Rudi Mathematici

Total Page:16

File Type:pdf, Size:1020Kb

Rudi Mathematici Rudi Mathematici x4-8180x3+25090190x2-34200948100x+17481136677369=0 Rudi Mathematici January 1 1 W (1803) Guglielmo LIBRI Carucci dalla Somaja APMO 1989 [1] (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Let x1 , x2 , , xn be positive real numbers, (1912) Boris GNEDENKO n 2 T (1822) Rudolf Julius Emmanuel CLAUSIUS (1905) Lev Genrichovich SHNIRELMAN = and let S xi . (1938) Anatoly SAMOILENKO i=1 3 F (1917) Yuri Alexeievich MITROPOLSHY Prove that 4 S (1643) Isaac NEWTON i (1838) Marie Ennemond Camille JORDAN n n 5 S S (1871) Federigo ENRIQUES ()+ ≤ ∏ 1 xi (1871) Gino FANO i=1 i=0 i! 2 6 M (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM The Dictionary 7 T (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY Clearly: I don't want to write down (1888) Richard COURANT 8 W (1924) Paul Moritz COHN all the "in-between" steps. (1942) Stephen William HAWKING The First Law of Applied 9 T (1864) Vladimir Adreievich STELKOV Mathematics: All infinite series 10 F (1875) Issai SCHUR (1905) Ruth MOUFANG converge, and moreover converge to 11 S (1545) Guidobaldo DEL MONTE the first term. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR A mathematician's reputation rests 12 S (1906) Kurt August HIRSCH on the number of bad proofs he has 3 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN (1876) Luther Pfahler EISENHART given. (1876) Erhard SCHMIDT Abram BESICOVITCH 14 T (1902) Alfred TARSKI 15 W (1704) Johann CASTILLON Probabilities must be regarded as (1717) Mattew STEWART analogous to the measurements of (1850) Sofia Vasilievna KOVALEVSKAJA physical magnitudes; that is to say, 16 T (1801) Thomas KLAUSEN they can never be known exactly, but 17 F (1847) Nikolay Egorovich ZUKOWSKY (1858) Gabriel KOENIGS only within certain approximation. (1856) Luigi BIANCHI 18 S (1880) Paul EHRENFEST Emile BOREL 19 S (1813) Rudolf Friedrich Alfred CLEBSCH I have no certainties, at most (1879) Guido FUBINI (1908) Aleksandr Gennadievich KUROS probabilities. 4 20 M (1775) Andre` Marie AMPERE Renato CACCIOPPOLI (1895) Gabor SZEGO (1904) Renato CACCIOPPOLI What I tell you three times is true. 21 T (1846) Pieter Hendrik SCHOUTE (1915) Yuri Vladimirovich LINNIK Charles DODGSON (1592) Pierre GASSENDI 22 W (1908) Lev Davidovich LANDAU The proof of the Hilbert Basis 23 T (1840) Ernst ABBE Theorem is not mathematics: it is (1862) David HILBERT theology. 24 F (1891) Abram Samoilovitch BESICOVITCH (1914) Vladimir Petrovich POTAPOV Camille JORDAN (1627) Robert BOYLE 25 S (1736) Joseph-Louis LAGRANGE Probabilities must be regarded as (1843) Karl Herman Amandus SCHWARTZ analogous to the measurement of 26 S (1799) Benoit Paul Emile CLAPEYRON physical magnitudes: they can never 5 27 M (1832) Charles Lutwidge DODGSON be known exactly, but only within 28 T (1701) Charles Marie de LA CONDAMINE certain approximation. (1892) Carlo Emilio BONFERRONI (1817) William FERREL 29 W Emile BOREL (1888) Sidney CHAPMAN God not only plays dice. He also 30 T (1619) Michelangelo RICCI sometimes throws the dice where they 31 F (1715) Giovanni Francesco FAGNANO dei Toschi (1841) Samuel LOYD cannot be seen. (1896) Sofia Alexandrovna JANOWSKAJA Stephen HAWKING www.rudimathematici.com Rudi Mathematici February 5 1 S (1900) John Charles BURKILL APMO 1989 [2] 2 S (1522) Lodovico FERRARI Prove that the equation 6 3 M (1893) Gaston Maurice JULIA 2 2 2 2 6 ∗ ()6a + 3b + c = 5n 4 T (1905) Eric Cristopher ZEEMAN 5 W (1757) Jean Marie Constant DUHAMEL has no solutions in integers except 6 T (1612) Antoine ARNAULD a = b = c = n = 0 (1695) Nicolaus (II) BERNOULLI (1877) Godfried Harold HARDY 7 F (1883) Eric Temple BELL The Dictionary (1700) Daniel BERNOULLI 8 S Trivial: If I have to show you how to do (1875) Francis Ysidro EDGEWORTH (1775) Farkas Wolfgang BOLYAI this, you're in the wrong class 9 S (1907) Harod Scott MacDonald COXETER There are two groups of people in the 7 10 M (1747) Aida YASUAKI world: those who believe that the world 11 T (1800) William Henry Fox TALBOT (1839) Josiah Willard GIBBS can be divided into two groups of (1915) Richard Wesley HAMMING people, and those who don't. 12 W (1914) Hanna CAEMMERER NEUMANN 13 T (1805) Johann Peter Gustav Lejeune DIRICHLET Connaitre, decouvrir, communiquer. (1468) Johann WERNER 14 F Telle est la destinée d'un savant (1849) Hermann HANKEL (1896) Edward Artur MILNE François ARAGO 15 S (1564) Galileo GALILEI Common sense is not really so common (1861) Alfred North WHITEHEAD (1946) Douglas HOFSTADTER Antoine ARNAULD 16 S (1822) Francis GALTON (1853) Georgorio RICCI-CURBASTRO "Obvious" is the most dangerous word (1903) Beniamino SEGRE in mathematics. 8 17 M (1890) Sir Ronald Aymler FISHER (1891) Adolf Abraham Halevi FRAENKEL Eric Temple BELL 18 T (1404) Leon Battista ALBERTI ...it would be better for the true physics 19 W (1473) Nicolaus COPERNICUS if there were no mathematicians on 20 T (1844) Ludwig BOLTZMANN hearth. (1591) Girard DESARGUES 21 F (1915) Evgenni Michailovitch LIFSHITZ Daniel BERNOULLI 22 S (1903) Frank Plumpton RAMSEY ...an incorrect theory, even if it cannot be 23 S (1583) Jean-Baptiste MORIN inhibited bay any contradiction that (1951) Shigefumi MORI would refute it, is none the less 9 24 M (1871) Felix BERNSTEIN incorrect, just as a criminal policy is 25 T (1827) Henry WATSON none the less criminal even if it cannot 26 W (1786) Dominique Francois Jean ARAGO be inhibited by any court that would 27 T (1881) Luitzen Egbertus Jan BROUWER curb it. 28 F (1735) Alexandre Theophile VANDERMONDE Jan BROUWER (1860) Herman HOLLERITH Mathemata mathematici scribuntur Nicolaus COPERNICUS www.rudimathematici.com Rudi Mathematici March 9 1 S (1611) John PELL APMO 1989 [3] (1836) Julius WEINGARTEN 2 S Let A1, A2, A3 be three points in the plane, and (1838) George William HILL 10 3 M for convenience let A4=A1, A5=A2. For n=1, 2, (1845) Georg CANTOR and 3 suppose that Bn is the midpoint of 4 T (1822) Jules Antoine LISSAJUS AnAn+1, and suppose that Cn is the midpoint of (1512) Gerardus MERCATOR AnBn. Suppose that AnCn+1 and BnCn+2 meet at 5 W (1759) Benjamin GOMPERTZ Dn, and that AnBn+1 meet at En. Calculate the (1817) Angelo GENOCCHI ratio of the area of triangle D1D2D3 to the area 6 T (1866) Ettore BORTOLOTTI of triangle E1E2E3. 7 F (1792) William HERSCHEL (1824) Delfino CODAZZI The Dictionary 8 S (1851) George CHRYSTAL It can easily be shown: No more than (1818) Ferdinand JOACHIMSTHAL 9 S (1900) Howard Hathaway AIKEN four hours are needed to prove it 11 10 M (1864) William Fogg OSGOOD Theorem: All the numbers are boring 11 T (1811) Urbain Jean Joseph LE VERRIER (1853) Salvatore PINCHERLE Proof (by contradiction): Suppose x is (1685) George BERKELEY 12 W the first non-boring number. Who (1824) Gustav Robert KIRKHHOFF (1859) Ernesto CESARO cares? (1861) Jules Joseph DRACH 13 T (1957) Rudy D'ALEMBERT Mathematics is the most beautiful 14 F (1864) Jozef KURSCHAK and the most powerful creation of the (1879) Albert EINSTEIN human spirit. Mathematics is as old 15 S (1860) Walter Frank Raphael WELDON (1868) Grace CHISOLM YOUNG as Man. (1750) Caroline HERSCHEL 16 S (1789) Georg Simon OHM Stefan BANACH (1846) Magnus Gosta MITTAG-LEFFLER In mathematics the art of proposing a 12 17 M (1876) Ernest Benjamin ESCLANGON (1897) Charles FOX question must be held on higher value (1640) Philippe de LA HIRE 18 T than solving it. (1690) Christian GOLDBACH (1796) Jacob STEINER Georg CANTOR (1862) Adolf KNESER 19 W (1910) Jacob WOLFOWITZ When writing about transcendental (1840) Franz MERTENS 20 T issues, be transcendentally clear. (1884) Philip FRANCK (1938) Sergi Petrovich NOVIKOV Rene` DESCARTES 21 F (1768) Jean Baptiste Joseph FOURIER The search for truth is more (1884) George David BIRKHOFF important than its possession. 22 S (1917) Irving KAPLANSKY (1754) Georg Freiherr von VEGA 23 S Albert EINSTEIN (1882) Emmy Amalie NOETHER (1897) John Lighton SYNGE Property is a nuisance. 13 24 M (1809) Joseph LIOUVILLE (1948) Sun-Yung (Alice) CHANG Paul ERDOS 25 T (1538) Christopher CLAUSIUS Don't worry about people stealing 26 W (1848) Konstantin ADREEV your ideas. If your ideas are any good, (1913) Paul ERDOS you'll have to ram them down 27 T (1857) Karl PEARSON people's throat. 28 F (1749) Pierre Simon de LAPLACE Howard AIKEN 29 S (1825) Francesco FAA` DI BRUNO (1873) Tullio LEVI-CIVITA Geometry is the noblest branch of (1896) Wilhelm ACKERMAN physics. 30 S (1892) Stefan BANACH 14 31 M (1596) Rene` DESCARTES William OSGOOD www.rudimathematici.com Rudi Mathematici April 14 1 T (1640) Georg MOHR (1776) Marie-Sophie GERMAIN APMO 1989 [4] (1895) Alexander Craig AITKEN Let S be a set consisting of m pairs (a,b) of 2 W (1934) Paul Joseph COHEN positive integers with the property that 3 T (1835) John Howard Van AMRINGE 1 ≤ a < b ≤ n . Show that there are at (1892) Hans RADEMACHER least (1900) Albert Edward INGHAM (1909) Stanislaw Marcin ULAM n 2 (1971) Alice RIDDLE m − 4 F (1809) Benjamin PEIRCE 4 (1842) Francois Edouard Anatole LUCAS 4m ∗ (1949) Shing-Tung YAU 3n (1588) Thomas HOBBES 5 S (1607) Honore` FABRI triples (a,b,c) such that (a,b), (a,c) and (b,c) (1622) Vincenzo VIVIANI belong to S. (1869) Sergi Alexeievich CHAPLYGIN 6 S The Dictionary 15 7 M (1768) Francais Joseph FRANCAIS Check for yourself: This is the boring 8 T (1903) Marshall Harvey STONE part of the proof, so you can do it on (1791) George PEACOCK 9 W your own time (1816) Charles Eugene DELAUNAY (1919) John Presper HECKERT It is proven that celebration of 10 T (1857) Henry Ernest DUDENEY birthdays is healthy.
Recommended publications
  • Stanisław Zaremba
    Danuta Ciesielska*, Krzysztof Ciesielski** Instytut Historii Nauki im. L. i A. Birkenmajerów, PAN Warszawa Instytut Matematyki, Wydział Matematyki i Informatyki, UJ Kraków SSW B (1–192) O DLO K KRTKIE PRZEDSTAWIENIE POLSKIEJ I KRAKOWSKIEJ MATEMATYKI DO POCZTKW XX WIEKU Znaczący rozwój matematyki na świecie datuje się na drugą połowę drugiego tysiąclecia n.e.; przez poprzedzające go półtora tysiąclecia uzyskiwane wyniki były skromne w porównaniu z tym, co uzyskano później. Jednakże do początku XX wieku Polska była z dala od europejskiej, a tym bardziej światowej czołówki. Potęgami ma- tematycznymi były Francja i Niemcy. Ważne rezultaty osiągano w Wielkiej Brytanii i we Włoszech. Sporadycznie pojawiali się słynni matematycy także w innych krajach, jednak w podręcznikach historii matematyki trudno znaleźć wśród nich Polaków. Od XIV wieku Polska miała się czym poszczycić naukowo. Akademia Krakow- ska była drugim uniwersytetem powstałym w środkowej Europie, od początku wy- kładano tu przedmioty kojarzone z matematyką. Na początku XV wieku krakowski mieszczanin Jan Stobner ufundował specjalną katedrę matematyki i astronomii; druga katedra związana z matematyką została ufundowana przez Marcina Króla z Żurawi- cy (ok.1422–ok.1460), pół wieku później. Był to jednak okres istotnie poprzedzający czasy większych osiągnięć matematycznych. Pewne osiągnięcia matematyczne miał ponad wiek później Mikołaj Kopernik (1473–1543), jego nazwisko kojarzone jest jed- nak (oczywiście słusznie) głównie z astronomią. Dopiero w XVII wieku pojawił się w Krakowie matematyk europejskiego formatu – Joannes Broscius (1585–1652; Jan Brożek, znany też jako Brzozek). Był nie tylko mate- matykiem, ale też flozofem, astronomem, teologiem, lekarzem i historykiem nauki. Ma on na swoim koncie znaczące osiągnięcia, głównie związane są z teorią liczb.
    [Show full text]
  • Ernst Abbe 1840-1905: a Social Reformer
    We all do not belong to ourselves Ernst Abbe 1840-1905: a Social Reformer Fritz Schulze, Canada Linda Nguyen, The Canadian Press, Wednesday, January 2014: TORONTO – By the time you finish your lunch on Thursday, Canada’s top paid CEO will have already earned (my italics!) the equivalent of your annual salary.* It is not unusual these days to read such or similar headlines. Each time I am reminded of the co-founder of the company I worked for all my active life. Those who know me, know that I worked for the world-renowned German optical company Carl Zeiss. I also have a fine collection of optical instruments, predominantly microscopes, among them quite a few Zeiss instruments. Carl Zeiss founded his business as a “mechanical atelier” in Jena in 1846 and his mathematical consultant, Ernst Abbe, a poorly paid lecturer at the University Jena, became his partner in 1866. That was the beginning of a comet-like rise of the young company. Ernst Abbe was born in Eisenach, Thuringia, on January 23, 1840, as the first child of a spinnmaster of a local textile mill.Till the beginning of the 50s each and every day the Lord made my father stood at his machines, 14, 15, 16 hours, from 5 o’clock in the morning till 7 o’clock in the evening during quiet periods, 16 hours from 4 o’clock in the morning till 8 o’clock in the evening during busy times, without any interruption, not even a lunch break. I myself as a small boy of 5 – 9 years brought him his lunch, alternately with my younger sister, and watched him as he gulped it down leaning on his machine or sitting on a wooden box, then handing me back the empty pail and immediately again tending his machines." Ernst Abbe remembered later.
    [Show full text]
  • List of Members
    LIST OF MEMBERS, ALFRED BAKER, M.A., Professor of Mathematics, University of Toronto, Toronto, Canada. ARTHUR LATHAM BAKER, C.E., Ph.D., Professor of Mathe­ matics, Stevens School, Hpboken., N. J. MARCUS BAKER, U. S. Geological Survey, Washington, D.C. JAMES MARCUS BANDY, B.A., M.A., Professor of Mathe­ matics and Engineering, Trinit)^ College, N. C. EDGAR WALES BASS, Professor of Mathematics, U. S. Mili­ tary Academy, West Point, N. Y. WOOSTER WOODRUFF BEMAN, B.A., M.A., Member of the London Mathematical Society, Professor of Mathe­ matics, University of Michigan, Ann Arbor, Mich. R. DANIEL BOHANNAN, B.Sc, CE., E.M., Professor of Mathematics and Astronomy, Ohio State University, Columbus, Ohio. CHARLES AUGUSTUS BORST, M.A., Assistant in Astronomy, Johns Hopkins University, Baltimore, Md. EDWARD ALBERT BOWSER, CE., LL.D., Professor of Mathe­ matics, Rutgers College, New Brunswick, N. J. JOHN MILTON BROOKS, B.A., Instructor in Mathematics, College of New Jersey, Princeton, N. J. ABRAM ROGERS BULLIS, B.SC, B.C.E., Macedon, Wayne Co., N. Y. WILLIAM ELWOOD BYERLY, Ph.D., Professor of Mathematics, Harvard University, Cambridge*, Mass. WILLIAM CAIN, C.E., Professor of Mathematics and Eng­ ineering, University of North Carolina, Chapel Hill, N. C. CHARLES HENRY CHANDLER, M.A., Professor of Mathe­ matics, Ripon College, Ripon, Wis. ALEXANDER SMYTH CHRISTIE, LL.M., Chief of Tidal Division, U. S. Coast and Geodetic Survey, Washington, D. C. JOHN EMORY CLARK, M.A., Professor of Mathematics, Yale University, New Haven, Conn. FRANK NELSON COLE, Ph.D., Assistant Professor of Mathe­ matics, University of Michigan, Ann Arbor, Mich.
    [Show full text]
  • Bernhard Riemann 1826-1866
    Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden.
    [Show full text]
  • 8. Gram-Schmidt Orthogonalization
    Chapter 8 Gram-Schmidt Orthogonalization (September 8, 2010) _______________________________________________________________________ Jørgen Pedersen Gram (June 27, 1850 – April 29, 1916) was a Danish actuary and mathematician who was born in Nustrup, Duchy of Schleswig, Denmark and died in Copenhagen, Denmark. Important papers of his include On series expansions determined by the methods of least squares, and Investigations of the number of primes less than a given number. The process that bears his name, the Gram–Schmidt process, was first published in the former paper, in 1883. http://en.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram ________________________________________________________________________ Erhard Schmidt (January 13, 1876 – December 6, 1959) was a German mathematician whose work significantly influenced the direction of mathematics in the twentieth century. He was born in Tartu, Governorate of Livonia (now Estonia). His advisor was David Hilbert and he was awarded his doctorate from Georg-August University of Göttingen in 1905. His doctoral dissertation was entitled Entwickelung willkürlicher Funktionen nach Systemen vorgeschriebener and was a work on integral equations. Together with David Hilbert he made important contributions to functional analysis. http://en.wikipedia.org/wiki/File:Erhard_Schmidt.jpg ________________________________________________________________________ 8.1 Gram-Schmidt Procedure I Gram-Schmidt orthogonalization is a method that takes a non-orthogonal set of linearly independent function and literally constructs an orthogonal set over an arbitrary interval and with respect to an arbitrary weighting function. Here for convenience, all functions are assumed to be real. un(x) linearly independent non-orthogonal un-normalized functions Here we use the following notations. n un (x) x (n = 0, 1, 2, 3, …..). n (x) linearly independent orthogonal un-normalized functions n (x) linearly independent orthogonal normalized functions with b ( x) (x)w(x)dx i j i , j .
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • View Front and Back Matter from The
    TRANSACTIONS OF THE American Mathematical Society EDITED BY ElilAKIM HASTINGS MOOBE EDWARD BURR VAN VLECK HENRY SEELY WHITE WITH THE COOPERATION OF CHARLES LEONARD BOTJTON LEONARD EUGENE DICKSON JOHN IHWIN HUTCHINSON EDWARD KASNEH EDWIN BLDWELL WILSON J'UBLIWHEll QCABTEILT BI THE tSOCIKTT WITH THB BUPPOBT OF Yale University Nobthwestekn University Columbia University The University of Illinois Wesleyan University Cornell University ilavehfobd college the university of chicago The University of Missouri Stanford University Volume 8 1907 Lancaster, Pa., and New Yobk THE MACMIIXAN COMPANY Agents fob the Society 1907 Reprinted with the permission of The American Mathematical Society Johnson Reprint Corporation 111 Fifth Avenue, New York 3, N. Y. Johnson Reprint Company Limited Berkeley Square House, London, W. 1 First Reprinting, 1963, Johnson Reprint Corporation TABLE OF CONTENTS VOLUME 8 1907 PAGES Blichfeldt, H. F., of Stanford University, Cal. On modular groups isomorphic with a given linear group.30- 32 Bliss, Gilbert Ames, of Princeton, N. J. A new form of the simplest problem of the calculus of variations.405—414 Bolza, Oskar, of Chicago, 111. Existence proof for a field of extremals tangent to a given curve.399-404 Dickson, Leonard Eugene, of Chicago, 111. Invariants of binary forms under modular transformations.205-232 _Modular theory of group-matrices.389—398 Eisenhart, Luther Pfahler, of Princeton, N. J. Applicable surfaces with asymptotic lines of one surface corresponding to a conjugate system of another.113—134 Fite, William Benjamin, of Ithaca, N. Y. Irreducible linear homogeneous groups whose orders are powers of a prime . 107—112 Fréchet, Maurice, of Paris, France.
    [Show full text]
  • Mcshane-E-J.Pdf
    NATIONAL ACADEMY OF SCIENCES EDWARD JAMES MCSHANE 1904–1989 A Biographical Memoir by LEONARD D. BERKOVITZ AND WENDELL H. FLEMING Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 80 PUBLISHED 2001 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. EDWARD JAMES MCSHANE May 10, 1904–June 1, 1989 BY LEONARD D. BERKOVITZ AND WENDELL H. FLEMING URING HIS LONG CAREER Edward James McShane made D significant contributions to the calculus of variations, integration theory, stochastic calculus, and exterior ballistics. In addition, he served as a national leader in mathematical and science policy matters and in efforts to improve the undergraduate mathematical curriculum. McShane was born in New Orleans on May 10, 1904, and grew up there. His father, Augustus, was a medical doctor and his mother, Harriet, a former schoolteacher. He gradu- ated from Tulane University in 1925, receiving simultaneously bachelor of engineering and bachelor of science degrees, as well as election to Phi Beta Kappa. He turned down an offer from General Electric and instead continued as a student instructor of mathematics at Tulane, receiving a master’s degree in 1927. In the summer of 1927 McShane entered graduate school at the University of Chicago, from which he received his Ph.D. in 1930 under the supervision of Gilbert Ames Bliss. He interrupted his studies during 1928-29 for financial reasons to teach at the University of Wichita. It was at Chicago that McShane’s long-standing interest in the calculus of variations began.
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • TOWARDS a HISTORY of the GEOMETRIC FOUNDATIONS of MATHEMATICS LATE Xixth CENTURY*
    ARTICLES TOWARDS A HISTORY OF THE GEOMETRIC FOUNDATIONS OF MATHEMATICS LATE XIXth CENTURY* Rossana TAZZIOLI RÉSUMÉ : Beaucoup de « géomètres » du XIXe siècle – Bernhard Riemann, Hermann von Helmholtz, Felix Klein, Riccardo De Paolis, Mario Pieri, Henri Poincaré, Federigo Enriques, et autres – ont joué un rôle important dans la discussion sur les fondements des mathématiques. Mais, contrairement aux idées d’Euclide, ils n’ont pas identifié « l’espace physique » avec « l’espace de nos sens ». Partant de notre expérience dans l’espace, ils ont cherché à identifier les propriétés les plus importantes de l’espace et les ont posées à la base de la géométrie. C’est sur la connaissance active de l’espace que les axiomes de la géométrie ont été élaborés ; ils ne pouvaient donc pas être a priori comme ils le sont dans la philosophie kantienne. En outre, pendant la dernière décade du siècle, certains mathématiciens italiens – De Paolis, Gino Fano, Pieri, et autres – ont fondé le concept de nombre sur la géométrie, en employant des résultats de la géométrie projective. Ainsi, on fondait l’arithmétique sur la géométrie et non l’inverse, comme David Hilbert a cherché à faire quelques années après, sans succès. MOTS-CLÉS : Riemann, Helmholtz, fondements des mathématiques, géométrie, espace. ABSTRACT : Many XIXth century « geometers » – such as Bernhard Riemann, Hermann von Helmholtz, Felix Klein, Riccardo De Paolis, Mario Pieri, Henri Poincaré, Federigo Enriques, and others – played an important role in the discussion about the founda- tions of mathematics. But in contrast to Euclid’s ideas, they did not simply identify « physical space » with the « space of the senses ».
    [Show full text]