Device Technologies for RF Front-End Circuits in Next-Generation Wireless Communications

Total Page:16

File Type:pdf, Size:1020Kb

Device Technologies for RF Front-End Circuits in Next-Generation Wireless Communications Device Technologies for RF Front-End Circuits in Next-Generation Wireless Communications MILTON FENG, FELLOW, IEEE, SHYH-CHIANG SHEN, MEMBER, IEEE, DAVID C. CARUTH, MEMBER, IEEE, AND JIAN-JANG HUANG, MEMBER, IEEE Invited Paper Next-generation high data rate wireless communication systems I. INTRODUCTION offer completely new ways to access information and services. To provide higher data speed and data bandwidth, RF transceivers The evolution of wireless networks involves enormous in next-generation communications are expected to offer higher complexity and rapid changes between different generations RF performance in both transmitting and receiving circuitry to as well as different applications. Take mobile commu- meet quality of service. Chosen semiconductor device technologies nications as an example. It is one of the fastest growing will depend greatly on the tradeoffs between manufacturing cost areas over the past decade. The first-generation mobile and circuit performance requirements as well as the variations in system architecture. Hardly did we find a single semiconductor communication systems are analog systems designed to device technology that offers a total solution to RF transceiver carry the voice traffic. The rapid growth in the number of building blocks in terms of system-on-a-chip integration. The subscribers and the proliferation of incompatible first-gener- choices of device technologies for each constituent component ation systems drove the evolution toward second-generation are then important and complicated issues. In this paper, we will (2G) cellular systems. Multiple access techniques such review the general performance requirement of key components for RF transceivers for next-generation wireless communications. as time division multiple access (TDMA), code division The state-of-the-art high-speed transistor technologies will be multiple access (CDMA), and global system for mobile presented to assess the capabilities and limitations of each tech- communications (GSM) are used in the 2G systems. Again, nology in the arena of high data rate wireless communications. the spectrum shortage of current 2G communication systems The pros and cons of each technology will be presented and the results in a revolutionary instead of evolutionary approach feasible semiconductor device technologies for next-generation RF transceivers can be chosen upon the discretion of system to increase system capacity and support innovative broad- integrators. band multimedia services. Third–generation (3G) mobile communication systems, which GSM and CDMA converge Keywords—Bipolar junction transistor (BJT), device tech- nology, field-effect transistor (FET), heterojunction bipolar into a single, official, globally roamable system, provide not transistor (HBT), metal semiconductor field-effect transistor only voice service but also data delivery. (MESFET), pseudomorphic high electron mobility transistor The system for 3G wireless communications is also (p-HEMT), radio frequency (RF) front-end circuits, RF micro- referred as International Mobile Telecommunications electromechanical systems (RF MEMS), third generation (3G), 2000 (IMT-2000). Several terms are also used to de- wireless communications. scribe networks that use the 3G specification: Universal Mobile Telecommunication System (UMTS) in Europe, Freedom of Mobile Multimedia Access (FOMA) in Japan, or UMTS Terrestrial Radio Access Network (UTRAN). Multiple radio technology options have been included in the IMT-2000 standard to allow seamless service evolu- Manuscript received October 26, 2002; revised October 17, 2003. tion from the various 2G mobile standards that have been M. Feng is with the University of Illinois at Urbana-Champaign, Urbana, extensively deployed around the world. In Europe and IL 61820 USA (e-mail: [email protected]). S.-C. Shen and D. C. Caruth are with Xindium Technologies, Inc., Japan, for example, the wide-band CDMA (W-CDMA) Champaign, IL 61820 USA (e-mail: [email protected]; was adopted. W-CDMA offers much higher data speed [email protected]). and data bandwidth. W-CDMA can support mobile voice, J.-J. Huang is with WJ Communications, Milpitas, CA 95035 USA (e-mail: [email protected]). images, data and video communications at up to 2 Mb/s Digital Object Identifier 10.1109/JPROC.2003.821903 for local-area access and 384 kb/s for wide-area access, 0018-9219/04$20.00 © 2004 IEEE 354 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 2, FEBRUARY 2004 respectively. The input signals are digitalized and trans- circuits were considered the most challenging area and the mitted in a coded, spread-spectrum mode over a range of successful development in these RF front-end components is frequencies with 5-MHz channel bandwidth. In the United the most critical path in the deployment of next-generation States, CDMA-2000 is employed for backward compatible wireless communications. For example, EDGE signals, with CDMA (IS-95). The CDMA-2000 standard will be unlike conventional GSM which uses constant-envelope deployed in all cellular spectra with high-voice capacity and GMSK modulation, employ -shifted 8-PSK modula- high-speed packet data capabilities. It was devised to have tion. In order to provide sufficient quality of service (QoS) to high spectral efficiency and better power control scheme meet the required error vector magnitude (EVM) tolerance, through an open loop power control mechanism. one will need highly linear and low-phase-noise power Due to high cost in upgrading currently available infra- amplifiers (PAs) and modulators to maintain signal quality structure and physical limitation in device technology, some in radio transmission. This issue is complicated by some interim technologies, or 2.5G mobile communications, were other factors in reality such as power consumption, chip introduced in the roadmap to 3G communications. For ex- cost, and technology availability. Common approaches such ample, general packet radio service (GPRS) was introduced as nonlinear modulation technique or output power backoff to provide nonvoice value-added service that allows infor- PA operation lead to high-cost design cycle and inefficient mation to be sent and received across a mobile telephone power utilization. Thermal buildup in wireless communica- network at a theoretical maximum data rate of 171.2 kb/s. tion RF front-ends degrades the system performance as the It supplements today’s circuit switched data (9.6 kb/s) and power efficiency degrades at higher operating temperature. short message service (160 characters). Current GSM stan- Similar requirement is desired in short-distance WLAN dard are expecting to be replaced with an Enhanced Data such as OFDM with 64-QAM modulation schemes. WLAN rate through GSM Evolution (EDGE) modulation format. transceivers, for example, face challenges in stringent EVM The EDGE signal offers greater date rates while occupying requirement in order to provide a high-quality in-phase the same bandwidth as the older GSM format. This means and quadrature (I/O) modulation constellation. More power that operators can create base station transmission sites that backoff in PA operation and low phase noise components offer both GSM and EDGE radio interfaces and use the same are then required. switch and site controllers for both applications. The deploy- New modulation formats for next-generation wireless ment of EDGE triples the capacity of GPRS as well as en- communications keep placing higher RF performance ables smooth evolution to 3G mobile services. EDGE is ex- requirements on transceiver circuits. Looking further ahead, pected to be a complementary technology to W-CDMA that fourth–generation (4G) wireless communications are the allows an operator to deploy a single 3G network and to de- term of concepts beyond 3G wireless systems. It will in- liver optimum performance, coverage, and long-term flexi- clude technologies with innovations in system architectures bility at lowest cost. and spectrum allocation as well as utilization in radio Similarly, in the short-distance wireless data commu- communication, networking, services and applications. It nications, the wireless local access network (WLAN) per will improve and revolutionize wireless/wireline data and IEEE 802.11 specifications has become the mainstream voice networks. Gigabit wireless communications will be technology. The WLAN operates at the 2.4- and 5.8-GHz among one of them. The communication between mobile frequency bands with maximum network range of 150 ft stations will not only contain voice but also involve with and maximum theoretical data transmission rate of 54 Mb/s. real-time multimedia and data exchanges. The higher carrier Several standard versions coexists in IEEE 802.11 standard frequency of possibly 2–8 GHz, wider bandwidth, and representing different generations of technological evolu- better channel utilization will be required for large data tion. IEEE 802.11b specifies radios transmitting at 2.4 GHz transmissions. The RF transceiver will remain one of the and at speeds up to 11 Mb/s using direct sequence spread research hot spots in the development of high-speed wireless spectrum (DSSS) technology. Different carrier modulation communications, and the successful development of inno- methods ranging from BPSK, QPSK, 16QAM, to 64QAM vative wireless components will be based on the success in were implemented in IEEE 802.11a using an orthogonal innovative semiconductor device technology development. frequency division multiplexing (OFDM) technique.
Recommended publications
  • The Transistor Laser: a Radical, Revolutionary Device
    technology novel devices The transistor laser: a radical, revolutionary device There are tremendous differences between the laser and the transistor, but it is possible to draw their attributes together by building a transistor laser. This novel device that produces its electrical and optical outputs simultaneously promises to revolutionize data transfer, enabling new architectures capable of operating at incredibly high bit rates, says Milton Feng from the University of Illinois, Urbana-Champaign. 48 www.compoundsemiconductor.net November / December 2010 novel devices technology he semiconductor industry rakes in billions and Tdollars from the manufacture of devices invented way back in the middle of the twentieth century. With the benefit of hindsight it is clear that the most important of them all is the transistor, a device invented by John Bardeen and Walter Brattain in 1947, which has been the key building block in the development of microelectronics, integrated circuits, consumer electronics, and the computer industry. Not far behind the transistor is the visible LED, made for the first time by Nick Holonyak in 1962, and the laser diode, independently invented in that same year by Holonyak and Robert Hall. These two optoelectronic devices have provided a great foundation for revolutionizing display, lighting, and information technology. Although the performance of all these devices has come on in leaps and bounds over the intervening decades, none can simultaneously deliver an electrical signal and a laser output. The invention of such device had to wait until Fig. 1 Three-port operation of the transistor laser provides an electrical input 2004, when I, Milton Feng, in partnership with co-worker (port 1), an electrical output (port 2) and an optical laser output (port 3).
    [Show full text]
  • ECE Illinois WINTER2005.Indd
    Electrical and Computer Engineering Alumni News ECE Alumni Association newsletter University of Illinois at Urbana-Champaign Winter 2005-2006 Jack Kilby, 1923–2005 Volume XL Cancer claims Nobel laureate, ECE alumnus By Laura Schmitt and Jamie Hutchinson Inside this issue Microchip inventor and Nobel physics laureate DEPARTMENT HEAD’S Jack Kilby (BSEE ’47) died from cancer on MESSAGE June 22, 2005. He was 81. Kilby received the 2000 Nobel Prize in 2 Physics on December 10, 2001, in an award ceremony in Stockholm, Sweden. Kilby was ROOM-TEMPERATURE LASER recognized for his part in the invention and 4 development of the integrated circuit, which he first demonstrated on September 12, 1958, while at Texas Instruments. At the Nobel awards ceremony, Royal Swedish Academy member Tord Claesen called that date “one of the most important birth dates in the history of technology.” A measure of Kilby’s importance can be seen in the praise that was lavished on him in death. Lengthy obituaries appeared in engi- Jack Kilby neering and science trade publications as well FEATURED ALUMNI CAREERS as in major newspapers worldwide, including where his interest in electricity and electron- the New York Times, Financial Times, and The ics blossomed at an early age. His father ran a 29 Economist. On June 24, ABC News honored power company that served a wide area in rural Kilby by naming him its Person of the Week. Kansas, and he used amateur radio to keep in Reporter Elizabeth Vargas introduced the contact with customers during emergencies. segment by noting that Kilby’s invention During an ice storm, the teenage Kilby saw “had a direct effect on billions of people in the firsthand how electronic technology could world,” despite his relative anonymity among positively impact people’s lives.
    [Show full text]
  • CNST Annual Nanotechnology Workshop 2011 Npeap Workshop
    CNST Annual Nanotechnology Workshop 2011 nPEAP Workshop May 12–13, 2011 Beckman Institute for Advanced Science and Technology and Micro and Nanotechnology Laboratory University of Illinois at Urbana-Champaign Sponsor Showcasing University of Illinois research in • University of Illinois bionanotechnology/nanomedicine, nanoelectronics/ Center for Nanoscale Science and Technology nanophotonics, and nanomaterials/nanomanufacturing, leading to cross-campus and industry collaborations. Co-sponsors • Micro and Nanotechnology Laboratory nPEAP • National Center for Supercomputing Applications The nano-Photonics and Electronics Industry Affiliates • Beckman Institute for Advanced Program focuses on cutting-edge nano-photonics and Science and Technology electronics research. • Coordinated Science Laboratory • Frederick Seitz Materials Research Laboratory • Institute for Genomic Biology • NSF I/UCRC Center for Agricultural, Biomedical, and Pharmaceutical Nanotechnology (CABPN) • NSF IGERT- CMMB • NIH/NCI M-CNTC • NSF Center on Emergent Behaviors For Technical Collaboration Contact: of Integrated Cellular Systems Center for Nanoscale Science and Technology (EBICS, co-location) University of Illinois • NanoHub at Illinois 217-333-2015 • Nanotechnology Community of Scholars at ACES [email protected] • US Army TATRC: Micro and Nano- www.cnst.illinois.edu mediated 3D Stereo Lithography 11:10 In-Situ TEM Investigations of Nanoscale Energy Systems in Relevant CNST Annual Environmental Conditions Shen Dillon, Materials Science and Nanotechnology
    [Show full text]
  • Compound Semiconductor Materials and Processing Technologies for Photonic Devices and Photonics Integration
    Carl kth royal institute r of technology euterskiöld Hedlund euterskiöld Compound semiconductor materials and processing technologies for photonic devices and photonics integration photonics and devices photonic for technologies processing and materials semiconductor Compound Doctoral Thesis in Information and Communication Technology Compound semiconductor materials and processing technologies for photonic devices and photonics integration CARL REUTERSKIÖLD HEDLUND ISBN 978-91-7873-665-2 TRITA-EECS-AVL-2020:51 KTH2020 www.kth.se Stockholm, Sweden 2020 Compound semiconductor materials and processing technologies for photonic devices and photonics integration CARL REUTERSKIÖLD HEDLUND Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Doctor of Philosophy on Friday the 30h October 2020, at 10:00 a.m. in sal C, Electrum, KTH Doctoral Thesis in Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden 2020 © Carl Reuterskiöld Hedlund ISBN 978-91-7873-665-2 TRITA-EECS-AVL-2020:51 Printed by: Universitetsservice US-AB, Sweden 2020 Contents Abstract …………………………………………………………6 Sammanfattning ……………………………………………….8 Acknowledgements ………………………………………….10 List of Publications ………………………………………….11 1 Introduction ……………………………………………….17 1.1 Part A: GaAs and InP- device growth and processing…...17 1.1.1 Transistor vertical surface emitting lasers …………………..17 1.1.2 Trench confined transistors for spatial light modulator driver electronics…………………………………....………….20
    [Show full text]
  • Creating a Better Sensor for DNA Analysis
    NEWS FOR ECE ILLINOIS ALUMNI AND FRIENDS WINTER 2009–2010 Creating a better sensor for DNA analysis Also in this issue: Goddard receives Presidential Early Career Award Scientists break light modulation speed record—twice ECE grad students develop portable AIDS diagnostic platform ECE alumnus Cho inducted into National Inventors Hall of Fame Department of Electrical and Computer Engineering Support excellence To alumni and friends of ECE ILLINOIS, Speaking at a special session on scientific philanthropy, held at the World Conference of Science Journalists in London last July, Mike Lazaridis, cofounder of Research in Motion, Ltd., the company behind the BlackBerry® and major sponsor of the Institute for Quantum Computing at the University of Waterloo, Canada, said, “Philanthropy can be seen as a kind of venture capital for really long-term investment.” This comment reminds us of the true value of academic philanthropy as a critical enabler of the free pursuit of the arts, scientific discovery, and engineering innovation. Philanthropy, which can be defined literally as “a love for mankind,” occurs through the generosity of those with a commitment to the future, people for whom satisfaction derives from the benefits to society at large. I can think of no other institution more deserving of sponsorship today than the land grant university, perhaps the foremost guardian of the free pursuit of knowledge expansion. In today’s challenging economic times, the uncertainty of state support forces land grant universities to become increasingly dependent on philanthropy to further pursuit of their mission. The characterization of the philanthropist as a catalyst for the betterment of humanity aligns with the wellspring of the land grant university’s success—a fundamental meritocracy, regard- ing not only the selection of the student body, but also regarding academic and artistic freedom.
    [Show full text]
  • Surfactants and Digital Alloys for Strain Relief in III-Nitride Distributed Bragg Reflectors and Related Heterostructures Via Metal Organic Vapor Phase Epitaxy
    Graduate Theses, Dissertations, and Problem Reports 2011 Surfactants and digital alloys for strain relief in III-nitride distributed Bragg reflectors and related heterostructures via metal organic vapor phase epitaxy Lee Ellen Rodak West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Rodak, Lee Ellen, "Surfactants and digital alloys for strain relief in III-nitride distributed Bragg reflectors and related heterostructures via metal organic vapor phase epitaxy" (2011). Graduate Theses, Dissertations, and Problem Reports. 4775. https://researchrepository.wvu.edu/etd/4775 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. SURFACTANTS AND DIGITAL ALLOYS FOR STRAIN RELIEF IN III- NITRIDE DISTRIBUTED BRAGG REFLECTORS AND RELATED HETEROSTRUCTURES VIA METAL ORGANIC VAPOR PHASE EPITAXY
    [Show full text]
  • A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design Mark K
    Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering 12-1-1985 A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design Mark K. Bettinger Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Bettinger, Mark K., "A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design" (1985). Department of Electrical and Computer Engineering Technical Reports. Paper 551. https://docs.lib.purdue.edu/ecetr/551 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design Mark K. Bettinger TR-EE 85-18 December 1985 School of Electrical Engineering Purdue University West Lafayette, Indiana 47907 A COMPARISON OF E/D-MESFET GALLIUM ARSENIDE AND CMOS SILICON FOR VLSI PROCESSOR DESIGN Mark K. Bettinger TR-EE 85-18 December 1985 ACKNOWLEDGMENTS I acknowledge the guidance and assistance of my major professor, Veljko Milutinovic. He has provided opportunities to learn that I appreciate. I am also indebted to RCA-ATL for their support and guidance as well as their funding. I would also like to thank those at RCA-ATL who have provided assistance: Tom Geigel, Bill Heagerty, Walt Helbig, Wayne Moyers, Jeff Prid- more, and Rich Zeigert. Little of this work would have been completed without the support of my officemates. I also thank my good friend Lee Bissonette for all of her cheerful assistance.
    [Show full text]
  • Development of High Speed Vertical Cavity Surface-Emitting Semiconductor Diode Laser and Transistor Laser by Michael E. Liu Diss
    DEVELOPMENT OF HIGH SPEED VERTICAL CAVITY SURFACE-EMITTING SEMICONDUCTOR DIODE LASER AND TRANSISTOR LASER BY MICHAEL E. LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Milton Feng, Chair Professor Jianming Jin Associate Professor John M. Dallesasse Assistant Professor Can Bayram ABSTRACT High speed semiconductor lasers are used in optical transceivers for short-reach data links. With fast-growing data capacity and traffic in the data centers around the globe, faster optical transceivers are demanded. A microcavity vertical cavity surface-emitting laser (VCSEL) is able to show a high modulation bandwidth as well as single-mode operation; however, because of the small oxide aperture (< 3 µm), a microcavity VCSEL shows high resistance and low optical power. An 850 nm oxide-confined VCSEL with an aperture ~4 µm is able to show error- free transmission at 40 Gb/s. With an advanced DBR design for parasitic reduction as well as better thermal conduction and a short 0.5-λ cavity with five quantum wells, an 850 nm VCSEL is able to demonstrate 57 Gb/s error-free transmission at 25 °C and 50 Gb/s error- free transmission at 85 °C. The dynamic carrier profile in the base of a transistor laser makes it possible to have a shorter carrier lifetime than in a diode laser. The first oxide-confined vertical cavity transistor laser (VCTL) is realized with a trench oxidation process and a lateral-feeding base metal design.
    [Show full text]
  • WIDE BANDGAP POWER SEMICONDUCTOR DEVICES Teaming List
    WIDE BANDGAP POWER SEMICONDUCTOR DEVICES Teaming List Updated: July 8, 2013 This document contains the list of potential teaming partners for the WIDE BANDGAP POWER SEMICONDUCTOR DEVICES, solicited in RFI-0000004 and is published on ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov), ARPA-E’s online application portal. This list will periodically undergo an update as organizations request to be added to this teaming list. If you wish for your organization to be added to this list please refer to https://arpa-e-foa.energy.gov/ for instructions. By enabling and publishing the WIDE BANDGAP POWER SEMICONDUCTOR DEVICES Teaming List, ARPA-E is not endorsing or otherwise evaluating the qualifications of the entities that are self-identifying themselves for placement on this Teaming List. Organization Name Organization Area of Background Website Email Phone Address Type Expertise ABB US Corporate Research Business > 940 Main Campus Center, ABB 1000 [email protected] +1 919 856 Drive, Raleigh NC Inc. Le Tang Employees Grid Power and Automation www.abb.com .com 3878 27606 APEI, Inc. specializes in developing and manufacturing high power density and high efficiency power electronic solutions and products based on wide bandgap (WBG) technologies. APEI, Inc.’s commercial ISO9001 and AS9100 certified Class 1000 manufacturing facility offers custom power substrate manufacturing, power module manufacturing, and microelectronics assembly Technologies manufacturing services. The manufacturing lines have that facilitate been designed to deliver the highest quality product for low-cost, high- those applications that need the best performance and performance, reliability, including a specialization in high temperature and/or plug- electronics manufacturing processes to 400 C.
    [Show full text]
  • NOVEL MODELLING METHODS for MICROWAVE Gaas MESFET DEVICE ZHONG ZHENG a THESIS SUBMITTED for the DEGREE of DOCTOR of PHILOSOPHY
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarBank@NUS NOVEL MODELLING METHODS FOR MICROWAVE GaAs MESFET DEVICE ZHONG ZHENG (M.Eng, University of Science and Technology of China, P.R.C) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 i Acknowledgements First of all, I would like to deeply thank my supervisors, Professor Leong Mook Seng and A/Prof. Ooi Ban Leong, who have led me into this interesting world of device modelling, and given me full support for my study. I am here to express my sincere gratitude to them for their patient guidance, invaluable advices and discussions. I believe what I have learnt from them will always lead me ahead. I also want to thank other faculty staffs in NUS Microwave & RF group: Prof Yeo Swee Ping, Prof Li Le-Wei, Dr. Chen Xu Dong, Dr. Guo Yong Xin, Dr. Koen Mouthaan, and Dr. Hui Hon Tat, etc. for their significant guidance and support. I am also very grateful to these supporting staffs in NUS Microwave & RF group: Madam Guo Lin, Mr. Sing Cheng-Hiong and Madam Lee Siew-Choo for their kind assistances in PCB/MMIC fabrication and measurement. My gratitude also goes to all the friends in microwave division, for their kind help and for the wonderful time we shared together. Last but not least, I would like to thank my family, for their endless support and encouragement, which always be the greatest treasure of my life. ii Table of Contents Acknowledgements ……..………………………..……………..…...…………………i Table of Contents ...…………………………...……………………………………….ii Summary ……………………………………...…….…………………………………vi List of Figures……………………………………….……………………………..…viii List of Tables ….……………………………………..………….……………………xiii List of Symbols ……………………………………….……………….….……….….xv Chapter 1 Introduction ........................................................................................
    [Show full text]
  • Transition of Sic MESFET Technology from Discrete Transistors to High Performance MMIC Technology
    Transition of SiC MESFET Technology from Discrete Transistors to High Performance MMIC Technology J.W. Milligan, J. Henning, S.T. Allen, A.Ward, P. Parikh, R.P. Smith, A. Saxler, Y. Wu, and J. Palmour Cree, Inc., 4600 Silicon Drive, Durham, NC 27703, (919) 313-5564, [email protected] Keywords: SiC, MESFET, MMIC, HPSI, HTOL, GaN Abstract Significant progress has been made in the development of SiC MESFET DEVICE PERFORMANCE SiC MESFETs and MMIC power amplifiers manufactured on 3-inch high purity semi-insulating (HPSI) 4H-SiC substrates. SiC MESFETs continue to mature in performance and MESFETs with a MTTF of over 200 hours when operated at a manufacturing process stability. These devices now TJ =295 °C are presented. High power SiC MMIC amplifiers achieve a power density of approximately 4.0 W/mm and are shown with excellent yield and repeatability using a power added efficiencies greater than 50% on a regular released foundry process. GaN HEMT operating life of over basis. As an example, Figure 2 shows a 1.0 mm gate 500 hours at a TJ =160 °C is shown. Finally, GaN HEMTs with 30 W/mm RF output power density are reported. periphery MESFET operating at 50V producing 4.0 watts of output power at 66% drain efficiency (54% PAE) at 3.5 GHz. INTRODUCTION SiC MESFETs offer significant advantages for next CW Load Pull Data at 3.5 GHz generation commercial and military systems. Increased 40 60 CW Power power density and higher operating voltage enable higher 36 PAE 50 performance, lighter weight, and wider bandwidth systems.
    [Show full text]
  • A Novel 4H-Sic MESFET with a Heavily Doped Region, a Lightly Doped Region and an Insulated Region
    micromachines Article A Novel 4H-SiC MESFET with a Heavily Doped Region, a Lightly Doped Region and an Insulated Region Hujun Jia *, Mengyu Dong , Xiaowei Wang, Shunwei Zhu and Yintang Yang School of Microelectronics, Xidian University, Xi’an 710071, China; [email protected] (M.D.); [email protected] (X.W.); [email protected] (S.Z.); [email protected] (Y.Y.) * Correspondence: [email protected]; Tel.: +86-029-8820-2562 Abstract: A novel 4H-SiC MESFET was presented, and its direct current (DC), alternating current (AC) characteristics and power added efficiency (PAE) were studied. The novel structure improves the saturation current (Idsat) and transconductance (gm) by adding a heavily doped region, reduces the gate-source capacitance (Cgs) by adding a lightly doped region and improves the breakdown voltage (Vb) by embedding an insulated region (Si3N4). Compared to the double-recessed (DR) structure, the saturation current, the transconductance, the breakdown voltage, the maximum oscillation frequency (fmax), the maximum power added efficiency and the maximum theoretical output power density (Pmax) of the novel structure is increased by 24%, 21%, 9%, 11%, 14% and 34%, respectively. Therefore, the novel structure has excellent performance and has a broader application prospect than the double recessed structure. Keywords: SiC; Metal-Semiconductor Field Effect Transistor (MESFET); heavily doped region; power added efficiency (PAE) Citation: Jia, H.; Dong, M.; Wang, X.; Zhu, S.; Yang, Y. A Novel 4H-SiC MESFET with a Heavily Doped Region, a Lightly Doped Region and 1. Introduction an Insulated Region. Micromachines The third-generation semiconductor is the development trend of the semiconductor.
    [Show full text]