Rudi Mathematici

Total Page:16

File Type:pdf, Size:1020Kb

Rudi Mathematici Rudi Mathematici x4-8180x3+25090190x2-34200948100x+17481136677369=0 Rudi Mathematici Gennaio 1 1 M (1803) Guglielmo LIBRI Carucci dalla Somaja APMO 1989 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE K (1912) Boris GNEDENKO Siano x1 , x2 , , xn numeri reali 2 G (1822) Rudolf Julius Emmanuel CLAUSIUS n (1905) Lev Genrichovich SHNIRELMAN positivi e sia S = x . (1938) Anatoly SAMOILENKO å i i=1 3 V (1917) Yuri Alexeievich MITROPOLSHY 4 S (1643) Isaac NEWTON Provare che e`: 5 D (1838) Marie Ennemond Camille JORDAN n n S i (1871) Federigo ENRIQUES (1+ x ) £ (1871) Gino FANO Õ i å i! 2 6 L (1807) Jozeph Mitza PETZVAL i=1 i=0 (1841) Rudolf STURM 7 M (1871) Felix Edouard Justin Emile BOREL Dizionario di Matematica (1907) Raymond Edward Alan Christopher PALEY 8 M (1888) Richard COURANT Chiaramente: Non ho nessuna voglia (1924) Paul Moritz COHN di scrivere tutti i passaggi. (1942) Stephen William HAWKING 9 G (1864) Vladimir Adreievich STELKOV Prima Legge della Matematica 10 V (1875) Issai SCHUR Applicata: tutte le serie infinite (1905) Ruth MOUFANG convergono al loro primo termine. 11 S (1545) Guidobaldo DEL MONTE (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR A mathematician's reputation rests 12 D (1906) Kurt August HIRSCH on the number of bad proofs he has 3 13 L (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN given. (1876) Luther Pfahler EISENHART (1876) Erhard SCHMIDT Abram BESICOVITCH 14 M (1902) Alfred TARSKI Probabilities must be regarded as 15 M (1704) Johann CASTILLON analogous to the measurements of (1717) Mattew STEWART (1850) Sofia Vasilievna KOVALEVSKAJA physical magnitudes; that is to say, 16 G (1801) Thomas KLAUSEN they can never be known exactly, but 17 V (1847) Nikolay Egorovich ZUKOWSKY only within certain approximation. (1858) Gabriel KOENIGS 18 S (1856) Luigi BIANCHI Emile BOREL (1880) Paul EHRENFEST I have no certainties, at most 19 D (1813) Rudolf Friedrich Alfred CLEBSCH (1879) Guido FUBINI probabilities. (1908) Aleksandr Gennadievich KUROS Renato CACCIOPPOLI 4 20 L (1775) Andre` Marie AMPERE (1895) Gabor SZEGO What I tell you three times is true. (1904) Renato CACCIOPPOLI 21 M (1846) Pieter Hendrik SCHOUTE Charles DODGSON (1915) Yuri Vladimirovich LINNIK 22 M (1592) Pierre GASSENDI The proof of the Hilbert Basis (1908) Lev Davidovich LANDAU Theorem is not mathematics: it is 23 G (1840) Ernst ABBE (1862) David HILBERT theology. 24 V (1891) Abram Samoilovitch BESICOVITCH Camille JORDAN (1914) Vladimir Petrovich POTAPOV 25 S (1627) Robert BOYLE Probabilities must be regarded as (1736) Joseph-Louis LAGRANGE analogous to the measurement of (1843) Karl Herman Amandus SCHWARTZ physical magnitudes: they can never 26 D (1799) Benoit Paul Emile CLAPEYRON be known exactly, but only within 5 27 L (1832) Charles Lutwidge DODGSON certain approximation. 28 M (1701) Charles Marie de LA CONDAMINE (1892) Carlo Emilio BONFERRONI Emile BOREL 29 M (1817) William FERREL (1888) Sidney CHAPMAN God not only plays dice. He also 30 G (1619) Michelangelo RICCI sometimes throws the dice where they 31 V (1715) Giovanni Francesco FAGNANO dei Toschi cannot be seen. (1841) Samuel LOYD (1896) Sofia Alexandrovna JANOWSKAJA Stephen HAWKING www.rudimathematici.com Rudi Mathematici Febbraio 5 1 S (1900) John Charles BURKILL APMO 1989 [2] 2 D (1522) Lodovico FERRARI Provare che l'equazione 6 3 L (1893) Gaston Maurice JULIA 2 2 2 2 4 M (1905) Eric Cristopher ZEEMAN 6 * (6a + 3b + c ) = 5n 5 M (1757) Jean Marie Constant DUHAMEL non ha soluzioni intere tranne 6 G (1612) Antoine ARNAULD (1695) Nicolaus (II) BERNOULLI a = b = c = n = 0 7 V (1877) Godfried Harold HARDY (1883) Eric Temple BELL Dizionario di Matematica 8 S (1700) Daniel BERNOULLI (1875) Francis Ysidro EDGEWORTH Banale: Se devo spiegarvi come si fa 9 D (1775) Farkas Wolfgang BOLYAI questo, avete sbagliato aula. (1907) Harod Scott MacDonald COXETER 7 10 L (1747) Aida YASUAKI Ci sono due gruppi di persone al 11 M (1800) William Henry Fox TALBOT (1839) Josiah Willard GIBBS mondo: quelli che credono il mondo (1915) Richard Wesley HAMMING possa essere diviso in due gruppi di 12 M (1914) Hanna CAEMMERER NEUMANN persone e gli altri. 13 G (1805) Johann Peter Gustav Lejeune DIRICHLET Connaitre, decouvrir, communiquer. 14 V (1468) Johann WERNER (1849) Hermann HANKEL Telle est la destinée d'un savant (1896) Edward Artur MILNE François ARAGO 15 S (1564) Galileo GALILEI (1861) Alfred North WHITEHEAD Common sense is not really so (1946) Douglas HOFSTADTER common 16 D (1822) Francis GALTON (1853) Georgorio RICCI-CURBASTRO Antoine ARNAULD (1903) Beniamino SEGRE 8 17 L (1890) Sir Ronald Aymler FISHER "Obvious" is the most dangerous word (1891) Adolf Abraham Halevi FRAENKEL in mathematics. 18 M (1404) Leon Battista ALBERTI Eric Temple BELL 19 M (1473) Nicolaus COPERNICUS 20 G (1844) Ludwig BOLTZMANN ...it would be better for the true 21 V (1591) Girard DESARGUES physics if there were no (1915) Evgenni Michailovitch LIFSHITZ mathematicians on hearth. 22 S (1903) Frank Plumpton RAMSEY Daniel BERNOULLI 23 D (1583) Jean-Baptiste MORIN (1951) Shigefumi MORI ...an incorrect theory, even if it cannot 9 24 L (1871) Felix BERNSTEIN be inhibited bay any contradiction 25 M (1827) Henry WATSON that would refute it, is none the less 26 M (1786) Dominique Francois Jean ARAGO incorrect, just as a criminal policy is 27 G (1881) Luitzen Egbertus Jan BROUWER none the less criminal even if it 28 V (1735) Alexandre Theophile VANDERMONDE cannot be inhibited by any court that (1860) Herman HOLLERITH would curb it. Jan BROUWER Mathemata mathematici scribuntur Nicolaus COPERNICUS www.rudimathematici.com Rudi Mathematici Marzo 9 1 S (1611) John PELL APMO 1989 [3] 2 D (1836) Julius WEINGARTEN Siano A1, A2, A3 tre punti sul piano e 10 3 L (1838) George William HILL (1845) Georg CANTOR sia, per notazione, A4=A1, A5=A2. Per 4 M (1822) Jules Antoine LISSAJUS n=1, 2, e 3 supponiamo che Bn sia il 5 M (1512) Gerardus MERCATOR punto medio di AnAn+1, e che Cn sia il (1759) Benjamin GOMPERTZ (1817) Angelo GENOCCHI punto medio di AnBn. Supponiamo 6 G (1866) Ettore BORTOLOTTI che AnCn+1 e BnCn+2 si incontrino in 7 V (1792) William HERSCHEL Dn, e che AnBn+1 si incontrino in En. (1824) Delfino CODAZZI Calcolare il rapporto tra l'area del (1851) George CHRYSTAL 8 S triangolo D1D2D3 e l'area del 9 D (1818) Ferdinand JOACHIMSTHAL (1900) Howard Hathaway AIKEN triangolo E1E2E3. 11 10 L (1864) William Fogg OSGOOD Dizionario di Matematica 11 M (1811) Urbain Jean Joseph LE VERRIER (1853) Salvatore PINCHERLE Si puo` facilmente dimostrare che: 12 M (1685) George BERKELEY Servono non piu` di quattro ore per (1824) Gustav Robert KIRKHHOFF (1859) Ernesto CESARO dimostrarlo. 13 G (1861) Jules Joseph DRACH (1957) Rudy D'ALEMBERT Teorema: tutti i numeri sono noiosi. 14 V (1864) Jozef KURSCHAK (1879) Albert EINSTEIN Dimostrazione (per assurdo). 15 S (1860) Walter Frank Raphael WELDON Supponiamo x sia il primo numero (1868) Grace CHISOLM YOUNG non noioso. Chi se ne frega? 16 D (1750) Caroline HERSCHEL (1789) Georg Simon OHM Mathematics is the most beautiful (1846) Magnus Gosta MITTAG-LEFFLER 12 17 L (1876) Ernest Benjamin ESCLANGON and the most powerful creation of the (1897) Charles FOX human spirit. Mathematics is as old 18 M (1640) Philippe de LA HIRE (1690) Christian GOLDBACH as Man. (1796) Jacob STEINER Stefan BANACH 19 M (1862) Adolf KNESER (1910) Jacob WOLFOWITZ In mathematics the art of proposing a 20 G (1840) Franz MERTENS question must be held on higher value (1884) Philip FRANCK (1938) Sergi Petrovich NOVIKOV than solving it. 21 V (1768) Jean Baptiste Joseph FOURIER (1884) George David BIRKHOFF Georg CANTOR 22 S (1917) Irving KAPLANSKY When writing about transcendental 23 D (1754) Georg Freiherr von VEGA issues, be transcendentally clear. (1882) Emmy Amalie NOETHER (1897) John Lighton SYNGE Rene` DESCARTES 13 24 L (1809) Joseph LIOUVILLE (1948) Sun-Yung (Alice) CHANG The search for truth is more 25 M (1538) Christopher CLAUSIUS important than its possession. 26 M (1848) Konstantin ADREEV Albert EINSTEIN (1913) Paul ERDOS 27 G (1857) Karl PEARSON Property is a nuisance. 28 V (1749) Pierre Simon de LAPLACE Paul ERDOS 29 S (1825) Francesco FAA` DI BRUNO Don't worry about people stealing (1873) Tullio LEVI-CIVITA (1896) Wilhelm ACKERMAN your ideas. If your ideas are any good, 30 D (1892) Stefan BANACH you'll have to ram them down 14 31 L (1596) Rene` DESCARTES people's throat. Howard AIKEN Geometry is the noblest branch of physics. William OSGOOD www.rudimathematici.com Rudi Mathematici Aprile 14 1 M (1640) Georg MOHR (1776) Marie-Sophie GERMAIN APMO 1989 [4] (1895) Alexander Craig AITKEN Sia S un insieme formato da m 2 M (1934) Paul Joseph COHEN coppie (a,b) di interi positivi con la 3 G (1835) John Howard Van AMRINGE (1892) Hans RADEMACHER proprieta` che 1 £ a < b £ n . (1900) Albert Edward INGHAM (1909) Stanislaw Marcin ULAM Mostrare che esistono almeno (1971) Alice RIDDLE n 2 4 V (1809) Benjamin PEIRCE (1842) Francois Edouard Anatole LUCAS m - (1949) Shing-Tung YAU 4m * 4 5 S (1588) Thomas HOBBES 3n (1607) Honore` FABRI (1622) Vincenzo VIVIANI triple(a,b,c) tali che (a,b), (a,c) e (1869) Sergi Alexeievich CHAPLYGIN (b,c) appartengono a S. 6 D 15 7 L (1768) Francais Joseph FRANCAIS Dizionario di Matematica 8 M (1903) Marshall Harvey STONE Verificate per vostro conto: Questa e` 9 M (1791) George PEACOCK la parte noiosa della dimostrazione. (1816) Charles Eugene DELAUNAY (1919) John Presper HECKERT E` provato che la celebrazione dei 10 G (1857) Henry Ernest DUDENEY compleanni e` salutare. Le 11 V (1953) Andrew John WILES statistiche mostrano che chi celebra 12 S (1794) Germinal Pierre DANDELIN (1852) Carl Louis Ferdinand Von LINDEMANN piu` compleanni diventa piu` (1903) Jan TINBERGEN vecchio.
Recommended publications
  • The History and Development of Numerical Analysis in Scotland: a Personal Perspective∗
    The history and development of numerical analysis in Scotland: a personal perspective∗ G. A. Watson, Division of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland. Abstract An account is given of the history and development of numerical analysis in Scotland. This covers, in particular, activity in Edinburgh in the first half of the 20th century, the collaboration between Edinburgh and St Andrews in the 1960s, and the role played by Dundee from the 1970s. I will give some reminiscences from my own time at both Edinburgh and Dundee. 1 Introduction To provide a historical account of numerical analysis (or of anything else), it is necessary to decide where to begin. If numerical analysis is defined to be the study of algorithms for the problems of continuous mathematics [16], then of course it has a very long history (see, for example, [6], [13]). But \modern" numerical analysis is inextricably linked with computing machines. It is usually associated with programmable electronic computers, and is often said to have its origins in the 1947 paper by von Neumann and Goldstine [10]. The name apparently was first used around that time, and was given formal recognition in the setting up of the Institute for Numerical Analysis, located on the campus of the University of California at Los Angeles [3]. This was a section of the National Applied Mathematics Laboratories of the National Bureau of Standards, headed by J. H. Curtiss, who is often given credit for the name. Others consider modern numerical analysis to go back further than this; for example Todd [15] suggests it begins around 1936, and cites papers by Comrie and Turing.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • William Robertson Smith, Solomon Schechter and Contemporary Judaism
    https://doi.org/10.14324/111.444.jhs.2016v48.026 William Robertson Smith, Solomon Schechter and contemporary Judaism bernhard maier University of Tübingen, Germany* During Solomon Schechter’s first years in the University of Cambridge, one of his most illustrious colleagues was the Scottish Old Testament scholar and Arabist William Robertson Smith (1846–1894), who is today considered to be among the founding fathers of comparative religious studies. Smith was the son of a minister of the strongly evangelical Free Church of Scotland, which had constituted itself in 1843 as a rival to the state-controlled established Church of Scotland. Appointed Professor of Old Testament Exegesis in the Free Church College Aberdeen at the early age of twenty-four, Smith soon came into conflict with the conservative theologians of his church on account of his critical views. After a prolonged heresy trial, he was finally deprived of his Aberdeen chair in 1881. In 1883 he moved to Cambridge, where he served, successively, as Lord Almoner’s Reader in Arabic, University Librarian, and Thomas Adams’s Professor of Arabic. Discussing Schechter’s relations with Robertson Smith, one has to bear in mind that direct contact between Schechter and Smith was confined to a relatively short period of less than five years (1890–94), during which Smith was frequently ill and consequently not resident in Cambridge at all.1 Furthermore, there is not much written evidence, so that several hints and clues that have come down to us are difficult to interpret, our understanding being sometimes based on inference and reasoning by analogy rather than on any certain knowledge.
    [Show full text]
  • On the Isochronism of Galilei's Horologium
    IFToMM Workshop on History of MMS – Palermo 2013 On the isochronism of Galilei's horologium Francesco Sorge, Marco Cammalleri, Giuseppe Genchi DICGIM, Università di Palermo, [email protected], [email protected], [email protected] Abstract − Measuring the passage of time has always fascinated the humankind throughout the centuries. It is amazing how the general architecture of clocks has remained almost unchanged in practice to date from the Middle Ages. However, the foremost mechanical developments in clock-making date from the seventeenth century, when the discovery of the isochronism laws of pendular motion by Galilei and Huygens permitted a higher degree of accuracy in the time measure. Keywords: Time Measure, Pendulum, Isochronism Brief Survey on the Art of Clock-Making The first elements of temporal and spatial cognition among the primitive societies were associated with the course of natural events. In practice, the starry heaven played the role of the first huge clock of mankind. According to the philosopher Macrobius (4 th century), even the Latin term hora derives, through the Greek word ‘ώρα , from an Egyptian hieroglyph to be pronounced Heru or Horu , which was Latinized into Horus and was the name of the Egyptian deity of the sun and the sky, who was the son of Osiris and was often represented as a hawk, prince of the sky. Later on, the measure of time began to assume a rudimentary technical connotation and to benefit from the use of more or less ingenious devices. Various kinds of clocks developed to relatively high levels of accuracy through the Egyptian, Assyrian, Greek and Roman civilizations.
    [Show full text]
  • Former Fellows Biographical Index Part
    Former Fellows of The Royal Society of Edinburgh 1783 – 2002 Biographical Index Part Two ISBN 0 902198 84 X Published July 2006 © The Royal Society of Edinburgh 22-26 George Street, Edinburgh, EH2 2PQ BIOGRAPHICAL INDEX OF FORMER FELLOWS OF THE ROYAL SOCIETY OF EDINBURGH 1783 – 2002 PART II K-Z C D Waterston and A Macmillan Shearer This is a print-out of the biographical index of over 4000 former Fellows of the Royal Society of Edinburgh as held on the Society’s computer system in October 2005. It lists former Fellows from the foundation of the Society in 1783 to October 2002. Most are deceased Fellows up to and including the list given in the RSE Directory 2003 (Session 2002-3) but some former Fellows who left the Society by resignation or were removed from the roll are still living. HISTORY OF THE PROJECT Information on the Fellowship has been kept by the Society in many ways – unpublished sources include Council and Committee Minutes, Card Indices, and correspondence; published sources such as Transactions, Proceedings, Year Books, Billets, Candidates Lists, etc. All have been examined by the compilers, who have found the Minutes, particularly Committee Minutes, to be of variable quality, and it is to be regretted that the Society’s holdings of published billets and candidates lists are incomplete. The late Professor Neil Campbell prepared from these sources a loose-leaf list of some 1500 Ordinary Fellows elected during the Society’s first hundred years. He listed name and forenames, title where applicable and national honours, profession or discipline, position held, some information on membership of the other societies, dates of birth, election to the Society and death or resignation from the Society and reference to a printed biography.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world,
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • The Logarithmic Tables of Edward Sang and His Daughters
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 47–84 www.elsevier.com/locate/hm The logarithmic tables of Edward Sang and his daughters Alex D.D. Craik School of Mathematics & Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland, United Kingdom Abstract Edward Sang (1805–1890), aided only by his daughters Flora and Jane, compiled vast logarithmic and other mathematical tables. These exceed in accuracy and extent the tables of the French Bureau du Cadastre, produced by Gaspard de Prony and a multitude of assistants during 1794–1801. Like Prony’s, only a small part of Sang’s tables was published: his 7-place logarithmic tables of 1871. The contents and fate of Sang’s manuscript volumes, the abortive attempts to publish them, and some of Sang’s methods are described. A brief biography of Sang outlines his many other contributions to science and technology in both Scotland and Turkey. Remarkably, the tables were mostly compiled in his spare time. 2003 Elsevier Science (USA). All rights reserved. Résumé Edward Sang (1805–1890), aidé seulement par sa famille, c’est à dire ses filles Flora et Jane, compila des tables vastes des logarithmes et des autres fonctions mathématiques. Ces tables sont plus accurates, et plus extensives que celles du Bureau du Cadastre, compileés les années 1794–1801 par Gaspard de Prony et une foule de ses aides. On ne publia qu’une petite partie des tables de Sang (comme celles de Prony) : ses tables du 1871 des logarithmes à 7-places décimales.
    [Show full text]
  • Lettere Tra LUIGI CREMONA E Corrispondenti in Lingua Inglese
    Lettere tra LUIGI CREMONA e corrispondenti in lingua inglese CONSERVATE PRESSO L’ISTITUTO MAZZINIANO DI GENOVA a cura di Giovanna Dimitolo Indice Presentazione della corrispondenza 1 J.W. RUSSELL 47 Criteri di edizione 1 G. SALMON 49 A.H.H. ANGLIN 2 H.J.S. SMITH 50 M.T. BEIMER 3 R.H. SMITH 55 BINNEY 4 Smithsonian Institution 57 J. BOOTH 5 W. SPOTTISWOODE 58 British Association 6 C.M. STRUTHERS 67 W.S. BURNSIDE 7 J.J. SYLVESTER 68 CAYLEY 8 M.I. TADDEUCCI 69 G. CHRYSTAL 10 P.G. TAIT 70 R.B. CLIFTON 16 W. THOMSON (Lord Kelvin) 74 R. CRAWFORD 17 R. TUCKER 75 A.J.C. CUNNINGHAM 18 G. TYSON-WOLFF 76 C.L. DODGSON (Lewis Carrol) 19 R.H. WOLFF 90 DULAN 20 J. WILSON 93 H.T. EDDY 21 Tabella: i dati delle lettere 94 S. FERGUSON 22 Biografie dei corrispondenti 97 W.T. GAIRDNER 23 Indice dei nomi citati nelle lettere 99 J.W.L. GLAISHER 29 Bibliografia 102 A.B. GRIFFITHS 30 T. HUDSON BEARE 34 W. HUGGINS 36 M. JENKINS 37 H. LAMB 38 C. LEUDESDORF 39 H.A. NEWTON 41 B. PRICE 42 E.L. RICHARDS 44 R.G. ROBSON 45 Royal Society of London 46 www.luigi-cremona.it – aprile 2017 Presentazione della corrispondenza La corrispondenza qui trascritta è composta da 115 lettere: 65, in inglese, sono di corrispondenti stranieri e 50 (48 in inglese e 2 in italiano) sono bozze delle lettere di Luigi Cremona indirizzate a stranieri. I 43 corrispondenti stranieri sono per la maggior parte inglesi, ma vi sono anche irlandesi, scozzesi, statunitensi, australiani e un tedesco, l’amico compositore Gustav Tyson-Wolff che, per un lungo periodo visse in Inghilterra.
    [Show full text]
  • La Academia Del Cimento (1657-1667)
    LA ACADEMIA DEL CIMENTO (1657-1667) LA ACADEMIA DEL CIMENTO (1657-1667) SUSANA GÓMEZ LÓPEZ Universidad Complutense, de Madrid. Cuando se habla del proceso de institucionalización de la ciencia en la Revolución Científica del siglo XVII prácticamente siempre se citan tres ca- sos ejemplares muy cercanos cronológicamente entre sí: La florentina Accademia del Cimento, la Royal Society de Londres y la Academie des Sciences de París, toda ellas surgidas en la década que va de mediados de los años cincuenta a mediados de los sesenta. Y la reunión de estos tres casos en el capítulo de institucionalización ha estado guiada, para buena parte de la His- toria de la Ciencia, por la idea de que estas sociedades eran la materialización de los ideales baconianos de colaboración científica, los intereses prácticos, la necesidad de establecer nuevas vías de comunicación de ideas, inventos, 443 SEMINARIO «OROTAVA» DE HISTORIA DE LA CIENCIA - AÑO XI-XII hipótesis o descubrimientos y otros elementos afines que caracterizarán, a partir de esas fechas, a la ciencia moderna. Cada una de estas sociedades, sin embar- go, tuvo unas motivaciones, unas características, una estructura y unos objeti- vos tan diferentes que hablar de un proceso lineal y común de institucionaliza- ción de la ciencia europea en aquel periodo no sólo es equivocado, sino que conlleva los peligros de ocultar las verdaderas inspiraciones y objetivos que estuvieron en la base de tales asociaciones de hombres de ciencia. En especial el caso de la Academia del Cimento nació como elemento representativo de un proyecto científico que poco tenía que ver con esos ras- gos característicos de la moderna insitucionalización científica y compartía mucho, en cambio, con una tradición renacentista y cortesana de academias de hombres cultos y literatos.
    [Show full text]
  • The Geometry of Trifocal Curves with Applications in Architecture, Urban
    The Geometry of Trifocal Curves with Applications in Architecture, Urban and Spatial Planning Maja Petrović, University of Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Serbia; Address: Vojvode Stepe 305, 11000 Beograd, Serbia, telephone: +381 11 3091 259, fax: +381 11 3096 704, e-mail: [email protected] Bojan Banjac, University of Belgrade, Faculty of Electrical Engineering, Belgrade, Serbia, University of Novi Sad, Faculty of technical sciences – Computer Graphics Chair, Novi Sad, Serbia Branko Malešević, University of Belgrade, Faculty of Electrical Engineering, Belgrade, Serbia In this paper we consider historical genesis of trifocal curve as an optimal curve for solving the Fermat’s problem (minimizing the sum of distance of one point to three given points in the plane). Trifocal curves are basic plane geometric forms which appear in location problems. We also analyze algebraic equation of these curves and some of their applications in architecture, urbanism and spatial planning. The area and perimeter of trifocal curves are calculated using a Java application. The Java applet is developed for determining numerical value for the Fermat-Torricelli-Weber point and optimal curve with three foci, when starting points are given on an urban map. We also present an application of trifocal curves through the analysis of one specific solution in South Stream gas pipeline project. Key-words: Fermat-Torricelli-Weber point, trifocal curve, Java applet. 1. Historical concerns of optimal location The Fermat problem is given in original Latin as (Fermat, 1679): “datis tribus punctis, quartum reperire, a quo si ducantur tres rectae ad data puncta, summa trium harum rectarum sit minima quantitas” or in the English translation “for three given points, the fourth is to be found, from which if three straight lines are drawn to the given points, the sum of the three lengths is minimum” (Brazil et al., 2013).
    [Show full text]
  • Histoires De Géométrie Le Dernier Disciple De Galilée
    histoires de géométrie Le dernier disciple de Galilée triomphe de la géométrie nouvelle hist-math.fr Bernard Ycart Vincenzo Viviani (1622–1703) Éloge de Monsieur Viviani (1703) Bernard le Bouyer de Fontenelle (1657–1757) Villa à Arcetri Galileo Galilei (1564–1642) Discorsi e dimostrazioni matematiche (1638) Galileo Galilei (1564–1642) Leopoldo de Medici (1617–1675) Vita di Galileo Galilei (1654) Vincenzo Viviani (1622–1703) Poco dopo questa inaspettata pubblicazione, concedendomisi l’in- gresso nella villa d’Arcetri, dove allor dimorava il sigr Galileo, acciò quivi io potesse godere de’ sapientissimi suoi colloquii e preziosi ammaestramenti, e contentandosi questi che nello stu- dio delle matematiche, alle quali poco avanti mi ero applicato, io ricorresse alla viva sua voce per la soluzione di quei dubbii e difficoltà che per natural fiaccezza del mio ingegno bene spesso incontravo[. ] Galilée et Viviani (1892) Tito Lessi (1858–1917) Galileo vecchio con i discepoli (1841) Luigi Sabatelli (1772–1850) Evangelista Torricelli (1608–1647) le dernier Disciple du grand Galilée Fontenelle, Éloge de Monsieur Viviani (1703) Monument funéraire de Galilée (1737) Basilique Santa Croce de Florence Épitaphe Basilique Santa Croce de Florence Palazzo dei Cartelloni, Florence (1693) Vincenzo Viviani (1622–1703) ÆDES A DEO DATÆ LUDOVICI MAGNI Viviani, Palazzo dei Cartelloni, Florence (1693) il reçut une pension du Roi Fontenelle, Éloge de Monsieur Viviani (1703) Coniques d’Apollonius Manuscrit Arabe ixe siècle Coniques, livre I Apollonius de Pergé (ca 240–190 av. J.-C.) Apollonios salue Eudème. Si ta santé se rétablit et si le reste va selon tes désirs, tant mieux ! moi-même je me porte bien.
    [Show full text]