Inalgaas/Inp Light Emitting Transistors and Transistor Lasers Operating Near 1.55 Μm Copyright © Yong Huang 2010
Total Page:16
File Type:pdf, Size:1020Kb
InAlGaAs/InP Light Emitting Transistors and Transistor Lasers Operating Near 1.55 µm A Dissertation Presented to The Academic Faculty by Yong Huang In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2010 Copyright © Yong Huang 2010 InAlGaAs/InP Light Emitting Transistors and Transistor Lasers Operating Near 1.55 µm Approved by: Dr. Russell D. Dupuis, Advisor Dr. Jeffrey A. Davis School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Shyh-Chiang Shen Dr. Zhong Lin Wang School of Electrical and Computer School of Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Oliver Brand School of Electrical and Computer Engineering Georgia Institute of Technology Date Approved: October 29, 2010 To my parents, Changfang Zhou and Tonghua Huang; and my supportive and beloved wife, Naiyu Wang ACKNOWLEDGEMENTS I would like to express my sincere gratitude to those who have helped make this work and dissertation possible. First, I would like to thank my advisor, Professor Russell D. Dupuis, for his guidance and for giving me the opportunity to participate in various optoelectronics research areas that are very stimulating and challenging. His devotion for work and deep and broad knowledge on semiconductors and MOCVD inspired me very much. I would also like to thank Professors Shyh-Chiang Shen, Oliver Brand, Jeffrey A. Davis, and Zhong Lin Wang for serving on my committee. It is an honor to have such esteemed professors on my committee. I would like to extend my heartfelt thanks to my colleagues in the AMDG group: Dr. Jianping Liu, Dr. Hee Jin Kim, Dr. Xuebing Zhang, Dr. Dongwon Yoo, Dr. Jae Limb, Dr. Seong Soo Kim, Suk Choi, Zac Lochner, Jeomoh Kim, and Mi Hee Ji for their support, their friendship, and for all the informative discussions we had together. I would especially like to thank Dr. Jae-Hyun Ryou for always providing insightful guidance and unselfish help. I am very indebted to our collaborators Dr. Forest Dixon, Dr. Milton Feng, and Dr. Nick Holonyak at University of Illinois at Urbana-Champaign for device fabrication and technical support. Finally, I would like thank my parents for their endless love and unconditional support. I also consider myself extremely fortunate to have a wonderful wife, Naiyu Wang, who makes my life full of love and happiness. iv TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... iv LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii SUMMARY ..................................................................................................................... xiii CHAPTER 1 Introduction to Light Emitting Transistors and Transistor Lasers ................................. 1 1.1 Emergence of Light Emitting Transistors ............................................................. 1 1.2 Basic Operation Theory ........................................................................................ 2 1.3 History and Development ..................................................................................... 5 1.4 Characteristics and Applications of LETs and TLs .............................................. 6 1.5 Motivation and Challenges of Long Wavelength LETs and TLs ......................... 9 1.6 Scope of this Dissertation ................................................................................... 12 2 Material Growth and Characterization Techniques ..................................................... 13 2.1 Metalorganic Chemical Vapor Deposition ......................................................... 13 2.1.1 MOCVD Reactor ..................................................................................... 13 2.1.2 MOCVD Growth Process ........................................................................ 15 2.2 Material Characterization Techniques ................................................................ 16 2.2.1 X-ray Diffraction ..................................................................................... 16 2.2.2 Atomic Force Microscopy ....................................................................... 18 2.2.3 Photoluminescence .................................................................................. 19 2.2.4 Secondary Ion Mass Spectroscopy .......................................................... 20 2.2.5 Hall Effect ................................................................................................ 21 2.2.6 Electrochemical Capacitance-Voltage Profiling ...................................... 22 3 Growth and Performance of LETs and TLs with Zn-Doped Base .............................. 24 3.1 Growth and Doping of InAlGaAs/InP Materials ................................................ 24 3.2 Performances Zn-doped HBTs and LETs ........................................................... 29 3.3 Design and Performance of a LD ........................................................................ 35 3.4 Demonstration of a Zn-doped TL ....................................................................... 38 3.5 Zn Diffusion and Its Effect on Device Performances ......................................... 42 3.5.1 Zn diffusion in both directions ................................................................. 46 3.5.2 Zn diffusion forward into the emitter ....................................................... 47 3.5.3 Zn diffusion backward into the collector ................................................. 48 3.5.4 Suppression of Zn diffusion from the base .............................................. 50 3.5.5 Detrimental effects of Zn diffusion .......................................................... 52 4 Growth and Performance of LETs and TLs with C-Doped Base ................................ 55 v 4.1 Doping Behaviors and Material Properties in InAlGaAs:C Alloys .................... 55 4.2 Performance of C-doped LETs ........................................................................... 60 4.3 Charge Control Analysis in HBTs and LETs ..................................................... 66 4.4 Design and Performance of C-doped TLs .......................................................... 71 5 Novel Growth Methods for High P-type Doping ........................................................ 77 5.1 Atomic Layer Epitaxy ......................................................................................... 77 5.1.1 Surface Reaction Kinetics in InGaAs ...................................................... 79 5.1.2 Material Quality of InGaAs and InAlGaAs Layers ................................. 87 5.1.3 Attempt for P-type Doping ...................................................................... 89 5.2 Modulation Doping in InAs/(Al)GaAs Superlattices ......................................... 90 5.2.1 Intrinsic Doping in (Al)GaAs Layers ...................................................... 91 5.2.2 Modulation Doping in InAs/(Al)GaAs SLs ............................................. 92 6 Epitaxial Design of a Long Wavelength TL ................................................................ 95 6.1 Gain and Loss in a Transistor Laser ................................................................... 96 6.2 Double Heterostructure Transistor Laser .......................................................... 100 6.3 Separate Confinement Heterostructure Transistor ............................................ 105 6.4 Quantum Well Design....................................................................................... 109 7 Research Summary and Future Work ........................................................................ 113 REFERENCES ............................................................................................................... 117 vi LIST OF TABLES Page Table 3.1: Contact resistance and sheet resistance for the emitter, base and collector. .... 32 Table 3.2: Growth conditions of the structures for several combinations of cases favorable and unfavorable to suppress the diffusion of Zn. .............................. 46 Table 4.1: Parameters used in the calculation of current gains in HBTs. ......................... 67 Table 4.2: Parameters used in the calculation of current gains in LETs. .......................... 70 Table 5.1: Purging time and free carrier concentration in In(Al)GaAs layers. ................. 89 Table 5.2: Free carrier concentration in InAs/(Al)GaAs SL structures. ........................... 94 Table 6.1: Summary of the TL and LD performances with different QW designs. ....... 111 vii LIST OF FIGURES Page Figure 1.1: Electron and hole flows in (a) an LED, (b) an HBT and (c) an LET in active mode. .................................................................................................................. 4 Figure 1.2: Schematic diagram of an optical transceiver system using LET and HPT. ..... 8 Figure 1.3: Monolithical integration of (a) HBT and LD and (b) HBT and TL. ................ 9 Figure 1.4: Band alignment of InGaAs/InP and InAlAs/InP. ........................................... 11 Figure 2.1: Schematic diagram