plenty of practice for understanding and technique. Computer assisted problems, some suitable for projects, are also included. The book is structured to make learning the subject easy; there is a natural progression from core topics to more advanced ones and hard topics are treated with particular care. A theme of the book is the importance of conservation principles. These appear first in vectorial mechanics where they are proved and applied to problem solving. They reappear in ana- lytical mechanics, where they are shown to be related to symmetries of the Lagrangian, culminating in Noether’s theorem. • Suitable for a wide range of undergraduate mechanics courses given in mathematics and physics departments: no prior knowledge of the subject is assumed • Profusely illustrated and thoroughly class-tested, with a clear direct style that makes the subject easy to understand: all concepts are motivated and illustrated by the many worked examples included • Good, accurately-set problems, with answers in the book: computer assisted problems and projects are also provided. Model solutions for problems available to teachers from www.cambridge.org/Gregory The author Douglas Gregory is Professor of Mathematics at the University of Manchester. He is a researcher of international standing in the field of elasticity, and has held visiting posi- tions at New York University, the University of British Columbia, and the University of Washington.
    [Show full text]
  • RM 2009 Calendar
    Rudi Mathematici x4-8 204x3+25237646x2-34502914684x+17687247380985=0 Rudi Mathematici January 1 1 T (1803) Guglielmo LIBRI Carucci dalla Sommaja USAMO 1999 – Pr. 1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Some checkers placed on an n× n (1912) Boris GNEDENKO checkerboard satisfy the following conditions: (1822) Rudolf Julius Emmanuel CLAUSIUS 2 F (1905) Lev Genrichovich SHNIRELMAN (a) every square that does not contain a (1938) Anatoly SAMOILENKO checker shares a side with one that 3 S (1917) Yuri Alexeievich MITROPOLSHY does; 4 S (1643) Isaac NEWTON (b) given any pair of squares that contain checkers, there is a sequence of 2 5 M (1838) Marie Ennemond Camille JORDAN (1871) Federigo ENRIQUES squares containing checkers, starting (1871) Gino FANO and ending with the given squares, such that every two consecutive 6 T (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM squares of the sequence share a side. 7 W (1871) Felix Edouard Justin Emile BOREL ()2 − (1907) Raymond Edward Alan Christopher PALEY Prove that at least n 2 / 3 checkers have (1888) Richard COURANT 8 T been placed on the board. (1924) Paul Moritz COHN (1942) Stephen William HAWKING Mathematics Terms (1864) Vladimir Adreievich STELKOV 9 F CLEARLY: I don’t want to write down all the (1875) Issai SCHUR 10 S “in- between” steps. (1905) Ruth MOUFANG (1545) Guidobaldo DEL MONTE TRIVIAL: If I have to show you how to do 11 S (1707) Vincenzo RICCATI this, you’re in the wrong class. (1734) Achille Pierre Dionis DU SEJOUR Calculus! 3 12 M (1906) Kurt August HIRSCH (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN 2 13 T They chose an ε that was so small that ε (1876) Luther Pfahler EISENHART (1876) Erhard SCHMIDT was negative.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8180x3+25090190x2-34200948100x+17481136677369=0 Rudi Mathematici Gennaio 1 1 M (1803) Guglielmo LIBRI Carucci dalla Somaja APMO 1989 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE K (1912) Boris GNEDENKO Siano x1 , x2 , , xn numeri reali 2 G (1822) Rudolf Julius Emmanuel CLAUSIUS n (1905) Lev Genrichovich SHNIRELMAN positivi e sia S = x . (1938) Anatoly SAMOILENKO å i i=1 3 V (1917) Yuri Alexeievich MITROPOLSHY 4 S (1643) Isaac NEWTON Provare che e`: 5 D (1838) Marie Ennemond Camille JORDAN n n S i (1871) Federigo ENRIQUES (1+ x ) £ (1871) Gino FANO Õ i å i! 2 6 L (1807) Jozeph Mitza PETZVAL i=1 i=0 (1841) Rudolf STURM 7 M (1871) Felix Edouard Justin Emile BOREL Dizionario di Matematica (1907) Raymond Edward Alan Christopher PALEY 8 M (1888) Richard COURANT Chiaramente: Non ho nessuna voglia (1924) Paul Moritz COHN di scrivere tutti i passaggi. (1942) Stephen William HAWKING 9 G (1864) Vladimir Adreievich STELKOV Prima Legge della Matematica 10 V (1875) Issai SCHUR Applicata: tutte le serie infinite (1905) Ruth MOUFANG convergono al loro primo termine. 11 S (1545) Guidobaldo DEL MONTE (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR A mathematician's reputation rests 12 D (1906) Kurt August HIRSCH on the number of bad proofs he has 3 13 L (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN given. (1876) Luther Pfahler EISENHART (1876) Erhard SCHMIDT Abram BESICOVITCH 14 M (1902) Alfred TARSKI Probabilities must be regarded as 15 M (1704) Johann CASTILLON analogous to the measurements of (1717) Mattew STEWART (1850) Sofia Vasilievna KOVALEVSKAJA physical magnitudes; that is to say, 16 G (1801) Thomas KLAUSEN they can never be known exactly, but 17 V (1847) Nikolay Egorovich ZUKOWSKY only within certain approximation.
    [Show full text]