Rudi Mathematici

Rudi Mathematici

Rudi Mathematici x4-8180x3+25090190x2-34200948100x+17481136677369=0 Rudi Mathematici Gennaio 1 1 M (1803) Guglielmo LIBRI Carucci dalla Somaja APMO 1989 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE K (1912) Boris GNEDENKO Siano x1 , x2 , , xn numeri reali 2 G (1822) Rudolf Julius Emmanuel CLAUSIUS n (1905) Lev Genrichovich SHNIRELMAN positivi e sia S = x . (1938) Anatoly SAMOILENKO å i i=1 3 V (1917) Yuri Alexeievich MITROPOLSHY 4 S (1643) Isaac NEWTON Provare che e`: 5 D (1838) Marie Ennemond Camille JORDAN n n S i (1871) Federigo ENRIQUES (1+ x ) £ (1871) Gino FANO Õ i å i! 2 6 L (1807) Jozeph Mitza PETZVAL i=1 i=0 (1841) Rudolf STURM 7 M (1871) Felix Edouard Justin Emile BOREL Dizionario di Matematica (1907) Raymond Edward Alan Christopher PALEY 8 M (1888) Richard COURANT Chiaramente: Non ho nessuna voglia (1924) Paul Moritz COHN di scrivere tutti i passaggi. (1942) Stephen William HAWKING 9 G (1864) Vladimir Adreievich STELKOV Prima Legge della Matematica 10 V (1875) Issai SCHUR Applicata: tutte le serie infinite (1905) Ruth MOUFANG convergono al loro primo termine. 11 S (1545) Guidobaldo DEL MONTE (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR A mathematician's reputation rests 12 D (1906) Kurt August HIRSCH on the number of bad proofs he has 3 13 L (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN given. (1876) Luther Pfahler EISENHART (1876) Erhard SCHMIDT Abram BESICOVITCH 14 M (1902) Alfred TARSKI Probabilities must be regarded as 15 M (1704) Johann CASTILLON analogous to the measurements of (1717) Mattew STEWART (1850) Sofia Vasilievna KOVALEVSKAJA physical magnitudes; that is to say, 16 G (1801) Thomas KLAUSEN they can never be known exactly, but 17 V (1847) Nikolay Egorovich ZUKOWSKY only within certain approximation. (1858) Gabriel KOENIGS 18 S (1856) Luigi BIANCHI Emile BOREL (1880) Paul EHRENFEST I have no certainties, at most 19 D (1813) Rudolf Friedrich Alfred CLEBSCH (1879) Guido FUBINI probabilities. (1908) Aleksandr Gennadievich KUROS Renato CACCIOPPOLI 4 20 L (1775) Andre` Marie AMPERE (1895) Gabor SZEGO What I tell you three times is true. (1904) Renato CACCIOPPOLI 21 M (1846) Pieter Hendrik SCHOUTE Charles DODGSON (1915) Yuri Vladimirovich LINNIK 22 M (1592) Pierre GASSENDI The proof of the Hilbert Basis (1908) Lev Davidovich LANDAU Theorem is not mathematics: it is 23 G (1840) Ernst ABBE (1862) David HILBERT theology. 24 V (1891) Abram Samoilovitch BESICOVITCH Camille JORDAN (1914) Vladimir Petrovich POTAPOV 25 S (1627) Robert BOYLE Probabilities must be regarded as (1736) Joseph-Louis LAGRANGE analogous to the measurement of (1843) Karl Herman Amandus SCHWARTZ physical magnitudes: they can never 26 D (1799) Benoit Paul Emile CLAPEYRON be known exactly, but only within 5 27 L (1832) Charles Lutwidge DODGSON certain approximation. 28 M (1701) Charles Marie de LA CONDAMINE (1892) Carlo Emilio BONFERRONI Emile BOREL 29 M (1817) William FERREL (1888) Sidney CHAPMAN God not only plays dice. He also 30 G (1619) Michelangelo RICCI sometimes throws the dice where they 31 V (1715) Giovanni Francesco FAGNANO dei Toschi cannot be seen. (1841) Samuel LOYD (1896) Sofia Alexandrovna JANOWSKAJA Stephen HAWKING www.rudimathematici.com Rudi Mathematici Febbraio 5 1 S (1900) John Charles BURKILL APMO 1989 [2] 2 D (1522) Lodovico FERRARI Provare che l'equazione 6 3 L (1893) Gaston Maurice JULIA 2 2 2 2 4 M (1905) Eric Cristopher ZEEMAN 6 * (6a + 3b + c ) = 5n 5 M (1757) Jean Marie Constant DUHAMEL non ha soluzioni intere tranne 6 G (1612) Antoine ARNAULD (1695) Nicolaus (II) BERNOULLI a = b = c = n = 0 7 V (1877) Godfried Harold HARDY (1883) Eric Temple BELL Dizionario di Matematica 8 S (1700) Daniel BERNOULLI (1875) Francis Ysidro EDGEWORTH Banale: Se devo spiegarvi come si fa 9 D (1775) Farkas Wolfgang BOLYAI questo, avete sbagliato aula. (1907) Harod Scott MacDonald COXETER 7 10 L (1747) Aida YASUAKI Ci sono due gruppi di persone al 11 M (1800) William Henry Fox TALBOT (1839) Josiah Willard GIBBS mondo: quelli che credono il mondo (1915) Richard Wesley HAMMING possa essere diviso in due gruppi di 12 M (1914) Hanna CAEMMERER NEUMANN persone e gli altri. 13 G (1805) Johann Peter Gustav Lejeune DIRICHLET Connaitre, decouvrir, communiquer. 14 V (1468) Johann WERNER (1849) Hermann HANKEL Telle est la destinée d'un savant (1896) Edward Artur MILNE François ARAGO 15 S (1564) Galileo GALILEI (1861) Alfred North WHITEHEAD Common sense is not really so (1946) Douglas HOFSTADTER common 16 D (1822) Francis GALTON (1853) Georgorio RICCI-CURBASTRO Antoine ARNAULD (1903) Beniamino SEGRE 8 17 L (1890) Sir Ronald Aymler FISHER "Obvious" is the most dangerous word (1891) Adolf Abraham Halevi FRAENKEL in mathematics. 18 M (1404) Leon Battista ALBERTI Eric Temple BELL 19 M (1473) Nicolaus COPERNICUS 20 G (1844) Ludwig BOLTZMANN ...it would be better for the true 21 V (1591) Girard DESARGUES physics if there were no (1915) Evgenni Michailovitch LIFSHITZ mathematicians on hearth. 22 S (1903) Frank Plumpton RAMSEY Daniel BERNOULLI 23 D (1583) Jean-Baptiste MORIN (1951) Shigefumi MORI ...an incorrect theory, even if it cannot 9 24 L (1871) Felix BERNSTEIN be inhibited bay any contradiction 25 M (1827) Henry WATSON that would refute it, is none the less 26 M (1786) Dominique Francois Jean ARAGO incorrect, just as a criminal policy is 27 G (1881) Luitzen Egbertus Jan BROUWER none the less criminal even if it 28 V (1735) Alexandre Theophile VANDERMONDE cannot be inhibited by any court that (1860) Herman HOLLERITH would curb it. Jan BROUWER Mathemata mathematici scribuntur Nicolaus COPERNICUS www.rudimathematici.com Rudi Mathematici Marzo 9 1 S (1611) John PELL APMO 1989 [3] 2 D (1836) Julius WEINGARTEN Siano A1, A2, A3 tre punti sul piano e 10 3 L (1838) George William HILL (1845) Georg CANTOR sia, per notazione, A4=A1, A5=A2. Per 4 M (1822) Jules Antoine LISSAJUS n=1, 2, e 3 supponiamo che Bn sia il 5 M (1512) Gerardus MERCATOR punto medio di AnAn+1, e che Cn sia il (1759) Benjamin GOMPERTZ (1817) Angelo GENOCCHI punto medio di AnBn. Supponiamo 6 G (1866) Ettore BORTOLOTTI che AnCn+1 e BnCn+2 si incontrino in 7 V (1792) William HERSCHEL Dn, e che AnBn+1 si incontrino in En. (1824) Delfino CODAZZI Calcolare il rapporto tra l'area del (1851) George CHRYSTAL 8 S triangolo D1D2D3 e l'area del 9 D (1818) Ferdinand JOACHIMSTHAL (1900) Howard Hathaway AIKEN triangolo E1E2E3. 11 10 L (1864) William Fogg OSGOOD Dizionario di Matematica 11 M (1811) Urbain Jean Joseph LE VERRIER (1853) Salvatore PINCHERLE Si puo` facilmente dimostrare che: 12 M (1685) George BERKELEY Servono non piu` di quattro ore per (1824) Gustav Robert KIRKHHOFF (1859) Ernesto CESARO dimostrarlo. 13 G (1861) Jules Joseph DRACH (1957) Rudy D'ALEMBERT Teorema: tutti i numeri sono noiosi. 14 V (1864) Jozef KURSCHAK (1879) Albert EINSTEIN Dimostrazione (per assurdo). 15 S (1860) Walter Frank Raphael WELDON Supponiamo x sia il primo numero (1868) Grace CHISOLM YOUNG non noioso. Chi se ne frega? 16 D (1750) Caroline HERSCHEL (1789) Georg Simon OHM Mathematics is the most beautiful (1846) Magnus Gosta MITTAG-LEFFLER 12 17 L (1876) Ernest Benjamin ESCLANGON and the most powerful creation of the (1897) Charles FOX human spirit. Mathematics is as old 18 M (1640) Philippe de LA HIRE (1690) Christian GOLDBACH as Man. (1796) Jacob STEINER Stefan BANACH 19 M (1862) Adolf KNESER (1910) Jacob WOLFOWITZ In mathematics the art of proposing a 20 G (1840) Franz MERTENS question must be held on higher value (1884) Philip FRANCK (1938) Sergi Petrovich NOVIKOV than solving it. 21 V (1768) Jean Baptiste Joseph FOURIER (1884) George David BIRKHOFF Georg CANTOR 22 S (1917) Irving KAPLANSKY When writing about transcendental 23 D (1754) Georg Freiherr von VEGA issues, be transcendentally clear. (1882) Emmy Amalie NOETHER (1897) John Lighton SYNGE Rene` DESCARTES 13 24 L (1809) Joseph LIOUVILLE (1948) Sun-Yung (Alice) CHANG The search for truth is more 25 M (1538) Christopher CLAUSIUS important than its possession. 26 M (1848) Konstantin ADREEV Albert EINSTEIN (1913) Paul ERDOS 27 G (1857) Karl PEARSON Property is a nuisance. 28 V (1749) Pierre Simon de LAPLACE Paul ERDOS 29 S (1825) Francesco FAA` DI BRUNO Don't worry about people stealing (1873) Tullio LEVI-CIVITA (1896) Wilhelm ACKERMAN your ideas. If your ideas are any good, 30 D (1892) Stefan BANACH you'll have to ram them down 14 31 L (1596) Rene` DESCARTES people's throat. Howard AIKEN Geometry is the noblest branch of physics. William OSGOOD www.rudimathematici.com Rudi Mathematici Aprile 14 1 M (1640) Georg MOHR (1776) Marie-Sophie GERMAIN APMO 1989 [4] (1895) Alexander Craig AITKEN Sia S un insieme formato da m 2 M (1934) Paul Joseph COHEN coppie (a,b) di interi positivi con la 3 G (1835) John Howard Van AMRINGE (1892) Hans RADEMACHER proprieta` che 1 £ a < b £ n . (1900) Albert Edward INGHAM (1909) Stanislaw Marcin ULAM Mostrare che esistono almeno (1971) Alice RIDDLE n 2 4 V (1809) Benjamin PEIRCE (1842) Francois Edouard Anatole LUCAS m - (1949) Shing-Tung YAU 4m * 4 5 S (1588) Thomas HOBBES 3n (1607) Honore` FABRI (1622) Vincenzo VIVIANI triple(a,b,c) tali che (a,b), (a,c) e (1869) Sergi Alexeievich CHAPLYGIN (b,c) appartengono a S. 6 D 15 7 L (1768) Francais Joseph FRANCAIS Dizionario di Matematica 8 M (1903) Marshall Harvey STONE Verificate per vostro conto: Questa e` 9 M (1791) George PEACOCK la parte noiosa della dimostrazione. (1816) Charles Eugene DELAUNAY (1919) John Presper HECKERT E` provato che la celebrazione dei 10 G (1857) Henry Ernest DUDENEY compleanni e` salutare. Le 11 V (1953) Andrew John WILES statistiche mostrano che chi celebra 12 S (1794) Germinal Pierre DANDELIN (1852) Carl Louis Ferdinand Von LINDEMANN piu` compleanni diventa piu` (1903) Jan TINBERGEN vecchio.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us